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Abstract

Two-level stochastic optimization formulations have become instrumental in a number of
machine learning contexts such as continual learning, neural architecture search, adversarial
learning, and hyperparameter tuning. Practical stochastic bilevel optimization problems
become challenging in optimization or learning scenarios where the number of variables is
high or there are constraints.

In this paper, we introduce a bilevel stochastic gradient method for bilevel problems with
nonlinear and possibly nonconvex lower-level constraints. We also present a comprehensive
convergence theory that addresses both the lower-level unconstrained and constrained cases
and covers all inexact calculations of the adjoint gradient (also called hypergradient), such as
the inexact solution of the lower-level problem, inexact computation of the adjoint formula
(due to the inexact solution of the adjoint equation or use of a truncated Neumann series),
and noisy estimates of the gradients, Hessians, and Jacobians involved. To promote the
use of bilevel optimization in large-scale learning, we have developed new low-rank practical
bilevel stochastic gradient methods (BSG-N-FD and BSG-1) that do not require second-order
derivatives and, in the lower-level unconstrained case, dismiss any matrix-vector products.

1 Introduction

Many real-world applications are naturally formulated using hierarchical objectives, which are
organized into different nested levels. In the bilevel case, the main goal is placed into an upper
optimization level, while the lower optimization level aims to determine the best response to
a decision made in the upper level. Bilevel optimization has a rich literature of algorithmic
development and theory (see [1, 11, 14, 15, 58, 63] for extensive surveys and books on this topic).
The main applications are found in game theory, defense industry, and optimal structural design,
and one has recently seen a surge of contributions to machine learning (ML) (see, e.g., [21, 34],
and the recent review [35]).
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In this paper, we consider the following nonlinear bilevel optimization problem (BLP) for-
mulation, where we are using a standard notation (see, e.g., [14, 58, 63])

min
x∈Rn, y∈Rm

fu(x, y)

s.t. x ∈ X

y ∈ argmin
y∈Y (x)

fℓ(x, y).

BLP

The goal of the upper-level (UL) problem is to determine the optimal value of the UL function fu :
Rn×Rm → R, where the UL variables x are subjected to UL constraints (x ∈ X) and the lower-
level (LL) variables y are subjected to being an optimal solution of the LL problem. In the LL
problem, the LL function fℓ : Rn × Rm → R is optimized in the LL variables y, subject to
the LL constraints y ∈ Y (x). We will state the assumptions required for stochastic gradient
descent in Subsection 3.1. We will assume fu to be continuously differentiable in (x, y) and fℓ
to be twice continuously differentiable in (x, y). We will also assume the LL problem to be
well-defined, in the sense that an LL optimal solution y(x) exists and is unique for all x ∈ X.
Hence, problem BLP is equivalent to a problem posed solely in the UL variables:

min
x∈Rn

f(x) = fu(x, y(x)) s.t. x ∈ X. (1.1)

Also, note that the UL constraints (x ∈ X) are only posed in the UL variables x as otherwise
problem BLP could become intractable due to a disconnected feasible region in the (x, y)–
space. The set X will be assumed equal to Rn when dealing with a nonconvex f , and equal
to an arbitrary closed and convex set when dealing with a strongly convex or convex f (which
includes Rn as a special case). We will ensure UL feasibility by applying orthogonal projections
within stochastic gradient type methods.

Assuming ∇2
yyfℓ(x, y(x)) is non-singular (again, see Subsection 3.1 for the statement of the

assumptions), the gradient of f at x, when Y (x) = Rm, is given by the well-known so-called
adjoint gradient (also called hypergradient in the ML community)

∇f = ∇xfu −∇2
xyfℓ∇2

yyf
−1
ℓ ∇yfu, (1.2)

where all gradients and Hessians on the right-hand side are evaluated at (x, y(x)). We denote
the steepest descent direction for f at x as d(x, y(x)) = −∇f(x). One arrives at the adjoint
formula by first applying the chain rule to fu(x, y(x)) to obtain

∇f = ∇xfu +∇y∇yfu. (1.3)

Then, the Jacobian ∇y(x)⊤ of y(x) can be calculated through the (sensitivity)
equations ∇yfℓ(x, y(x)) = 0. The implicit function theorem ensures y(·) to be continuously
differentiable [51]. By taking the derivative of both sides of the equation with respect to x and
utilizing the chain rule, we obtain∇2

yxfℓ+∇2
yyfℓ∇y⊤ = 0 (all Hessians are evaluated at (x, y(x))),

which yields
∇y = −∇2

xyfℓ∇2
yyf

−1
ℓ . (1.4)

Two approaches have been proposed in the literature to deal with ∇2
yyf

−1
ℓ in (1.2). One

option is to compute the adjoint gradient by first solving the linear system given by the adjoint
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equation ∇2
yyfℓ λ = ∇yfu for the adjoint variables λ = λ(x, y(x)), and then calculating ∇xfu −

∇2
xyfℓ λ. The second option is to truncate the Neumann series given by ∇2

yyf
−1
ℓ =

∑∞
i=0(I −

∇2
yyfℓ)

i, which, however, requires either the strong assumption of ∥∇2
yyfℓ∥2 < 1 or the knowledge

of a bound on the second derivatives to guarantee the convergence of the series.
When Y (x) ̸= Rm, it is still possible to use an adjoint formula to compute the gradient of f

at x by using sensitivity arguments from nonlinear programming. Such an LL constrained case
will be addressed in Section 2.2.

1.1 Bilevel machine learning

A variety of problems arising in machine learning can be formulated in terms of bilevel optimiza-
tion. Continual learning, neural architecture search, adversarial training, and hyperparameter
tuning are among the most popular examples (see [35] for a review on this topic).

Continual Learning (CL) aims to train ML models when the static task usually considered in
learning problems (classification, regression, etc.) is replaced by a sequence of tasks that become
available one at a time [37], and for which training and validation datasets are increasingly
larger. For each task, a CL instance is formulated as a bilevel problem, where at the UL
problem one minimizes the validation error on a subset of model parameters (which includes
all hyperparameters), and at the LL problem the training error is minimized on the remaining
parameters. Then, a sequence of bilevel problems (one for each task) is solved. In a sense, CL
is close to meta-learning [28], where the goal is to determine the best learning process. The
increasing interest in CL is motivated by the demand for approaches that help neural networks
learn new tasks without forgetting the previous ones, a phenomenon which is referred to as
catastrophic forgetting [22, 26, 41, 60]. Another relevant ML area where bilevel optimization
is used is Neural Architecture Search (NAS) for Deep Learning. The goal of this problem
is to automate the task of designing Deep Neural Networks (DNNs) such that the network’s
prediction error is minimized. In recent years, NAS has been proposed in a bilevel optimization
formulation [34].

Finally, two other popular classes of ML applications that can be formulated by using bilevel
optimization are adversarial training and hyperparameter tuning. Adversarial training aims to
robustly address adversarial examples [61] which cannot be correctly classified by ML models
once a small perturbation is applied. The adversarial training problem is handled by solving
a min-max problem [30], which can be reformulated as a bilevel one. The max/LL problem is
posed on the variables that perturb the data in a worst-case fashion, where the min/UL problem
attempts to minimize the training error on the ML model parameters [25, 40]. Hyperparameter
tuning aims to find the best values for the hyperparameters used in an ML model in order to
increase its performance on unseen data [3, 6, 16, 21]. In the bilevel formulations proposed in
the literature, the UL problem optimizes the validation error over the hyperparameters, while
the LL problem has the goal of finding the ML model parameters (e.g., neural network weights)
that minimize the training error.

1.2 Bilevel stochastic descent

In bilevel stochastic optimization, fu and fℓ can be interpreted as expected values, namely,
fu = E[fu(x, y, ϑu)] and fℓ = E[fℓ(x, y, ϑℓ)], where ϑu and ϑℓ are random variables defined in a
probability space (with probability measure independent from x and y) such that i.i.d. samples
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can be observed or generated. The same applies to the functions defining Y (x) when Y (x) ̸= Rm.
(To keep the notation simple, we are using the same fu and fℓ for deterministic and random
variants.)

Having in mind ML applications, the methods that we are considering are Stochastic Ap-
proximation (SA) techniques, of the type of the stochastic gradient (SG) method [10, 50, 53] for
single-objective optimization. In fact, the bilevel stochastic gradient (BSG) method can be seen
as an SG method applied to (1.1), which leads to xk+1 = xk −αkg

BSG
k , where αk is the step size

or learning rate and gBSG
k is a stochastic gradient of f . Such a stochastic gradient is obtained

by sampling the gradients and Hessians in (1.2) at (xk, ỹk), with ỹk denoting an approximation
to the LL optimal solution. The stochastic gradient gBSG

k is inexact when ỹk ̸= y(xk), even in
the full-batch (deterministic) case.

In general, BSG methods have mainly been considered for the LL unconstrained case (i.e.,
Y (x) = Rm) and are commonly classified according to the approach used to compute the BSG
direction gBSG

k [35]. In particular, a first category, referred to as implicit differentiation, is
composed of algorithms that compute the BSG direction by applying the implicit function
theorem and either solving the adjoint equation [46] or using a truncated Neumann series to
approximate the inverse Hessian ∇2

yyf
−1
ℓ [38]. Note that using a truncated Neumann series

requires ∥∇2
yyfℓ∥2 < 1, which is a strong assumption. Therefore, a common approach is to first

assume∇yfℓ Lipschitz continuous in y with constant C0, and then apply the truncated Neumann
series to approximate [(1/C0)∇2

yyfℓ]
−1. However, this requires the knowledge of C0, which is

typically unknown in practice. A second category, referred to as iterative differentiation, includes
all the approaches based on automatic differentiation through dynamic systems [17, 21, 39].

A general convergence theory for the two classes of algorithms was proposed in [29], which
also shows that computing the BSG direction by using automatic differentiation can be less
computationally efficient than using an implicit differentiation method. Therefore, our paper
focuses on the first category, which has been promoted in [9, 12, 13, 24, 27, 59] (see also [7, 35] for
recent reviews). These existing approaches either focus on a specific problem structure or require
the LL problem to be solved to optimality at each iteration or rely on a truncated Neumann series
for the inverse Hessian approximation in the adjoint gradient, which has the issues mentioned
before. Among all the algorithms proposed in the papers cited above, we emphasize StocBiO [29].
StocBiO employs a truncated Neumann series with automatic differentiation and a double-loop
iterative scheme, which means that multiple iterations are required at the LL problem in order
for the algorithm to converge, similar to the algorithms developed in our paper.

