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Abstract

Line searches and trust regions are two techniques to globalize nonlinear optimization algo-
rithms. We claim that the trust-region technique has built—in an appropriate regularization of
ill-conditioned second—order approximation. The question we ask and then answer in this short
paper supports this claim. We force the trust-region technique to act like a line search and
we accomplish this by always choosing the step along the quasi-Newton direction. We obtain
global convergence to a stationary point as long as the condition number of the second—order
approximation is uniformly bounded, a condition that is required in line searches but not in
trust regions.

Resumo

A pesquisa unidimensional e as regioes de confianca sdo técnicas de globalizagao de algoritmos
para optimizagdo nao linear. A técnica de regioes de confian¢a incorpora também a regular-
izacao de aproximagoes de segunda ordem mal condicionadas. Neste artigo é discutida esta
regularizacao numa situacao em que a técnica de regides de confianca é forcada a actuar como
a pesquisa unidimensional, ao exigir—se que o passo seja sempre na direccao de quasi—-Newton.
Neste caso, a convergéncia global para um ponto estacionario é verdadeira desde que o niimero
de condicao da aproximagao de segunda ordem seja limitado uniformemente, hipdtese que tradi-
cionalmente é assumida para a pesquisa unidimensional mas nao para as regices de confianca.
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1 Framework
Consider the unconstrained minimization problem
minimize f(z), (1)

where f : IR" — IR is at least continuously differentiable, and x € IR".
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A quasi-Newton method for the solution of (1) generates a sequence of iterates {x;} and
steps {sy} such that x4 = 2t + sk. At xx, a quadratic model of f(zy + s),

1
y(s) = flar) +gi s+ §3THk3,

is formed, where g, = V f(x;) and Hy introduces curvature into the model. We assume that
Hj, is a symmetric positive definite matrix of order n. The quasi-Newton step s is given
by s = —H,;lgk and hence is the unconstrained minimizer of ¥y (s). Thus a quasi-Newton
method consists of forming xp1 = xp — Hk_lgk, for Kk =0,1,..., but it is well-known that such
an algorithm is not globally convergent. If we want to start with any choice of xg and still
guarantee convergence then we need a globalization strategy.

A line search strategy considers —H,;lgk to be a direction from which a step will be obtained.
The step s, is of the form —/\ka_lgk, where the step length A\ is chosen in an appropriate way.

The trust-region technique does not necessarily choose the quasi-Newton direction. Here a
step is an approximate solution of the trust-region subproblem

minimize Wy(s),

subject to ||s|| < o,

(2)

where §j, is the trust radius, and || - || denotes a norm in IR", assumed in this paper to be the (5
norm.

2 Line searches and trust regions

The global convergence result we are looking at is

li = 0. 3
(i lgll (3)
Let us describe in detail the classical conditions under which both line searches and trust regions
give us (3).

If a line search is used one has to ask the step s = —)\kaflgk to satisfy the Armijo—
Goldstein-Wolfe conditions:

flan+ sk) < flak) + argl sk, (4)
Vf(xk + k)" sk > asgf sk, (5)

where a1 and ay are constants fixed for all k£ and satisfying 0 < a1 < as < 1. After an sg, or
equivalently a A, has been found that satisfies these conditions, a new iterate xj,q is formed
by setting xx41 = xr + Sk = T — /\ka_lgk. A key ingredient to obtain global convergence to
a stationary point is to keep the angle 6, € [0, ] between g and —H,;lgk uniformly bounded
away from m/2. Let en(Hy) = ||Hy|[|H;'|| > 1 be the condition number of the matrix Hy. If
cn(Hy,) is uniformly bounded, i.e., if there exists a v > 0 such that

cn(Hy) <v

for every k, then we have
g H ' gi

cos(fy) = ———FH——
lgill 11 g

> (6)



The inequality (6) is proved using
G H g o Amin(H D)llgel? 1 1

lgwll I, gull — 1E w12 Amae (H)[[H - =

where /\m,-n(Hk_l) and Apar(Hy) denote the smallest and largest eigenvalues of Hk_1 and Hy,
respectively. The lower bound (6) on cos(fy) is crucial to establish the following result.

Theorem 2.1 Let f be bounded below and ¥V f be uniformly continuous. If sy satisfies (4)—(5)
and the condition number cn(Hy) of Hy, is uniformly bounded, then {xy} satisfies (3).

