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A quasi{Newton method for the solution of (1) generates a sequence of iterates fxkg andsteps fskg such that xk+1 = xk + sk. At xk, a quadratic model of f(xk + s),	k(s) = f(xk) + gTk s+ 12sTHks;is formed, where gk = rf(xk) and Hk introduces curvature into the model. We assume thatHk is a symmetric positive de�nite matrix of order n. The quasi{Newton step sk is givenby sk = �H�1k gk and hence is the unconstrained minimizer of 	k(s). Thus a quasi{Newtonmethod consists of forming xk+1 = xk �H�1k gk, for k = 0; 1; : : :, but it is well{known that suchan algorithm is not globally convergent. If we want to start with any choice of x0 and stillguarantee convergence then we need a globalization strategy.A line search strategy considers �H�1k gk to be a direction from which a step will be obtained.The step sk is of the form ��kH�1k gk, where the step length �k is chosen in an appropriate way.The trust{region technique does not necessarily choose the quasi{Newton direction. Here astep is an approximate solution of the trust{region subproblemminimize 	k(s);subject to ksk � �k; (2)where �k is the trust radius, and k � k denotes a norm in IRn, assumed in this paper to be the `2norm.2 Line searches and trust regionsThe global convergence result we are looking at islimk�!+1 kgkk = 0: (3)Let us describe in detail the classical conditions under which both line searches and trust regionsgive us (3).If a line search is used one has to ask the step sk = ��kH�1k gk to satisfy the Armijo{Goldstein{Wolfe conditions: f(xk + sk) � f(xk) + �1gTk sk; (4)rf(xk + sk)T sk � �2gTk sk; (5)where �1 and �2 are constants �xed for all k and satisfying 0 < �1 < �2 < 1. After an sk, orequivalently a �k, has been found that satis�es these conditions, a new iterate xk+1 is formedby setting xk+1 = xk + sk = xk � �kH�1k gk. A key ingredient to obtain global convergence toa stationary point is to keep the angle �k 2 [0; �2 ] between gk and �H�1k gk uniformly boundedaway from �=2. Let cn(Hk) = kHkkkH�1k k � 1 be the condition number of the matrix Hk. Ifcn(Hk) is uniformly bounded, i.e., if there exists a � > 0 such thatcn(Hk) � �for every k, then we have cos(�k) = gTk H�1k gkkgkk kH�1k gkk � 1� : (6)2



The inequality (6) is proved usinggTk H�1k gkkgkk kH�1k gkk � �min(H�1k )kgkk2kH�1k k kgkk2 = 1�max(Hk)kH�1k k = 1kHkk kH�1k k ;where �min(H�1k ) and �max(Hk) denote the smallest and largest eigenvalues of H�1k and Hk,respectively. The lower bound (6) on cos(�k) is crucial to establish the following result.Theorem 2.1 Let f be bounded below and rf be uniformly continuous. If sk satis�es (4){(5)and the condition number cn(Hk) of Hk is uniformly bounded, then fxkg satis�es (3).Some of the ground work that led to this result was provided by Armijo [1] and Goldstein [7]. Itwas established by Wolfe [23], [24] and Zoutendijk [25], under the assumption that the gradientis Lipschitz continuous. However this condition can be relaxed and one can see that uniformcontinuity is enough (see Fletcher [5], Theorem 2.5.1). Some practical line{search algorithmsare described by Mor�e and Thuente [10]. For more references see also the books [3], [11], and[13] and the review papers [4] and [12].Now let us describe how the trust{region technique works. A step sk has to decrease thequadratic model 	k(s) from s = 0 to s = sk. The way sk is computed determines the magnitudeof the predicted decrease 	k(0) � 	k(sk) and in