DARTS [34] is an optimization technique related to the BSG method and has enjoyed great
popularity in NAS. It always considers an inexact solution to the LL problem, and it starts an
iteration by applying one step of SG to the LL problem, ỹk = yk − η∇yfℓ(xk, yk), where η is a
fixed step size. Then, it displaces the UL variables using xk+1 = xk − η gDARTS

k , where gDARTS
k

is computed by applying the chain rule to ∇xfu(x, y − η∇yfℓ(x, y)), leading to (when using
full-batch gradients)

gDARTS
k = ∇xfu(xk, ỹk)− η∇2

xyfℓ(xk, yk)∇yfu(xk, ỹk). (1.5)

However, in the full-batch (deterministic) case, gDARTS
k may not be a descent direction. The

matrix-vector product in (1.5) is approximated by finite differences, rendering DARTS free of
both second-order derivatives and matrix-vector products (see Section 5.2).

All the papers cited above focus on the LL unconstrained case. A few approaches dealing
with the LL constrained case have been very recently proposed to tackle bilevel problems with LL
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constraints. However, all these approaches are only applicable to linear constraints or constraints
only depending on y [31, 33, 57, 62, 64]. Among the algorithms proposed, we highlight SIGD [31],
which determines a direction by applying the implicit function theorem (similar to the approach
that we use) but can only be applied to bilevel problems with linear LL constraints in y. SIGD
is based on a perturbation-based smoothing technique that involves adding a linear random
perturbation term to the LL objective function, ensuring that y(x) is differentiable without
requiring the strict complementarity slackness condition for the LL problem. Such an approach
relies on the assumption of linear LL constraints in y, whereas our paper addresses problems
with general nonlinear LL constraints in (x, y). Convergence of SIGD was proved under the
assumptions of strong convexity, convexity, and weak convexity of f .

1.3 Contributions of the paper

The first main contribution of this paper is a general framework for the BSG method that
applies to both the LL unconstrained (Y (x) = Rm) and constrained (Y (x) ̸= Rm) cases. In
particular, our paper represents the first work that proposes a method to address the general
nonlinear and possibly nonconvex LL constrained case, which has not been covered elsewhere,
neither algorithmically nor theoretically, although important ML applications give rise to bilevel
problems with LL constraints.

The second main contribution is a comprehensive convergence theory for the BSG method
that applies to both the LL unconstrained and constrained cases and is grounded on sensitivity
principles of nonlinear optimization. The sensitivity arguments used in this paper are easily
satisfied in all practical scenarios that have been proposed for ML applications requiring bilevel
optimization. Our theory also comprehensively covers all possible inexact settings such as the
inexact solution of the LL problem, inexact computation of the adjoint formula (due to the inex-
act solution of the adjoint equation or use of a truncated Neumann series), and noisy estimates
of the gradients, Hessians, and Jacobians involved. Since the convergence analysis proposed is
abstracted from the specifics of the approach used to handle the inverse matrix in the adjoint
formula (1.2), our theory unifies two different classes of BSG methods, i.e., the ones based on
the adjoint equation and the ones based on the truncated Neumann series, which have been
studied separately [24, 46].

Moreover, to deal with the second-order derivatives and inverse Hessians/Jacobians in the
adjoint formulas for the LL unconstrained and constrained cases, we developed two new low-
rank practical implementations of the BSG method that can be applied to solve large-scale
optimization problems arising in ML applications. The first one, referred to as BSG-N-FD,
consists of solving the adjoint equation by using an iterative method (CG or GMRES) equipped
with finite differences to dismiss any Hessian-vector products, and is grounded on theoretical
principles. The second one, referred to as BSG-1, uses rank-1 Hessian approximations to avoid
explicitly solving the adjoint equation (also dismissing any matrix-vector products). The use of
these rank-1 approximations is inspired by Gauss-Newton methods for nonlinear least-squares
problems [45] and also from the fact that the empirical risk of misclassification in ML is often
a sum of non-negative terms, matching a function to a scalar which can then be considered in
a least-squares fashion [4, 23]. Similar to DARTS [34] (which is extremely popular for NAS),
BSG-1 is also not grounded on theoretical principles. However, both methods perform well on
continual learning instances in terms of training iterations and computational time.
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1.4 Organization of this paper

This paper is organized as follows. In Section 2, we describe the BSG method for the LL
unconstrained case and introduce it for the LL constrained case. The assumptions on the prob-
lem functions and inexact calculations required for the convergence analysis of the method are
reported in Section 3. Section 4 presents the convergence rates for the nonconvex, strongly con-
vex, and convex cases. Numerical results for synthetic quadratic bilevel problems and continual
learning instances with or without LL constraints are analyzed in Section 5, which also describes
the practical BSG-N-FD and BSG-1 algorithms. Finally, in Section 6 we draw some concluding
remarks and propose ideas for future work. By default, all norms ∥ · ∥ used in this paper are
the ℓ2 ones.

2 The bilevel stochastic gradient method

In this section, we introduce the bilevel stochastic gradient (BSG) method for solving stochas-
tic BLPs. Let {ϑℓ

k}k≥0 and {ςℓk}k≥0 be sequences of independent random variables for LL
gradient, Hessian, and Jacobian evaluations for the LL unconstrained and constrained cases,
respectively. Similarly, let {ϑu

k}k≥0 be a sequence of independent random variables for UL gra-
dient evaluations. A realization of ϑℓ

k, ς
ℓ
k, and ϑu

k can be interpreted as a single sample or a batch
of samples for mini-batch SG. For compactness of notation, let us set ξk = (ϑu

k , ϑ
ℓ
k) in the LL

unconstrained case (Y (x) = Rm), and ξk = (ϑu
k , ς

ℓ
k) in the LL constrained case (Y (x) ̸= Rm).

All the assumptions included in this section will be rigorously stated in Subsection 3.1.

2.1 The unconstrained lower-level case

Given (xk, ỹk), we denote by gux(xk, ỹk, ϑ
u
k), g

u
y (xk, ỹk, ϑ

u
k), and gℓy(xk, ỹk, ϑ

ℓ
k) the stochastic gradi-

ent estimates that approximate ∇xfu(xk, ỹk), ∇yfu(xk, ỹk), and ∇yfℓ(xk, ỹk), respectively. The
same notation applies to the stochastic Hessian estimates: Hℓ

xy(xk, ỹk, ϑ
ℓ
k) and Hℓ

yy(xk, ỹk, ϑ
ℓ
k)

approximate ∇2
xyfℓ(xk, ỹk) and ∇2

yyfℓ(xk, ỹk), respectively. Based on Assumption 3.4, which

will be stated in Subsection 3.1.1, ∇2
yyfℓ and Hℓ

yy are non-singular at all points. In the LL

unconstrained case (Y (x) = Rm), an approximate (negative) BSG (denoted as −gBSG
k in Sub-

section 1.2) can be computed directly from the adjoint formula (1.2), as follows:

d(xk, ỹk, ξk) = −
(
gux(xk, ỹk, ϑ

u
k)−Hℓ

xy(xk, ỹk, ϑ
ℓ
k)H

ℓ
yy(xk, ỹk, ϑ

ℓ
k)

−1guy (xk, ỹk, ϑ
u
k)
)
. (2.1)

The data in the formula (1.2) is referred to as D(x, y) or D(x, y(x)), depending on the point
where the gradients and Hessians are evaluated:

D(x, y) =
(
∇xfu(x, y),∇yfu(x, y),∇2

xyfℓ(x, y),∇2
yyfℓ(x, y)

)
. (2.2)

The data in the calculation (2.1) is referred to as D(xk, ỹk, ξk):

D(xk, ỹk, ξk) =
(
gux(xk, ỹk, ϑ

u
k), g

u
y (xk, ỹk, ϑ

u
k), H

ℓ
xy(xk, ỹk, ϑ

ℓ
k), H

ℓ
yy(xk, ỹk, ϑ

ℓ
k)
)
. (2.3)

Note that in (2.1), d(xk, ỹk, ξk) can be seen as a function of the data D(xk, ỹk, ξk) as follows:

d(xk, ỹk, ξk) = d(D(xk, ỹk, ξk)), (2.4)
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where we are using overlapping notation for d(·) for the sake of simplicity and because we believe
it is more powerful and effective than using a different letter.

As mentioned in Subsection 1.3, our practical implementation BSG-N-FD will solve the
adjoint equation Hℓ

yy(xk, ỹk, ϑ
ℓ
k)λ = guy (xk, ỹk, ϑ

u
k) by using an iterative method equipped with

finite differences (see Subsection 5.1.1). The BSG-1 method will use rank-one approximations
for Hℓ

xy(xk, ỹk, ϑ
ℓ
k) and Hℓ

yy(xk, ỹk, ϑ
ℓ
k), and then solve the resulting adjoint equation in the

least-squares sense (see Subsection 5.1.2).

2.2 The constrained lower-level case

Let us now handle the LL constrained case, in which we consider

Y (x) = {y ∈ Rm | ci(x, y) ≤ 0, i ∈ I, and ci(x, y) = 0, i ∈ E},

where I and E are two finite sets of indices. As stated in the assumptions of Subsection 3.1.2,
each constraint function ci is assumed twice continuously differentiable in (x, y), for all i ∈ I∪E.
Denoting cI(x, y) = (ci(x, y), i ∈ I) and cE(x, y) = (ci(x, y), i ∈ E), the Lagrangian function
of the LL problem is defined as Lℓ(x, y, z) = fℓ(x, y) + cI(x, y)

⊤zI + cE(x, y)
⊤zE , where zI

and zE are Lagrange multipliers and z = (zI , zE). We will also assume in Assumption 3.7
of Subsection 3.1.2 that there exists a y(x) satisfying the LL KKT conditions with associated
multipliers (zI(x), zE(x)) such that the gradients of the active constraints are linearly inde-
pendent (LICQ), the strict complementarity slackness condition (SCS) is satisfied, and the
second-order sufficient optimality conditions (SOSC) hold. Under such assumptions, it is well
known that the Lagrange multipliers zI(x) and zE(x) associated with y(x) are unique and
the vector function v(x) = (y(x), zI(x), zE(x))

⊤, for any given x, is once continuously dif-
ferentiable [18, 19, 20, 42]. Moreover, we can write the first-order KKT system for the LL
problem (see [18]) as

∇yfℓ(x, y(x)) +∇ycI(x, y(x)) zI(x) +∇ycE(x, y(x)) zE(x) = 0,

zI(x) ◦ cI(x, y(x)) = 0,

cE(x, y(x)) = 0,

(2.5)

where ◦ is the element-wise multiplication operation of two vectors. Note that, in addition
to (2.5), the LL KKT conditions require the non-negativity of the Lagrange multipliers zI(x)
and the satisfaction of the inequality constraints, i.e., zI(x) ≥ 0 and ci(x, y(x)) ≤ 0, for all i ∈ I.
We do not include such conditions in (2.5) because they are not required for deriving the adjoint
gradient that we present in (2.8) below.