Some of the ground work that led to this result was provided by Armijo [1] and Goldstein [7]. It
was established by Wolfe [23], [24] and Zoutendijk [25], under the assumption that the gradient
is Lipschitz continuous. However this condition can be relaxed and one can see that uniform
continuity is enough (see Fletcher [5], Theorem 2.5.1). Some practical line—search algorithms
are described by Moré and Thuente [10]. For more references see also the books [3], [11], and
[13] and the review papers [4] and [12].

Now let us describe how the trust-region technique works. A step s; has to decrease the
quadratic model W (s) from s = 0 to s = s. The way s, is computed determines the magnitude
of the predicted decrease Wy (0) — Wy (sx) and influences the type of global convergence of the
trust-region algorithm. One can ask sp to satisfy two classical conditions, either fraction of
Cauchy decrease (simple decrease) or fraction of optimal decrease.

The first condition forces the predicted decrease to be at least as large as a fraction of the
decrease given for Wy (s) by the Cauchy step c. This step is defined as the solution of the
one—dimensional problem minimize W(s) subject to ||s|| < 0k, s € span{—gx}, and it is given
by

llg || ; llge |l®
— el if 22 <)
ngHkgkg 98 Hegr — k>

k= (7)
— Hg—:”gk otherwise.

The step s is said to satisfy a fraction of Cauchy decrease for the trust-region subproblem (2)
if
T4(0) = Wi(sx) > B (W4 (0) — Ty(ey) ) (8)

where 31 € (0, 1] is fixed across all iterations. Two widely used algorithms to compute steps that
satisfy (8) are the dogleg algorithm ([2], [14], and [17]) and the conjugate-gradient algorithm
([20] and [22]).

The second condition is more stringent and relates the predicted decrease to the decrease
given on W (s) by the optimal solution s} of the trust-region subproblem (2). The step sj is
said to satisfy a fraction of optimal decrease for the trust-region subproblem (2) if

Wi(0) = Wr(si) > o (Wi (0) = Wi(s}) ). (9)

where (35 € (0, 1] is fixed across all iterations. Algorithms to compute s, that satisfy the fraction
of optimal decrease (9) have been proposed in [9] and [19]. It is a simple matter to see that (9)
implies (8).

The predicted decrease pred(sy) given by si is defined as W (0)— Wy (s;). The actual decrease

ared(sy) is given by f(xg) — f(xr + si). The trust-region strategy relates the acceptance of sy
ared(sy)

and the update of the trust radius with the ratio r;, = pred(sy)

in the following way:



If i, < n then sy is rejected, xg41 = x, and dgy1 = || skl
If r, > n then si is accepted, xx11 = xf + Sk, and Jx11 > Ok.

Here 4 and n are uniformly fixed and such that 0 < v, < 1. Of course the rules to update the
trust radius can be much more involved, but the above suffices to prove convergence results and
to understand the trust-region mechanism.

Theorem 2.2

Let f be bounded below and V f be uniformly continuous. If s satisfies (8) and ||Hy|| is
uniformly bounded, then {xy} satisfies (3).

If in addition, f is twice continuously differentiable and sy satisfies (9), then {xy} has a
limit point x, such that V2f(x,) is positive semi—definite.

The global convergence to a stationary point was established by Powell [15] and Thomas [21].
The global convergence to a point where the Hessian is positive semi-definite was established by
Sorensen [18]. Related results can be found in references [6], [8], [9], and [17]. The assumption
on ||Hy| can be weakened. Powell [16] proved a convergence result in the case where there is a
bound on the second—order approximation Hj that depends linearly on the iteration counter k.

3 The scaled quasi—-Newton step

A major difference between the results that describe global convergence to a stationary point is
that a uniform bound on H, ' is required for line searches but not for trust regions. Of course
we are not making a fair comparison because the form of the step for trust regions was left
unspecified whereas for line searches the step was taken along the quasi-Newton direction. In
order to compare these global convergence results, let us take away the flexibility that the trust—
region technique has to pick a direction and force it to move along the quasi-Newton direction.
In other words the step sj is now given by —kak_lgk, where

5 . —1
i, g gl > 0

&k = (10)

1 otherwise.

We call this step a scaled quasi-Newton step and denote it by s',?'.

If we want to establish global convergence to a stationary point, we need to make sure that
the scaled quasi—-Newton step satisfies the fraction of Cauchy decrease condition (8). The natural
question to ask is: under what conditions does the scaled quasi-Newton step satisfy (8) 7 We
can go even further and ask: what do we need to assume to guarantee that such a step also
satisfies the fraction of optimal decrease condition (9) 7

4 Global convergence for the scaled quasi—-Newton step

We prove in this section that the answer to the questions formulated above is the existence of a
uniform bound on the condition number of Hy,.