uences the type of global convergence of thetrust{region algorithm. One can ask sk to satisfy two classical conditions, either fraction ofCauchy decrease (simple decrease) or fraction of optimal decrease.The �rst condition forces the predicted decrease to be at least as large as a fraction of thedecrease given for 	k(s) by the Cauchy step ck. This step is de�ned as the solution of theone{dimensional problem minimize 	k(s) subject to ksk � �k; s 2 spanf�gkg, and it is givenby ck = 8>><>>: � kgkk2gTk Hkgk gk if kgkk3gTk Hkgk � �k;� �kkgkkgk otherwise. (7)The step sk is said to satisfy a fraction of Cauchy decrease for the trust{region subproblem (2)if 	k(0)�	k(sk) � �1�	k(0)�	k(ck)�; (8)where �1 2 (0; 1] is �xed across all iterations. Two widely used algorithms to compute steps thatsatisfy (8) are the dogleg algorithm ([2], [14], and [17]) and the conjugate{gradient algorithm([20] and [22]).The second condition is more stringent and relates the predicted decrease to the decreasegiven on 	k(s) by the optimal solution s�k of the trust{region subproblem (2). The step sk issaid to satisfy a fraction of optimal decrease for the trust{region subproblem (2) if	k(0) �	k(sk) � �2�	k(0)�	k(s�k)�; (9)where �2 2 (0; 1] is �xed across all iterations. Algorithms to compute sk that satisfy the fractionof optimal decrease (9) have been proposed in [9] and [19]. It is a simple matter to see that (9)implies (8).The predicted decrease pred(sk) given by sk is de�ned as 	k(0)�	k(sk). The actual decreaseared(sk) is given by f(xk)� f(xk + sk). The trust{region strategy relates the acceptance of skand the update of the trust radius with the ratio rk = ared(sk)pred(sk) in the following way:3



If rk < � then sk is rejected, xk+1 = xk, and �k+1 = 
kskk.If rk � � then sk is accepted, xk+1 = xk + sk, and �k+1 � �k.Here 
 and � are uniformly �xed and such that 0 < 
; � < 1. Of course the rules to update thetrust radius can be much more involved, but the above su�ces to prove convergence results andto understand the trust{region mechanism.Theorem 2.2Let f be bounded below and rf be uniformly continuous. If sk satis�es (8) and kHkk isuniformly bounded, then fxkg satis�es (3).If in addition, f is twice continuously di�erentiable and sk satis�es (9), then fxkg has alimit point x� such that r2f(x�) is positive semi{de�nite.The global convergence to a stationary point was established by Powell [15] and Thomas [21].The global convergence to a point where the Hessian is positive semi{de�nite was established bySorensen [18]. Related results can be found in references [6], [8], [9], and [17]. The assumptionon kHkk can be weakened. Powell [16] proved a convergence result in the case where there is abound on the second{order approximation Hk that depends linearly on the iteration counter k.3 The scaled quasi{Newton stepA major di�erence between the results that describe global convergence to a stationary point isthat a uniform bound on H�1k is required for line searches but not for trust regions. Of coursewe are not making a fair comparison because the form of the step for trust regions was leftunspeci�ed whereas for line searches the step was taken along the quasi{Newton direction. Inorder to compare these global convergence results, let us take away the 
exibility that the trust{region technique has to pick a direction and force it to move along the quasi{Newton direction.In other words the step sk is now given by ��kH�1k gk, where�k = 8><>: �kkH�1k gkk if kH�1k gkk > �k;1 otherwise. (10)We call this step a scaled quasi{Newton step and denote it by sNk .If we want to establish global convergence to a stationary point, we need to make sure thatthe scaled quasi{Newton step satis�es the fraction of Cauchy decrease condition (8). The naturalquestion to ask is: under what conditions does the scaled quasi{Newton step satisfy (8) ? Wecan go even further and ask: what do we need to assume to guarantee that such a step alsosatis�es the fraction of optimal decrease condition (9) ?4 Global convergence for the scaled quasi{Newton stepWe prove in this section that the answer to the questions formulated above is the existence of auniform bound on the condition number of Hk.4