For any given x, we can rewrite the KKT system (2.5) as G(x, v(x)) = 0 by introduc-
ing a corresponding vector function G. Applying the chain rule to G(x, v(x)) = 0, we ob-
tain ∇vG

⊤∇v⊤ = −∇xG
⊤, with

∇xG
⊤ =

 ∇2
yxLℓ

zI ◦ ∇xc
⊤
I

∇xc
⊤
E

 and ∇vG
⊤ =

 ∇2
yyLℓ ∇ycI ∇ycE

zI ◦ ∇yc
⊤
I CI 0

∇yc
⊤
E 0 0

 , (2.6)

where the Hessian of Lℓ is evaluated at (x, y(x), zI(x), zE(x)), the Jacobian matrices ∇xc
⊤
I ,

∇xc
⊤
E , ∇yc

⊤
I , and ∇yc

⊤
E are evaluated at (x, y(x)), CI is a diagonal matrix whose elements are
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given by cI(x, y(x)), and zI ◦ ∇xc
⊤
I is a matrix obtained by multiplying the entries of zI by the

corresponding rows of ∇xc
⊤
I (a similar explanation applies to zI ◦ ∇yc

⊤
I ).

Since under Assumption 3.7 in Subsection 3.1.2, the Jacobian∇vG
⊤ is non-singular at (x, v(x))

(see [42, 45]), we obtain

∇v =
(
∇y,∇zI ,∇zE

)
= −∇xG∇vG

−1.

We can now pull out the columns of this system that correspond to the ∇y(x) term by intro-

ducing an appropriate matrix L =
(
Im 0

)⊤
, where Im is an identity matrix of size m and 0 is

a null matrix of size m×
(
|I|+ |E|

)
, yielding

∇y(x) = −∇xG∇vG
−1L. (2.7)

Substituting (2.7) into (1.3), we obtain the following adjoint gradient for the LL constrained
case:

∇f = ∇xfu −∇xG∇vG
−1L∇yfu, (2.8)

where the gradients of fu with respect to x and y are evaluated at (x, y(x)), while the Jacobians
of G with respect to x and v are evaluated at (x, v(x)). The negative adjoint gradient provides
the steepest descent direction for f at x in the deterministic case. Note that one can deal with
the inverse Jacobian in (2.8) by applying the same approaches used for the LL unconstrained
case, i.e., solving the adjoint equation or using a truncated Neumann series (see Subsection 2.5).

Similar to the notation used for the LL unconstrained case in Subsection 2.1, given (xk, ṽk),
with ṽk = (ỹk, (z̃I)k, (z̃E)k), the Jacobian estimates Gx(xk, ṽk, ς

ℓ
k)

⊤ and Gv(xk, ṽk, ς
ℓ
k)

⊤ approx-
imate ∇xG(xk, ṽk)

⊤ and ∇vG(xk, ṽk)
⊤, respectively. Based on Assumption 3.8 in Subsec-

tion 3.1.2, ∇vG and Gv are non-singular at all points. An approximate (negative) BSG can
be computed directly from the adjoint formula (2.8), as follows:

d(xk, ṽk, ξk) = −
(
gux(xk, ỹk, ϑ

u
k)− Gx(xk, ṽk, ς

ℓ
k)Gv(xk, ṽk, ς

ℓ
k)

−1Lguy (xk, ỹk, ϑ
u
k)
)
. (2.9)

The data in (2.8) is referred to as D(x, v) or D(x, v(x)), depending on the point where the
gradients, Hessians, and Jacobians are evaluated:

D(x, v) = (∇xfu(x, y), L∇yfu(x, y), ∇xG(x, v), ∇vG(x, v)) . (2.10)

The data in calculation (2.9) is now referred to as D(xk, ṽk, ξk):

D(xk, ṽk, ξk) =
(
gux(xk, ỹk, ϑ

u
k), L guy (xk, ỹk, ϑ

u
k), Gx(xk, ṽk, ς

ℓ
k), Gv(xk, ṽk, ς

ℓ
k)
)
. (2.11)

Again, note that in (2.9), d(xk, ṽk, ξk) can be interpreted as a function of the data D(xk, ṽk, ξk)
(see the explanation for (2.4)).

It is worth mentioning that an alternative approach to obtain a direction colinear with the
negative gradient of f in the LL constrained case was proposed in [55]. However, such an
approach requires solving an auxiliary linear-quadratic bilevel problem, which is not practical in
terms of solving large-scale ML application problems. Also, the approach in [55] does not yield
the exact size of the gradient.
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2.3 A unified notation for LL unconstrained and constrained cases

Our goal is to propose a general algorithm that applies to both the LL unconstrained and
constrained cases. For each case, one can denote the BSG directions used in the deterministic
setting (i.e., (1.2) and (2.8)) and stochastic one (i.e, (2.1) and (2.9)) by using the unified notation

d(D) = −(a−AB−1b), (2.12)

where D = (a, b, A,B). In particular, in the LL unconstrained case, when the adjoint for-
mula (1.2) or (2.1) is used, the data D is either the deterministic one (2.2) or the stochastic
one (2.3), respectively. Similarly, in the constrained case, when the adjoint formula (2.8) or (2.9)
is used, the data D is again either the deterministic one (2.10) or the stochastic one (2.11), re-
spectively. Moreover, we use the following notation to encapsulate the LL variables in the two
cases

w =

{
y when Y (x) = Rn,

v when Y (x) ̸= Rn,
(2.13)

i.e., w is equal to y in the unconstrained case and v in the constrained case.
Using the unified notation introduced in (2.12) and (2.13), and recalling the definitions

of D(x,w) in (2.2) and (2.10) along with D(x,w, ξ) in (2.3) and (2.11), we will adopt the
following notation throughout the paper:

D(x,w) = (a(x, y), b(x, y), A(x,w), B(x,w)),

D(x,w, ξ) = (a(x, y, ϑu), b(x, y, ϑu), A(x,w, γℓ), B(x,w, γℓ)),
(2.14)

where γℓ is either ϑℓ (in the LL unconstrained case) or ςℓ (in the LL constrained case), defined
at the beginning of Section 2.

2.4 The BSG method

The schema of the BSG method is presented in Algorithm 1. An initial point (x0, w̃0) and a
sequence of positive scalars {αk} are required as input. In Step 1, any arbitrary optimization
method can be applied to approximately solve the LL problem, regardless of being unconstrained
or constrained. In Step 2, one computes an approximate (negative) BSG, which will be denoted
by d(xk, w̃k, ξk) and computed through (2.1) or (2.9). We recall from (2.4) that d(xk, w̃k, ξk) =
d(D(xk, w̃k, ξk)), where D(xk, w̃k, ξk) is either (2.3) or (2.11). Finally, at Step 3, the vector x
is updated by using a proper step size taken from the sequence of positive scalars. Recall that
the set X is assumed equal to Rn when dealing with a nonconvex f (in Subsection 4.1), and
equal to an arbitrary closed and convex set when dealing with a strongly convex or convex f
(in Subsections 4.2–4.3). We ensure that the UL constraints are satisfied by computing the
orthogonal projection of xk + αk d(xk, w̃k, ξk) onto X. Note that such a projection can be
computed by solving a convex optimization problem. We denote the orthogonal projection
matrix as PX .
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Algorithm 1 Bilevel Stochastic Gradient (BSG) Method

Input: (x0, w̃0), {αk}k≥0 > 0.

For k = 0, 1, 2, . . . do
Step 1. Obtain an approximation w̃k to the LL optimal solution w(xk).
Step 2. Compute a (negative) stochastic gradient approximation d(xk, w̃k, ξk).
Step 3. Compute xk+1 = PX(xk + αk d(xk, w̃k, ξk)).

End do

We point out that as is usual in the literature related to SG methods, a stopping criterion
is not considered due to a lack of reasonable criteria and for the need to study the asymptotic
convergence properties.

2.5 Computing the BSG direction inexactly

The two approaches proposed in the literature to deal with the inverse matrix B−1 in (2.12)
consist of either solving the adjoint equation or using a truncated Neumann series. In particular,
the first approach requires solving the adjoint equation B λ = b for the adjoint variables λ.
The BSG direction can thus be calculated by a − Aλ. The residual error due to the inexact
solution of the adjoint equation is denoted by r̃, i.e., r̃ = B λ − b. Note that the previous
expression can be written as B λ = b + r̃, where the right-hand side can be interpreted as a
perturbation of the right-hand side in the adjoint equation. Since λ = B−1(b+ r̃) in the inexact
adjoint solve case, the BSG direction becomes

−(a−AB−1(b+ r̃)). (2.15)

Given a positive scalar q > 0 and assuming ∥B∥ < 1, the second approach is based on the
Neumann series as follows:

B−1 =
∞∑
i=0

(I −B)i = B + R̃,

where B =
∑q

i=0(I−B)i and R̃ =
∑∞

i=q+1(I−B)i. Note that the accuracy of the approximation

is an increasing function of q. An approximation to B−1 is given by B, i.e., B−1 ≃ B. Therefore,
in the inexact Neumann series case, the BSG direction becomes

−(a−A (B−1 − R̃) b). (2.16)

3 Assumptions, sensitivity, and smoothness

In this section, we introduce the assumptions used in the convergence analysis of the BSG
method, which extends the convergence theory of the SG method to the bilevel case when
the stepsize is assumed to be decaying. Using the notation introduced in (2.12)–(2.13), the
convergence theory developed in this section covers both the LL unconstrained and constrained
cases. The solution of the LL problem is assumed to be inexact. Our theory also applies when
the BSG direction (2.12) is computed inexactly by using the approaches in Subsection 2.5, which
comprehensively generalizes all existing approaches in the literature.
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Given that we consider the application of the stochastic gradient method (or a similar SA
technique) to solve the LL problem (see Step 1 of Algorithm 1), we will denote by ξS1k the
set of random variables for all combined iterations of the LL solution process at iteration k.
Moreover, we will denote by ξallk the set of all random variables for both the LL and UL solution
processes at iteration k. Therefore, noticing that ξk denotes the set of random variables used at
Step 2 of Algorithm 1, we denote ξallk = (ξS1k , ξk). At each iteration, the iterate xk is completely
determined by the realizations of the independent random variables ξS1k and ξk.

3.1 General assumptions

3.1.1 LL unconstrained case

We will start this subsection with general assumptions for the LL unconstrained case. Assump-
tion 3.1 below imposes the appropriate smoothness for the problem gradients and Hessians, their
boundedness, and the boundedness of their stochastic counterparts.

Assumption 3.1 (Smoothness and boundedness (LL unconstrained case)) The gradi-
ents ∇xfu and ∇yfu and the Hessians ∇2

xyfℓ and ∇2
yyfℓ are Lipschitz continuous. Moreover,

∇xfu, ∇yfu, ∇2
xyfℓ, and ∇2

yyfℓ and their stochastic estimates gux , g
u
y , H

ℓ
xy, and Hℓ

yy are bounded
in norm at all points.