Theorem 4.1 If the condition number en(Hy) of Hy is uniformly bounded, then the scaled

quasi—Newton step s,'c\l = —kak_lgk satisfies the fraction of Cauchy decrease condition (8).

Proof. If §, =1, s',?' is the optimal solution of the trust-region subproblem (2) and there is
nothing else to prove. So, suppose that |[H; 'gx| > 0x. Tt follows from this and & < 1 that

1 _
Th(0) = Ti(sy) = SE(2— &gk Hy 'an
1 _
> §§k9kTHk Lgi
1 gl Hy, g
= 3Ollgell == = (11)
gkl Hy, " gl
According to the definition of ¢;, given by (7), we either have % < 4, in which case
k
(0) — Ty(ey) = el 1 Joll® Ty o
9L Hrgr 2 (9f Higr)? 7k
llgn® ch .
S TN > §;, which in turn gives
52
Ui(0) = Uplcr) = Ollgrll — %mg{mgk
< 30kllgll-

From this, (6), and (11), we get

g (sNy s L _
T4(0) — Ta(s) > o (24(0) = Te(en)).
Thus sl'c\l satisfies (8) with 81 = o-. O

The following example is taken from [2] and indicates that without the uniform bound on
the condition number, the scaled quasi-Newton step might not satisfy the fraction of Cauchy
decrease condition.

Example 4.1 Let us drop the subscripts k and consider H = diag(1, €2, ¢*) and g = (€2, €2, €3)T,
where € is positive and small. With these choices we have

H™'g= <62 1 1>T 1 gl =0 <1> g"H™'g=0(¢), and lgl®_ O(e?).
3 Y € Y € Y 3 gTHg
Note that S
9 H g
gl H" g
If 6 is chosen very small, say § = O(e®) then by (7) and (10), c = —”%Hg and & = ﬁ. As a

result, U(0) — \I’(SN) = O(e%) and ¥ (0) — U(c) = O(°), which shows that as € gets smaller and
smaller the fraction of Cauchy decrease condition becomes more and more difficult to satisfy.

Ofe).



Theorem 4.2 If the condition number en(Hy) of Hj is uniformly bounded, then the scaled
quasi—Newton step s,'c\l = —kak_lgk satisfies the fraction of optimal decrease condition (9).

Proof. Again if & =1, Sllc\l is the optimal solution of the trust-region subproblem (2) and
there is nothing else to prove. Let us assume that HH,;lng > dk. Since [[si]| < 0 < ||H;1ng <
HHIC_1||Hng, we have

Ui(0) — Wi(sy) = —gfsp—(sp) Hi(s})

IN

st M llgell + 3 1s% 1% | Hill

IN

Orllgrll + 50kl gr |
= (L+3%) dkllgell-
From this, (6), and (11), we get

TH= g,
Te(0) = T(s)) > Foullonll it

> S (04(0) - Ti(s))

> o (W(0) - Ti(sh))),
and we see that the scaled quasi-Newton step satisfies (9) with 5y = ﬁ O

Theorem 2 in [2] shows that if a step satisfies the fraction of Cauchy decrease (8) and there
exists a uniform bound on the condition number of Hy, then such a step also satisfies the fraction
of optimal decrease condition (9). Thus we could prove Theorem 4.2 by appealing to this earlier
result, in conjunction with Theorem 4.1.

5 Final remarks

There are other interesting relationships between line searches and trust regions. For instance,
the criteria to accept a step are very similar. Suppose that a line search only requires the
Armijo—Goldstein—-Wolfe condition (4) to accept a step sg. This condition can be rewritten as

fzr) = flzg + sp)

2 aq, (12)
—Q;CTSIC

and it becomes evident how similar this is to the condition

flaw) = fleg +sp) o

T T =
—0; Sk — St Hpsg

used in the trust-region technique. One can see that trust regions use curvature to accept or
reject a step but line searches do not. However many practical implementations of line searches
include second—order information in the sufficient decrease condition (4), or (12).



One final comment about the regularization issue is in order. It is also possible to regularize
a line search by adding to Hj a positive multiple pI of the identity matrix. Of course one must
choose 1 and this becomes a performance issue that does not arise in trust regions. The solution
sy of the trust-region subproblem (2) satisfies the first-order necessary optimality conditions

(Hk + /U)SZ; = —0k,

(0 = lIsgll) =0,

Here the parameter p is implicitly defined by the size of the trust-region radius dy.
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