Theorem 4.1 If the condition number cn(Hk) of Hk is uniformly bounded, then the scaledquasi{Newton step sNk = ��kH�1k gk satis�es the fraction of Cauchy decrease condition (8).Proof. If �k = 1, sNk is the optimal solution of the trust{region subproblem (2) and there isnothing else to prove. So, suppose that kH�1k gkk > �k. It follows from this and �k < 1 that	k(0)�	k(sNk ) = 12�k(2� �k)gTk H�1k gk> 12�kgTk H�1k gk= 12�kkgkk gTk H�1k gkkgkkkH�1k gkk : (11)According to the de�nition of ck given by (7), we either have kgkk3gTk Hkgk � �k in which case	k(0) �	k(ck) = kgkk4gTk Hkgk � 12 kgkk4(gTk Hkgk)2 gTk Hkgk� 12�kkgkk;or kgkk3gTk Hkgk > �k which in turn gives	k(0)�	k(ck) = �kkgkk � 12 �2kkgkk2 gTk Hkgk� 12�kkgkk:From this, (6), and (11), we get	k(0)�	k(sNk ) � 12� �	k(0)�	k(ck)�:Thus sNk satis�es (8) with �1 = 12� . 2The following example is taken from [2] and indicates that without the uniform bound onthe condition number, the scaled quasi{Newton step might not satisfy the fraction of Cauchydecrease condition.Example 4.1 Let us drop the subscripts k and consider H = diag(1; �2; �4) and g = (�2; �2; �3)T ,where � is positive and small. With these choices we haveH�1g = ��2; 1; 1��T ; kH�1gk = O�1�� ; gTH�1g = O(�2); and kgk3gTHg = O(�2):Note that gTH�1gkgkkH�1gk = O(�):If � is chosen very small, say � = O(�3) then by (7) and (10), c = � �kgkg and � = �kH�1gk . As aresult, 	(0)�	(sN) = O(�6) and 	(0)�	(c) = O(�5), which shows that as � gets smaller andsmaller the fraction of Cauchy decrease condition becomes more and more di�cult to satisfy.5



Theorem 4.2 If the condition number cn(Hk) of Hk is uniformly bounded, then the scaledquasi{Newton step sNk = ��kH�1k gk satis�es the fraction of optimal decrease condition (9).Proof. Again if �k = 1, sNk is the optimal solution of the trust{region subproblem (2) andthere is nothing else to prove. Let us assume that kH�1k gkk > �k. Since ks�kk � �k < kH�1k gkk �kH�1k kkgkk, we have 	k(0)�	k(s�k) = �gTk s�k � 12(s�k)THk(s�k)� ks�kkkgkk+ 12ks�kk2kHkk� �kkgkk+ �2�kkgkk= �1 + �2 � �kkgkk:From this, (6), and (11), we get	k(0)�	k(sNk ) � 12�kkgkk gTkH�1k gkkgkkkH�1k gkk� 12 1� 11+ �2 �	k(0)�	k(s�k)�� 12�+�2�	k(0) �	k(s�k)�;and we see that the scaled quasi{Newton step satis�es (9) with �2 = 12�+�2 . 2Theorem 2 in [2] shows that if a step satis�es the fraction of Cauchy decrease (8) and thereexists a uniform bound on the condition number of Hk, then such a step also satis�es the fractionof optimal decrease condition (9). Thus we could prove Theorem 4.2 by appealing to this earlierresult, in conjunction with Theorem 4.1.5 Final remarksThere are other interesting relationships between line searches and trust regions. For instance,the criteria to accept a step are very similar. Suppose that a line search only requires theArmijo{Goldstein{Wolfe condition (4) to accept a step sk. This condition can be rewritten asf(xk)� f(xk + sk)�gTk sk � �1; (12)and it becomes evident how similar this is to the conditionf(xk)� f(xk + sk)�gTk sk � sTkHksk � �;used in the trust{region technique. One can see that trust regions use curvature to accept orreject a step but line searches do not. However many practical implementations of line searchesinclude second{order information in the su�cient decrease condition (4), or (12).6
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