In Assumption 3.2 below, we require the stochastic estimates of the gradients and Hessians
to be unbiased with bounded variance, which is a classical assumption in the SG literature. Such
an assumption will be used to derive a bound on the second moment of the approximate BSG
direction (see Lemma 3.1 in Subsection 3.2 below).

Assumption 3.2 (Unbiasedness and bounded variance (LL unconstrained case)) The
stochastic quantities gux , guy , Hℓ

xy, and Hℓ
yy are unbiased estimates of ∇xfu, ∇yfu, ∇2

xyfℓ,
and ∇2

yyfℓ, respectively, and their variances are bounded by positive constants.

Assumption 3.3 below ensures the existence and uniqueness of an LL optimal solution y(x)
for the original problem as well as for its corresponding stochastic approximation.

Assumption 3.3 (Existence and uniqueness of solution (LL unconstrained case))
There exists a y(x) such that ∇yfℓ(x, y(x)) = 0, and ∇2

yyfℓ is positive definite at all points.

In the stochastic case, Hℓ
yy is positive definite at all points.

Assumption 3.4 below requires the inverse of the Hessian of fℓ w.r.t. y to be uniformly
bounded, which is equivalent to saying that fℓ(x, ·) is strongly convex (a very standard assump-
tion in the SG literature, see, e.g., [24]). We also need uniform boundedness in the stochastic
case.

Assumption 3.4 (Uniform convexity of LL problem (LL unconstrained case))
The Hessians ∇2

yyf
−1
ℓ and (Hℓ

yy)
−1 are uniformly bounded in norm at all points.
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3.1.2 LL constrained case

Now, we will introduce assumptions that are specific to the LL constrained case. We will start
with smoothness assumptions for the gradients and Hessians of the problem, their boundedness,
and the boundedness of their stochastic counterparts. The boundedness of the multipliers is
required so that all Hessians of the Lagrangian are also bounded as well as cross terms of the
type z ◦ ∇c⊤.

Assumption 3.5 (Smoothness and boundedness (LL constrained case)) The gradient
∇fu, the Jacobians ∇c⊤I and ∇c⊤E, and the Hessians ∇2

xyfℓ, ∇2
yyfℓ, ∇2

yxci, and ∇2
yyci, for

all i ∈ I ∪ E, are Lipschitz continuous. In addition, ∇fu, ∇c⊤I , ∇c⊤E, ∇2
xyfℓ, ∇2

yyfℓ, ∇2
yxci,

and ∇2
yyci, for all i ∈ I ∪ E, and their stochastic estimates are uniformly bounded in norm at

all points. Finally, the multipliers z and their stochastic counterparts are uniformly bounded at
all points.

In Assumption 3.6 below, which is the counterpart of Assumption 3.2 for the LL constrained
case, we require the stochastic estimates of the gradients, Jacobians, and Hessians to be unbiased
with bounded variance. Again, such an assumption will be used to derive Lemma 3.1.

Assumption 3.6 (Unbiasedness and bounded variance (LL constrained case)) The
stochastic estimates of ∇fu, ∇c⊤I , ∇c⊤E, ∇2

xyfℓ, ∇2
yyfℓ, ∇2

yxci, and ∇2
yyci, for all i ∈ I ∪ E,

are unbiased, and their variances are bounded by positive constants.

We can now introduce our assumption for the existence and uniqueness of LL solutions.
For that purpose, given Lagrange multipliers (zI(x), zE(x)) associated with a solution y(x) of
the LL KKT conditions, let us denote the cone of critical directions [45] as follows:

Z(x) =


∇yci(x, y(x))

⊤dy ≤ 0, ∀i ∈ I(x)
dy ̸= 0 : ∇yci(x, y(x))

⊤dy = 0, ∀i ∈ I(x) with (zI(x))i > 0
∇yci(x, y(x))

⊤dy = 0, ∀i ∈ E

 , (3.1)

where I(x) is the index set of the active inequality constraints at (x, y(x)).
The linear independence constraint qualification (LICQ) ensures that the

gradients ∇yci(x, y(x)), for all i ∈ I(x) ∪ E, are linearly independent. The strict complemen-
tarity slackness condition (SCS) states that for all multipliers (zI(x), zE(x)) satisfying the LL
KKT conditions at (x, y(x)), one has (zI(x))i > 0 for all i ∈ I(x). The second-order sufficient
condition (SOSC) states that for all multipliers (zI(x), zE(x)) satisfying the LL KKT conditions
at (x, y(x)) and for all dy ∈ Z(x), where Z(x) is defined by (3.1), one has (dy)⊤∇2

yyLℓ(x, v(x))d
y >

0.

Assumption 3.7 (Existence and uniqueness of solution (LL constrained case))
There exists a y(x) satisfying the LL KKT conditions with associated multipliers (zI(x), zE(x))
such that the LICQ, SCS, and SOSC are satisfied.

This guarantees that y(x) is a strict local minimizer for the LL problem. To ensure that y(x)
is the unique global minimizer, one can further assume either that ∇2

yyLℓ(x, y, zI , zE) is positive
semi-definite for all (y, zI , zE) or that Y (x) is convex and ∇2

yyLℓ(x, y, zI , zE) is positive semi-
definite on the tangent cone to the set Y (x) at y(x) for all (y, zI , zE).
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As in the unconstrained case, we also need to impose some form of uniform boundedness away
from singularity. In the constrained case, this is achieved through the KKT matrix of the LL
problem, which is the corresponding counterpart to the Hessian of the objective function fℓ.

Assumption 3.8 (“Uniform convexity” of LL problem (LL constrained case))
The KKT matrices ∇vG

−1 and G−1
v are uniformly bounded in norm at all points.

3.1.3 Notation for constants

In this subsection, we introduce constants that will be used to denote bounds on gradients,
Hessians, and Jacobians (Remark 3.1 below).

Remark 3.1 As a consequence of Assumptions 3.1 and 3.5, there exist positive constants C
and C̄ such that, for any (x, y), (x, v), (x, y, ϑu), (x, y, ϑℓ), and (x, v, ςℓ), we have ∥∇yfu∥ ≤ C,
∥∇2

xyfℓ∥ ≤ C, ∥∇2
yyfℓ∥ ≤ C, ∥∇xG∥ ≤ C, ∥∇vG∥ ≤ C, ∥guy∥ ≤ C̄, ∥Hℓ

xy∥ ≤ C̄, ∥Hℓ
yy∥ ≤ C̄,

∥Gx∥ ≤ C̄, and ∥Gv∥ ≤ C̄. Assumptions 3.4 and 3.8 imply that there exist positive constants Cℓ

and C̄ℓ such that, for any (x, y), (x, y, ϑℓ), (x, v), and (x, v, ςℓ), we have ∥∇2
yyf

−1
ℓ ∥ ≤ Cℓ,

∥(Hℓ
yy)

−1∥ ≤ C̄ℓ, ∥∇vG
−1∥ ≤ Cℓ, and ∥G−1

v ∥ ≤ C̄ℓ.

The expected value with respect to the probability distributions of ξk and ξS1k are denoted
by Eξk [·] and EξS1k

[·], respectively. The expected value with respect to the joint distribution of ξk

and ξS1k is denoted by Eξallk
= Eξk [EξS1k

[·]].

3.2 Sensitivity of the approximate bilevel stochastic gradient direction

Let us recall that f(x) = fu(x, y(x)). To bound the second moment of the approximate BSG
direction d(xk, w̃k, ξk) and the expectation of the error between the negative gradient −∇f(xk)
and d(xk, w̃k, ξk), we will need to apply sensitivity analysis arguments from nonlinear opti-
mization. We start by assuming that at each iteration, the calculation process of the BSG
direction (2.12) is (approximately) Lipschitz continuous with respect to changes in its data.
Note that this result is presented as a general assumption that any stochastic algorithm for
solving bilevel problems needs to satisfy in order for our convergence theory in Section 4 to
hold. However, such an assumption is not restrictive, and Proposition 3.1 shows that it can be
easily enforced in all practical scenarios that have been proposed for ML applications requiring
bilevel optimization.

Assumption 3.9 (Sensitivity of the BSG direction) Given any pair of data (D1)k
and (D2)k, there exists a constant LBSG > 0 such that

∥d((D1)k)− d((D2)k)∥ ≤ LBSG(∥(D1)k − (D2)k∥+ ∥(r1)k − (r2)k∥), (3.2)

where (r1)k and (r2)k are the residual errors in the inexact computations of d((D1)k)
and d((D2)k).

Proposition 3.1 below shows that the inexact ways (2.15) and (2.16) of calculating adjoint
gradients or BSG directions do ensure that inequality (3.2) of Assumption 3.9 is satisfied. Parts
of the proof have been published elsewhere [13]. In fact, the arguments used are the known
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facts that sum is Lipschitz continuous, multiplication is Lipschitz continuous if the factors are
bounded, and matrix inversion is Lipschitz continuous if its singular values are bounded away
from zero. Note that the proof does not require the unbiasedness of the stochastic estimates or
the bounded variances stated in Assumptions 3.2 and 3.6.

Proposition 3.1 (Sensitivity of the BSG direction) Under Assumptions 3.1, 3.3–3.5, 3.7,
and 3.8, given any pair of data (D1)k and (D2)k, let (r1)k and (r2)k be the residual errors in-
curred when d((D1)k) and d((D2)k) are computed inexactly by either (2.15) (in which case (r1)k,
(r2)k are (r̃1)k, (r̃2)k) or (2.16) (in which case (r1)k, (r2)k are (R̃1)k, (R̃2)k). Then, there exists
a constant LBSG > 0 such that inequality (3.2) of Assumption 3.9 is satisfied.

Proof. See Appendix A for the proof, where we omit the dependence on k for simplicity. □

We now introduce Assumption 3.10 on the absolute error of the LL optimal solution, whose
validity in practice is discussed in Subsection 4.4.

Assumption 3.10 There exists a positive scalar Cw such that

EξS1k
[∥w(xk)− w̃k∥2] ≤ (Cw αk)

2.

By applying Jensen’s inequality, one also has (EξS1k
[∥w(xk)− w̃k∥])2 ≤ EξS1k

[∥w(xk)− w̃k∥2],
thus

EξS1k
[∥w(xk)− w̃k∥] ≤ Cw αk. (3.3)

We need Assumption 3.11 below to hold, which essentially amounts to the sampling error
in the data. To enforce this assumption in practice, we refer the reader to the discussion
reported in Section 4.5. Recall that D(xk, w̃k) represents the deterministic data defining the
quantity d(xk, w̃k) (see (2.2) and (2.10)), and D(xk, w̃k, ξk) the stochastic data of the calculation
of d(xk, w̃k, ξk) (see (2.3) and (2.11)).

Assumption 3.11 There exists a positive scalar CD such that

Eξallk
[∥D(xk, w̃k)−D(xk, w̃k, ξk)∥] ≤ CD αk.

We also need Assumption 3.12 below, which introduces a bound on the residual errors in-
troduced in Assumption 3.9. In practice, when the BSG direction is computed inexactly (see
Subsection 2.5), this assumption can be enforced by either increasing the accuracy in the inexact
adjoint equation solve or increasing the value of q used to truncate the Neumann series.

Assumption 3.12 There exists a positive scalar Ce such that, for all realizations of the algo-
rithm,

∥rk∥ ≤ Ce αk,

where rk is either (r1)k or (r2)k in Assumption 3.9.

We are ready to establish a bound on the second moment of the BSG direction, as shown in
Lemma 3.1 below.
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Lemma 3.1 Under Assumptions 3.1–3.8, one has

Eξallk
[∥d(xk, w̃k, ξk)∥2] ≤ Gd, (3.4)

where Gd =
(
C + C2C̄ℓ

)2
+ τ , and τ is a positive constant defined in (3.12).

Proof. From the definition of variance (i.e., E[X2] = Var[X]+E[X]2, with X being an arbitrary
random variable), we have

Eξallk
[∥d(xk, w̃k, ξk)∥2] = Eξallk

[∥d(xk, w̃k, ξk)− Eξallk
[d(xk, w̃k, ξk)]∥2]︸ ︷︷ ︸

T1

+ ∥Eξallk
[d(xk, w̃k, ξk)]∥2︸ ︷︷ ︸

T2

.
(3.5)

We will analyze the terms T1 and T2 separately. Recalling the unified notation introduced
in Subsection 2.3, Assumptions 3.2 and 3.6 imply that a(xk, ỹk, ϑ

u
k), b(xk, ỹk, ϑ

u
k), A(xk, w̃k, γ

ℓ
k),

and B(xk, w̃k, γ
ℓ
k) are unbiased estimates of a(xk, ỹk), b(xk, ỹk), A(xk, w̃k), and B(xk, w̃k), respec-

tively, and their variances are bounded by positive constants σ2
a, σ

2
b , σ

2
A, and σ2

B, respectively.
To clarify, taking B as an example, we recall that B(xk, w̃k, γ

ℓ
k) corresponds to Hℓ

xy(xk, ỹk, ϑ
ℓ
k)

in the LL unconstrained case and Gx(xk, ṽk, ς
ℓ
k) in the LL constrained case, while B(xk, w̃k)

corresponds ∇2
xyfℓ(xk, ỹk) in the LL unconstrained case and ∇xG(xk, ṽk) in the LL constrained

case.
(Analysis of T1): The term T1 represents the variance of d(xk, w̃k, ξk). In the analysis of

such a term, for ease of notation, we will use a = a(xk, ỹk), b = b(xk, ỹk), A = A(xk, w̃k),
and B = B(xk, w̃k) to denote the deterministic gradients, Hessians, and Jacobians. For the
corresponding stochastic estimates, we will use a(ϑu

k) = a(xk, ỹk, ϑ
u
k), b(ϑu

k) = b(xk, ỹk, ϑ
u
k),

A(γℓk) = A(xk, w̃k, γ
ℓ
k), and B(γℓk) = B(xk, w̃k, γ

ℓ
k). Additionally, we will use E to denote Eξallk

.

Using the fact that ∥u+ v∥2 ≤ 2(∥u∥2 + ∥v∥2), with u and v real-valued vectors, we obtain:

E[∥d(xk, w̃k, ξk)− E[d(xk, w̃k, ξk)]∥2]
≤ 2E[∥a(ϑu

k)− E[a(ϑu
k)]∥2]︸ ︷︷ ︸

T1.1

+2E[∥E[A(γℓk)(B(γℓk))
−1b(ϑu

k)]−A(γℓk)(B(γℓk))
−1b(ϑu

k)∥2]︸ ︷︷ ︸
T1.2

. (3.6)

(Analysis of T1.1): The term T1.1 in (3.6) can be upper-bounded by applying Assump-
tion 3.2 (for the LL unconstrained case) or Assumption 3.6 (for the LL constrained case) to
obtain:

2E[∥a(ϑu
k)− E[a(ϑu

k)]∥2] ≤ 2σ2
a =: τ1. (3.7)

(Analysis of T1.2): The term T1.2 can be upper-bounded by using the independence of each
random sample, applying Assumption 3.2 (for the LL unconstrained case) or Assumption 3.6 (for
the LL constrained case), and adding and subtracting A(γℓk)

(
E[(B(γℓk))

−1]− (B(γℓk))
−1
)
b, as

follows
E[A(γℓk)(B(γℓk))

−1b(ϑu
k)]−A(γℓk)(B(γℓk))

−1b(ϑu
k)

= AE[(B(γℓk))
−1]b−A(γℓk)(B(γℓk))

−1b(ϑu
k)

=
(
A−A(γℓk)

)
E[(B(γℓk))

−1]b

+A(γℓk)
(
E[(B(γℓk))

−1]− (B(γℓk))
−1
)
b

+A(γℓk)(B(γℓk))
−1 (b− b(ϑu

k)) .

(3.8)
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Thus, by using (3.8), the fact that ∥u + v + s∥2 ≤ 3
(
∥u∥2 + ∥v∥2 + ∥s∥2

)
, with u, v, and s

real-valued vectors, along with the consistency of matrix norms, we can see that the term T1.2

is upper-bounded by

2E[∥E[A(γℓk)(B(γℓk))
−1b(ϑu

k)]−A(γℓk)(B(γℓk))
−1b(ϑu

k)∥2]
≤ 6E[∥A−A(γℓk)∥2] · E[∥E[(B(γℓk))

−1]∥2] · ∥b∥2

+ 6E[∥A(γℓk)∥2] · E[∥E[(B(γℓk))
−1]− (B(γℓk))

−1∥2] · ∥b∥2

+ 6E[∥A(γℓk)∥2] · E[∥(B(γℓk))
−1∥2] · E[∥b− b(ϑu

k)∥2]
≤ 6σ2

AC̄
2
ℓC

2 + 6C̄2E[∥E[(B(γℓk))
−1]− (B(γℓk))

−1∥2]C2 + 6C̄2C̄2
ℓ σ

2
b ,

(3.9)

where the last inequality follows from applying Assumptions 3.1 and 3.2 (for the LL uncon-
strained case) or Assumptions 3.5 and 3.6 (for the LL constrained case), along with Remark 3.1.
Note that to obtain the last inequality in (3.9), we applied Jensen’s inequality to the first
term as follows E[∥E[(B(γℓk))

−1]∥2] ≤ E[E[∥(B(γℓk))
−1∥2]], and then we used Remark 3.1 to

bound ∥(B(γℓk))
−1∥2.

Consider the term E[∥(B(γℓk))
−1 − E[(B(γℓk))

−1]∥2] in (3.9). Using the fact that ∥u+ v∥2 ≤
2
(
∥u∥2 + ∥v∥2

)
, with u and v real-valued vectors, and applying Assumption 3.2 (for the LL

unconstrained case) or Assumption 3.6 (for the LL constrained case), along with Remark 3.1
and Jensen’s inequality, we have

E[∥(B(γℓk))
−1 − E[(B(γℓk))

−1]∥2] ≤ 2E[∥(B(γℓk))
−1∥2] + 2E[∥E[(B(γℓk))

−1]∥2] ≤ 4C̄2
ℓ . (3.10)

Now plugging the bound (3.10) into (3.9), we obtain the bound on the term T1.2 as

2E[∥E[A(γℓk)(B(γℓk))
−1b(ϑu

k)]−A(γℓk)(B(γℓk))
−1b(ϑu

k)∥2]
≤ 6σ2

AC̄
2
ℓC

2 + 24C̄2C̄2
ℓC

2 + 6C̄2C̄2
ℓ σ

2
b =: τ2. (3.11)

Finally, plugging the newly derived bounds for T1.1 and T1.2 (bounds (3.7) and (3.11), re-
spectively) into (3.6), we obtain the desired upper bound on the variance of d(xk, w̃k, ξk)

Eξallk
[∥d(xk, w̃k, ξk)− Eξallk

[d(xk, w̃k, ξk)]∥2] ≤ τ1 + τ2 =: τ. (3.12)

(Analysis of T2): Now, considering the term ∥Eξallk
[d(xk, w̃k, ξk)]∥2 in (3.5), we can apply the

triangle inequality, Assumptions 3.1 and 3.2 (for the LL unconstrained case) or Assumptions 3.5
and 3.6 (for the LL constrained case), the independence of each random sample, the consistency
of matrix norms, along with Jensen’s inequality and Remark 3.1, to obtain

∥Eξallk
[d(xk, w̃k, ξk)]∥ ≤ ∥a(xk, w̃k)∥+ ∥A(xk, w̃k)Eξallk

[(B(xk, w̃k, ξk))
−1]b(xk, w̃k)∥

≤ C + C2C̄ℓ.

Further, squaring both sides, we have the bound

∥Eξallk
[d(xk, w̃k, ξk)]∥2 ≤

(
C + C2C̄ℓ

)2
. (3.13)

Plugging (3.12) and (3.13) into (3.5), and setting Gd =
(
C + C2C̄ℓ

)2
+ τ , we obtain the

desired bound. □

We can now prove a bound on the deviation of the BSG direction from the gradient of f , as
shown in Lemma 3.2 below.
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Lemma 3.2 Under Assumptions 3.1, 3.3–3.5, and 3.7–3.12,

Eξallk
[∥ − ∇f(xk)− d(xk, w̃k, ξk)∥] ≤ Cd αk, (3.14)

where Cd = LBSG(LLLCw + CD + 4Ce), and LLL > 0 is a constant only dependent on the
Lipschitz constants of the gradients, Hessians, and Jacobians of Assumptions 3.1 and 3.5.

Proof. By adding and subtracting the term d(xk, w̃k) and using the triangle inequality, we have

Eξallk
[∥d(xk, w(xk))− d(xk, w̃k, ξk)∥] ≤ Eξallk

[∥d(xk, w(xk))− d(xk, w̃k)∥] (3.15)

+Eξallk
[∥d(xk, w̃k)− d(xk, w̃k, ξk)∥]. (3.16)

Now we derive a bound for the right-hand side in (3.15). By considering the data D1 =
D(xk, w(xk)) and D2 = D(xk, w̃k) in Assumption 3.9, and taking the expectation, we obtain

Eξallk
[∥d(xk, w(xk))− d(xk, w̃k)∥] ≤ LBSG Eξallk

[∥D(xk, w(xk))−D(xk, w̃k)∥] + 2LBSGCeαk,

(3.17)
where we have applied Assumption 3.12 on ∥(r1)k − (r2)k∥.

Note that the right-hand side of (3.17) contains exact BLP gradients and Hessians (or Ja-
cobians in the LL constrained case). Therefore, the Lipschitz continuity of those mappings
(Assumptions 3.1 and 3.5) implies the existence of a constant LLL > 0 such that

∥D(xk, w(xk))−D(xk, w̃k)∥ ≤ LLL∥w(xk)− w̃k∥. (3.18)

Taking expectations with respect to the distribution of ξallk on both sides of (3.18), we can write

Eξallk
[∥D(xk, w(xk))−D(xk, w̃k)∥] ≤ LLL EξS1k

[∥w(xk)− w̃k∥], (3.19)

where we have used that Eξallk
[∥w(xk) − w̃k∥] = EξS1k

[∥w(xk) − w̃k∥]. Therefore, from (3.17),

(3.19), and (3.3), we obtain

Eξallk
[∥d(xk, w(xk))− d(xk, w̃k)∥] ≤ LBSG (LLLCw + 2Ce)αk. (3.20)

Now we derive a bound for (3.16). By considering the data D1 = D(xk, w̃k) and D2 =
D(xk, w̃k, ξk) in Assumption 3.9 and applying Assumption 3.12, we have

∥d(xk, w̃k)− d(xk, w̃k, ξk)∥ ≤ LBSG∥D(xk, w̃k)−D(xk, w̃k, ξk)∥ + 2LBSGCeαk. (3.21)

Taking expectations with respect to the distribution of ξallk on both sides of (3.21), we obtain

Eξallk
[∥d(xk, w̃k)− d(xk, w̃k, ξk)∥] ≤ LBSG Eξallk

[∥D(xk, w̃k)−D(xk, w̃k, ξk)∥] + 2LBSGCeαk.

(3.22)
Hence, from (3.22) and Assumption 3.11, we obtain

Eξallk
[∥d(xk, w̃k)− d(xk, w̃k, ξk)∥] ≤ LBSG (CD + 2Ce)αk. (3.23)

The proof can be concluded from (3.15)–(3.16), (3.20), and (3.23). □
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3.3 Smoothness of the true objective function

Our convergence theory requires smoothness of the true function f , which is given in Proposi-
tion 3.2 below. In both the LL unconstrained and constrained cases, the Lipschitz continuity
of ∇f can be inferred from the Lipschitz continuity of y(x), w(x), and the gradients, Hessians,
and Jacobians involved (along with the boundedness away from singularity of Hessian or KKT
matrices). The proof is given in Appendix B, and again part of the proof has been reported
in [13] and relies on elementary arguments.

Proposition 3.2 (Smoothness of f) Under Assumptions 3.1, 3.3–3.5, 3.7, and 3.8, there
exists a constant L∇f > 0 such that the gradient ∇f is Lipschitz continuous in x, i.e.,

∥∇f(x1)−∇f(x2)∥ ≤ L∇f∥x1 − x2∥ for all (x1, x2) ∈ Rn × Rn. (3.24)

An important and well-known consequence that follows from (3.24) is

f(x) ≤ f(x̄) +∇f(x̄)⊤(x− x̄) +
1

2
L∇f∥x− x̄∥2 for all (x, x̄) ∈ Rn × Rn. (3.25)

4 Convergence rate of the BSG method

In this section, we extend the convergence theory of the SG method to the bilevel case when the
stepsize is assumed to be decaying. The BLP objective function f is assumed to be nonconvex,
strongly convex (leading to a 1/k sublinear convergence rate), or simply convex (1/

√
k rate).

Using the notation introduced in (2.12)–(2.13), the convergence theory developed in this
section covers both the LL unconstrained and constrained cases. The BSG method under con-
sideration takes an inexact solution of the LL problem, for which the stochasticity is rigorously
included in the analysis for the first time. Moreover, such a theory also applies when the BSG
direction (2.12) is computed inexactly regardless of the approach used (see Subsection 2.5),
thus leading to an analysis that is considerably more general than the ones proposed in the
literature [24, 46].

4.1 Rate in the nonconvex case

In this section, the true objective function f is assumed to be possibly nonconvex. We now
present two lemmas that will allow us to prove the convergence result. Such lemmas and the
resulting theorem are based on the theory provided in [5], where the main differences lie in how
inexactly d(xk, w̃k, ξk) approximates −∇f(xk) (see Lemma 3.2). The first lemma is just a Taylor
bound derived as a result of (3.24).

Lemma 4.1 Under Assumptions 3.1, 3.3–3.5, 3.7, and 3.8, and assuming X = Rn, the iterates
of Algorithm 1 satisfy the following inequality for all k ∈ N

Eξallk
[f(xk+1)]− f(xk) ≤ αk∇f(xk)

⊤Eξallk
[d(xk, w̃k, ξk)]

+
1

2
α2
kL∇fEξallk

[
∥d(xk, w̃k, ξk)∥2

]
.

(4.1)
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Proof. From equation (3.25), the iterates generated by Algorithm 1 satisfy

f(xk+1)− f(xk) ≤ ∇f(xk)
⊤(xk+1 − xk) +

1

2
L∇f∥xk+1 − xk∥2.

Recalling that Algorithm 1 uses the update xk+1 = PX (xk + αkd(xk, w̃k, ξk)), and noting that
since X = Rn, the projection matrix PX is equal to the identity matrix, we have that

f(xk+1)− f(xk) ≤ αk∇f(xk)
⊤d(xk, w̃k, ξk) +

1

2
α2
kL∇f∥d(xk, w̃k, ξk)∥2.

Taking expectations with respect to the distribution of ξallk , we obtain (4.1). □

The following lemma further extends the result of Lemma 4.1 by using the inexactness
of d(xk, w̃k, ξk) and the bound on its second-order moment.

Lemma 4.2 Under Assumptions 3.1–3.12 and assuming X = Rn, the iterates generated by
Algorithm 1 satisfy the following inequality for all k ∈ N:

Eξallk
[f(xk+1)]− f(xk) ≤ −αk∥∇f(xk)∥2 + α2

kC∇fCd +
1

2
α2
kL∇fGd, (4.2)

where C∇f > 0 is a bound on the norm of ∇f .

Proof. From inequality (4.1) and Lemma 3.1, we have

Eξallk
[f(xk+1)]− f(xk) ≤ αk∇f(xk)

⊤Eξallk
[d(xk, w̃k, ξk)] +

1

2
α2
kL∇fGd.

Adding and subtracting αk∇f(xk)
⊤Eξallk

[∇f(xk)] to the right-hand side and simplifying, we

obtain

Eξallk
[f(xk+1)]− f(xk) ≤ αk∇f(xk)

⊤Eξallk
[d(xk, w̃k, ξk) +∇f(xk)]

− αk∇f(xk)
⊤∇f(xk) +

1

2
α2
kL∇fGd.

Applying the Cauchy-Schwarz and Jensen’s inequalities, we obtain

Eξallk
[f(xk+1)]− f(xk) ≤ αk∥∇f(xk)∥ Eξallk

[∥d(xk, w̃k, ξk) +∇f(xk)∥]

− αk∥∇f(xk)∥2 +
1

2
α2
kL∇fGd.

Assumptions 3.1, 3.4, 3.5, and 3.8 imply that there exists a constant C∇f > 0 such that the
gradients generated by the sequence of iterates {xk}k≥0 are bounded, i.e., ∥∇f(xk)∥ ≤ C∇f .
Finally, from the boundedness of ∇f and inequality (3.14), we obtain the desired result. □

We will now introduce the final assumptions that are needed for the convergence result of
the nonconvex case. The first of these states that, for Algorithm 1 to converge, the objective
function values must be bounded below by some minimum value.

Assumption 4.1 f(x) ≥ finf, for all x ∈ Rn.
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Lastly, we require the stepsize to be of decaying type.

Assumption 4.2 The sequence of decaying stepsizes {αk}k≥0 satisfies

∞∑
k=0

αk = ∞ and

∞∑
k=0

α2
k < ∞.

We can now establish the convergence result for the nonconvex case. We use E[·] to refer to
the total expectation of f , namely, the expected value with respect to the joint distribution of
all the random vectors ξallk .

Theorem 4.3 Under Assumptions 3.1–3.12 and 4.1 and assuming X = Rn, suppose that Al-
gorithm 1 is run with a decaying stepsize sequence that satisfies Assumption 4.2. Then, with
AK :=

∑K
k=0 αk,

lim
K→∞

E

[
K∑
k=0

αk∥∇f(xk)∥2
]
< ∞, (4.3)

and therefore

lim
K→∞

E

[
1

AK

K∑
k=0

αk∥∇f(xk)∥2
]
= 0. (4.4)

Proof. The proof follows [5, Theorem 4.10] closely. Taking the total expectation of (4.2), we
have

E [f(xk+1)]− E [f(xk)] ≤ −αkE
[
∥∇f(xk)∥2

]
+ α2

kC∇fCd +
1

2
α2
kL∇fGd.

Summing both sides of this inequality for k ∈ {0, 1, ...,K} and by Assumption 4.1, we have

finf − E [f(x0)] ≤ E [f(xK+1)]− E [f(x0)]

≤ −
K∑
k=0

αkE
[
∥∇f(xk)∥2

]
+ C∇fCd

K∑
k=0

α2
k +

1

2
L∇fGd

K∑
k=0

α2
k.

Rearranging, we obtain

K∑
k=0

αkE
[
∥∇f(xk)∥2

]
≤ E [f(x0)]− finf + C∇fCd

K∑
k=0

α2
k +

1

2
L∇fGd

K∑
k=0

α2
k.

Assumption 4.2 implies that the right-hand side of this inequality converges to a finite limit
when K increases, which proves (4.3). To obtain (4.4), we can divide by AK as follows:

1

AK

K∑
k=0

αkE
[
∥∇f(xk)∥2

]
≤ E [f(x0)]− finf

AK
+

C∇fCd

AK

K∑
k=0

α2
k +

L∇fGd

2AK

K∑
k=0

α2
k.

Taking the limit as K → ∞, and noting Assumption 4.2, we obtain the desired result. □
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4.2 Rate in the strongly convex case

In this subsection, we present the convergence rate of the BSG method when f is assumed to
be strongly convex. In practice, such a case occurs when the UL objective function fu(x, y) is
strongly convex in (x, y) and y(x) is an affine function in x. Hence, imposing strong convexity
of f is a strong assumption in the sense of assuming in practice that the LL problem is a QP
problem. Still, we cover this case for completeness of our convergence theory.

We need the iterates to lie in a bounded set, which is ensured by the boundedness of X in
the BLP formulation. Together with boundedness, the closedness of X ensures UL feasibility
through the application of orthogonal projections onto X.

Assumption 4.3 The UL feasible set X is closed and bounded.

Assumption 4.3 implies that there exists a positive constant Θ such that, for any (k1, k2),
we have

∥xk1 − xk2∥ ≤ Θ < ∞.

Finally, we assume that the true function f is strongly convex.

Assumption 4.4 (Strong convexity of f) The function f is strongly convex, namely, there
exists a constant c > 0 such that

f(x̄) ≥ f(x) +∇f(x)⊤(x̄− x) +
c

2
∥x̄− x∥2 for all (x̄, x) ∈ Rn × Rn. (4.5)

A well-known equivalent condition to (4.5) (see, e.g., [44]) is given by

(∇f(x)−∇f(x̄))⊤(x− x̄) ≥ c∥x− x̄∥2 for all (x, x̄) ∈ Rn × Rn. (4.6)

Let x∗ be the unique minimizer of f onX, which implies that∇f(x∗)
⊤(x−x∗) ≥ 0 for all x ∈ X.

Therefore, if in (4.6) we choose x = xk and x̄ = x∗, we obtain

∇f(xk)
⊤(xk − x∗) ≥ c∥xk − x∗∥2. (4.7)

The next theorem proves that under the assumption of strong convexity and decaying stepsize
(
∑∞

k=0 αk = ∞ and
∑∞

k=0 α
2
k < ∞), the sequence of points yielded by Algorithm 1 generates

a sequence of f values that decays sublinearly at the rate of 1/k. The proof of this theorem is
given in Appendix C.

Theorem 4.4 Let Assumptions 3.1–3.12 and 4.3–4.4 hold and x∗ be the unique minimizer of f
on X. Consider the schema given by Algorithm 1 and assume a decaying step size sequence of
the form αk = γ/k, where γ ≥ 1/(2c) is a positive constant. The sequence of iterates yielded by
Algorithm 1 satisfies

E[∥xk − x∗∥2] ≤ max{2 γ2M(2cγ − 1)−1, ∥x0 − x∗∥2}
k

and, if x∗ is an interior point of X,

E[f(xk)]− f(x∗) ≤
(L∇f/2)max{2 γ2M(2cγ − 1)−1, ∥x0 − x∗∥2}

k
,

where M = Gd + 2CdΘ.
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4.3 Rate in the convex case

In this subsection, we state the convergence rate of the BSG method assuming that f is convex
and attains a minimizer x∗. The same comment about the lack of practicality applies to the
convex case. Specifically, for f to be convex, fu(x, y) must be convex in (x, y), and y(x) must
be affine in x, which considerably restricts the choice of LL problems.

Assumption 4.5 (Convexity of f) The (continuously differentiable) function f is convex in
x, namely,

f(x̄) ≥ f(x) +∇f(x)⊤(x̄− x) for all (x̄, x) ∈ Rn × Rn. (4.8)

Moreover, f attains a minimizer.

The next theorem states that the BSG method exhibits a sublinear convergence rate of 1/
√
k,

which implies that the convergence is slower than in the strongly convex case (Theorem 4.4).
The proof of this theorem is given in Appendix D.

Theorem 4.5 Let Assumptions 3.1–3.12, 4.3, and 4.5 hold. Consider the schema given by
Algorithm 1 and assume a decaying step size of the form αk = ᾱ/

√
k, with ᾱ > 0. Given a

minimizer x∗ of f , the sequence of iterates yielded by Algorithm 1 satisfies

min
s=0,...,k

E[f(xs)]− f(x∗) ≤
Θ2

2ᾱ + ᾱ(Gd + 2CdΘ)
√
k

.

4.4 Imposing a bound on the distance from the LL optimal solution

In this subsection, we want to discuss a way to enforce Assumption 3.10 when using the stochastic
gradient (SG) method to solve the LL problem at xk. We focus on the LL unconstrained case.
Given an initial point ỹ0k and a sequence of stepsizes {βi}, such a SG method can be described
as

ỹi+1
k = ỹik − βig

ℓ
y(xk, ỹ

i
k, ξ

S1
k,i), i = 0, . . . , ik. (4.9)

We start by introducing the sampling assumptions that are standard in the literature related
to the SG method. First, suppose that the stochastic gradient gℓy(xk, ỹk, ξ

S1
k,i) is unbiased,

i.e., EξS1k,i
[gℓy(xk, ỹk, ξ

S1
k,i)] = ∇yfℓ(xk, ỹk), and there exists a positive constant Q > 0 such

that EξS1k,i
[∥gℓy(xk, ỹk, ξS1k,i)∥2] ≤ Q2. Also, suppose that fℓ is strongly convex in the y variables

with constant µ with a unique minimizer y(xk).
Recalling that the convergence rate of the SG method (4.9) with decaying stepsize isO(1/

√
i),

and by choosing ik equal to k2, one guarantees the existence of a positive constant Cw such
that Assumption 3.10 holds. In fact, by choosing a decaying step size sequence {βi} given
by βi = γ̄/i, where γ̄ ≥ 1/(2µ) is a positive constant, and under the classical assumptions stated
in the previous paragraph, from [43, Equation (2.9)] it follows that the choice ik = k2 implies
(with ỹk = ỹik+1

k )

EξS1k
[∥ỹk − y(xk)∥2] ≤

max{γ̄2Q(2µγ̄ − 1)−1, ∥ỹ0k − y(xk)∥2}
k2

.

Such a result also holds in the LL constrained case when the scheme (4.9) incorporates a projec-
tion onto Y (xk), as long as Y (xk) is a closed convex set. We refer the reader to the discussion
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in [31, Appendix B], which applies to bilevel problems with an LL strongly convex objective func-
tion and LL linear constraints. We acknowledge that Assumption 3.10 is strong when the LL
constraints are nonlinear and nonconvex. However, this represents a computational challenge
rather than a theoretical one.

4.5 Imposing a bound on dynamic sampling

In this subsection, we want to mention a dynamic sampling strategy to enforce the inequality in
Assumption 3.11 in both the LL unconstrained and constrained cases. For the sake of simplicity,
we will omit the subscript k in this subsection. Such a dynamic sampling strategy allows
reducing the level of noise by increasing the size of the batch. Recalling the notation introduced
in (2.14) within Subsection 2.3, let us assume that the stochastic estimates a(x, y, ϑu), b(x, y, ϑu),
A(x,w, γℓ), and B(x,w, γℓ) are normally distributed with means a(x, y), b(x, y), A(x,w), and
B(x,w), respectively, and variances σ2

a, σ2
b , σ2

A, and σ2
B, respectively. Such an assumption

implies that the stochastic estimates in D(x,w, ξ) are unbiased estimates of the corresponding
true gradients, Hessians, and Jacobians in D(x,w), in accordance with Assumptions 3.2 and 3.6.
To increase the accuracy of the stochastic estimates in D(x,w, ξ), we can choose larger batch
sizes, which we denote by na, nb, nA, and nB. Let ā(x, y, ϑu) = (1/na)

∑na
r=1 a(x, y, (ϑ

u)r) be
the mini-batch stochastic estimate for a(x, y), where {(ϑu)r}na

r=1 are values sampled from the
distribution of ϑu. It is known that (for details, see, for instance, [36, Section 5.3])

Eξallk
[∥a(x, y)− ā(x, y, ϑu)∥] ≤ σa

√
n

√
na

.

One can repeat similar arguments for b, A, and B, and their corresponding mini-batch stochastic
estimates b̄, Ā, and B̄, respectively. Let us denote

D̄(x,w, ξ) = (ā(x, y, ϑu), b̄(x, y, ϑu), Ā(x,w, γℓ), B̄(x,w, γℓ)).

From the equivalence of norms, there exists a positive constant Ĉ such that

∥D(x,w)− D̄(x,w, ξ)∥ ≤ Ĉ(∥a(x, y)− ā(x, y, ϑu)∥+ ∥b(x, y)− b̄(x, y, ϑu)∥)
+ Ĉ(∥A(x,w)− Ā(x,w, γℓ)∥+ ∥B(x,w)− B̄(x,w, γℓ)∥).

Taking expectations with respect to ξallk on both sides, one obtains

Eξallk
[∥D(x,w)− D̄(x,w, ξ)∥] ≤ Ĉ

(
σa√
na

+
σb√
nb

+
σA√
nA

+
σB√
nB

)√
n. (4.10)

To guarantee that Assumption 3.11 holds, we need to choose mini-batch sizes na, nb, nA, and
nB and sample standard deviations σa, σb, σA, and σB such that the right-hand side in (4.10)
is less than or equal to CD αk. Therefore, when αk decreases, the dynamic sampling strategy
would increase the mini-batch sizes.

5 Numerical experiments

All code was written in Python 3.7.12. The experimental results were obtained on a desktop
computer with 128GB of RAM, an Intel(R) Core(TM) i9-13950HX processor running at 2200
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MHz, and an NVIDIA RTX 5000 Ada Generation Laptop GPU.∗ We averaged all the results
over 10 trials by using different random seeds.

5.1 Our practical BSG methods

A major difficulty in the adjoint formulas (1.2) and (2.8) is the use of second-order derivatives
of fℓ and Lℓ, respectively, and the need to solve the adjoint equation or use a truncated Neu-
mann series, which prevents its application to large-scale ML application problems. We propose
two approaches to get around this problem, which lead to two different practical versions of
the BSG method, referred to as BSG-N-FD and BSG-1. In the numerical experiments con-
sidered for both LL unconstrained and constrained BLPs, we are mainly interested in testing
these two practical implementations (Algorithms 2 and 3 in Subsections 5.1.1 and 5.1.2 below,
respectively) as opposed to the standard BSG method (Algorithm 1). BSG-N-FD solves the
adjoint system by using either the linear CG method (in the LL unconstrained case) or the GM-
RES method (in the LL constrained case), where each Hessian-vector product is approximated
with a finite-difference (FD) scheme. For BSG-N-FD, which is grounded on theoretical princi-
ples, one can enforce Assumption 3.12 by taking more iterations of the linear CG or GMRES
methods and adjust the value of the FD parameter ϵ to increase the accuracy of the FD ap-
proximation. For BSG-1, which uses rank-1 approximations to avoid second-order derivatives,
Assumption 3.12 does not apply, as BSG-1 does not require solving the adjoint equation or using
a truncated Neumann series.

We will consider two types of test problems: synthetic quadratic bilevel problems and con-
tinual learning problems. Since these test problems do not have UL constraints (i.e., X = Rn),
one can assume that the orthogonal projection matrix PX is equal to the identity matrix in all
of the algorithms. In the numerical experiments for the synthetic problems, we will also test
the BSG method with stochastic Hessians, where the (negative) BSG direction d(xk, ỹk, ξk) is
calculated from (2.1) or (2.9). This version is referred to as BSG-H. In the LL unconstrained
case, BSG-H applies the linear conjugate gradient (CG) method [45] to solve the adjoint system
Hℓ

yy(xk, ỹk, ϑ
ℓ
k)λ = guy (xk, ỹk, ϑ

u
k) until non-positive curvature is detected. In the LL constrained

case, BSG-H solves the adjoint system Gv(xk, ṽk, ς
ℓ
k)λ = Lguy (xk, ỹk, ϑ

u
k) by applying the GMRES

method [52], which is designed for non-symmetric systems of equations. Note that BSG-H is
not suited for practical optimization problems, but we include it in the experiments for the sake
of completeness. For very large problems, one must use BSG-N-FD or BSG-1, as mentioned in
Subsection 1.3.

In the BSG-N-FD, BSG-1, and BSG-H versions of the BSG method for the LL unconstrained
case, we will apply the SG method (4.9) to the LL problem for a certain budget ik of iterations,
obtaining an approximation ỹk to the LL optimal solution y(xk). To obtain an approxima-
tion w̃k to w(xk), given xk, in the LL constrained case, BSG-N-FD, BSG-1, and BSG-H will
first determine an approximation ỹk to y(xk) by minimizing the following exact penalty function
over y

Φ(xk, y;µ) = fℓ(xk, y) +
1

µ

∑
i∈I

max{0, ci(xk, y)}+
1

µ

∑
i∈E

|ci(xk, y)| , (5.1)

where µ is a penalty parameter and the functions ci, with i ∈ I ∪ E, are the LL constraints
defined in Subsection 2.2. We recall that for sufficiently small and positive values of µ, the

∗All the code for our implementation is available at https://github.com/GdKent/BSG_Methods_Con_Unc
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minimization of such an unconstrained problem will yield the optimal solution y(xk) of the
constrained LL problem [45]. To minimize (5.1), which is a nonsmooth function, the stochastic
subgradient method will be applied. Then, given xk and ỹk, to determine approximations (z̃I , z̃E)
to the optimal multipliers (zI(xk), zE(xk)), the linear CG method will be applied to compute
the least-squares solution of the overdetermined linear system

G(xk, (ỹk, zI , zE)) = 0 (5.2)

for the variables zI and zE , where G is the vector function introduced in Subsection 2.2.
For the solution of the LL problem, we consider an inexact scheme, denoted as inc. acc.,

which consists of obtaining ỹk by taking multiple steps of the stochastic gradient method ap-
plied to fℓ (ik ≥ 1, ∀k, in (4.9), for the LL unconstrained case) or stochastic subgradient method
applied to (5.1) (for the LL constrained case). In particular, the number of steps of the stochas-
tic gradient/subgradient method increases by 1 every time the difference of the UL objective
function between two consecutive iterations is less than a given threshold, thus leading to an
increasing accuracy strategy. In such an inexact scheme, ỹk is determined by using the approx-
imation ỹk−1 obtained at the previous iteration as a starting point. In the ML community,
iterative schemes with multiple LL steps, like the inc. acc. strategy above, are referred to as
double-loop schemes [9, 29].

5.1.1 BSG-N-FD

Our first proposed method, BSG-N-FD, solves the adjoint system by using an iterative method
where each Hessian vector product is approximated with an FD scheme. In particular, in the LL
unconstrained case, the adjoint equation ∇2

yyfℓ λ = ∇yfu is solved for the adjoint variables λ by
using the linear CG method, with ∇2

yyfℓ λ being approximated as follows:

∇2
yyfℓ(xk, yk)λ ≈

∇yfℓ(xk, y
+
k )−∇yfℓ(xk, y

−
k )

2ε
, (5.3)

where y±k = yk ± ελ, with ε > 0. Then, the adjoint gradient is calculated from

∇f ≈ ∇xfu −∇2
xyfℓ λ, (5.4)

where ∇2
xyfℓ λ is approximated using an additional FD scheme. In practice, we use an FD

parameter value of ε = 0.1.
In the LL constrained case, we can use FD schemes similar to the ones in the LL uncon-

strained case to approximate the Jacobian vector products when solving the adjoint equation
and computing the adjoint gradient. In particular, the adjoint equation ∇vGλ = L∇yfu is
solved for the adjoint variables λ = (λy, λI , λE)

⊤ by using the GMRES method, with ∇vGλ
being approximated as follows:

∇vGλ ≈

∇2
yyLℓλy + (z⊤I ◦ ∇ycI)λI +∇ycEλE

∇yc
⊤
I λy + CIλI

∇yc
⊤
Eλy

 , (5.5)

where

∇2
yyLℓλy =

∇yLℓ(xk, y
+
k , (zI)k, (zE)k)−∇yLℓ(xk, y

−
k , (zI)k, (zE)k)

2ε
(5.6)
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and y±k = yk ± ελy, with ε > 0. Then, the adjoint gradient is calculated from

∇f ≈ ∇xfu −∇xGλ, (5.7)

where ∇xGλ is approximated using an additional FD scheme. In practice, what worked better
for us was again ε = 0.1.

We denote the algorithm corresponding to this approach as BSG-N-FD, where the “N” stands
for the Newton-type system given by the adjoint equation, and the “FD” for the finite-difference
approximations we employ. Its schema is described in Algorithm 2. In the practical BSG-N-
FD method, we will use the stochastic data defined by (2.3) and (2.11). Again, since the test
problems do not have UL constraints, one can assume PX = I in Algorithm 2.

Algorithm 2 BSG-N-FD Method

Input: (x0, w̃0), {αk}k≥0 > 0.

For k = 0, 1, 2, . . . do
Step 1. Obtain an approximation w̃k to the LL optimal solution w(xk).
Step 2. Compute d(xk, w̃k, ξk) by drawing the stochastic gradients and/or Jacobians

from (5.3)–(5.4) for the LL unconstrained case or (5.5)–(5.7) for the LL constrained case.
Step 3. Compute xk+1 = PX(xk + αk d(xk, w̃k, ξk)).

End do

5.1.2 BSG-1

Our second proposed method, BSG-1, approximates the second-order derivatives in the adjoint
formulas (1.2) and (2.8) with outer products of the corresponding gradients, i.e.,

∇2
xyfℓ ≃ ∇xfℓ∇yf

⊤
ℓ and ∇2

yyfℓ ≃ ∇yfℓ∇yf
⊤
ℓ , (5.8)

∇2
yxLℓ ≃ ∇yLℓ∇xL⊤

ℓ and ∇2
yyLℓ ≃ ∇yLℓ∇yL⊤

ℓ . (5.9)

As mentioned in Subsection 1.3, such approximations are inspired by Gauss-Newton methods for
nonlinear least-squares problems, where the Hessian matrix of the objective function

∑p
i=1(ri −

ai)
2 (in which each ri is a scalar function and ai a scalar) is approximated by

∑p
i=1∇ri∇r⊤i ,

and also from the fact that the empirical risk of misclassification in ML is often a sum of non-
negative terms matching a function to a scalar which can then be considered in a least-squares
fashion [4, 23]. In the numerical experiments, the rank-1 approximations are observed to perform
well when the LL function fℓ has a Gauss-Newton structure, such as the binary cross-entropy
loss function used for the continual learning instances (see Subsection 5.4).

In the LL unconstrained case, the resulting approximate adjoint equation (∇yfℓ∇yf
⊤
ℓ )λ =

∇yfu is most likely infeasible, and we suggest solving it in the least-squares sense. One solution
is λ = ∇yfu/(∇yf

⊤
ℓ ∇yfℓ). Plugging this and ∇2

xyfℓ ≃ ∇xfℓ∇yf
⊤
ℓ in the adjoint formula (1.2)

gives rise to our practical BSG-1 calculation

∇f ≃ ∇xfu −
∇yf

⊤
ℓ ∇yfu

∇yf⊤
ℓ ∇yfℓ

∇xfℓ. (5.10)
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This approximate BSG allows us to use the adjoint formula without computing Hessians or even
Hessian-vector products, which is prohibitively expensive for the large bilevel problems arising
in ML applications.

In the LL constrained case, we can use the outer products (5.9) to approximate the second-
order derivatives of Lℓ in the Jacobian matrices∇xG

⊤ and∇vG
⊤, introduced in (2.6), and obtain

corresponding approximate Jacobians G̃⊤
x and G̃⊤

v , respectively. The resulting approximate
adjoint equation is given by G̃vλ̃ = L∇yfu, where L is the matrix used in (2.8), and can be
solved by using an iterative method for non-symmetric linear systems. Plugging a solution λ̃
into ∇xfu − G̃x λ̃, we obtain the practical BSG-1 calculation

∇f ≃ ∇xfu − G̃x λ̃, where G̃vλ̃ = L∇yfu. (5.11)

Both of these rank-1 approaches for the LL unconstrained and constrained cases will be
referred to as BSG-1, the “1” standing for first-order rank-1 approximations of the Hessian
and Jacobian matrices. In the practical BSG-1 method, we will use the stochastic data de-
fined by (2.3) and (2.11). Again, since the test problems do not have UL constraints, one can
assume PX = I in Algorithm 3.

Algorithm 3 BSG-1 Method

Input: (x0, w̃0), {αk}k≥0 > 0.

For k = 0, 1, 2, . . . do
Step 1. Obtain an approximation w̃k to the LL optimal solution w(xk).
Step 2. Compute d(xk, w̃k, ξk) by drawing the stochastic gradients and/or Jacobians

from (5.10) for the LL unconstrained case or (5.11) for the LL constrained case.
Step 3. Compute xk+1 = PX(xk + αk d(xk, w̃k, ξk)).

End do

5.2 DARTS

DARTS was proposed in [34] for the solution of stochastic BLPs arising from NAS, and was
briefly introduced in Section 1.2. Only the LL unconstrained case (Y (x) = Rm) has been con-
sidered. To avoid the computation of the second-order derivatives in (1.5), DARTS approximates
the matrix-vector product ∇2

xyfℓ(xk, yk)∇yfu(xk, ỹk) by a finite-difference scheme [34]:

∇2
xyfℓ(xk, yk)∇yfu(xk, ỹk) ≈

∇xfℓ(xk, y
+
k )−∇xfℓ(xk, y

−
k )

2ε
,

where
y±k = yk ± ε∇yfu(xk, ỹk) with ε = 0.01/∥∇yfu(xk, ỹk)∥. (5.12)

Algorithm 4 reports the schema of DARTS for the stochastic setting. In Step 1, a single step
of SG (with fixed stepsize η) is applied to the LL problem to obtain an approximation ỹk to
the LL optimal solution. Then, in Step 2, the UL variables are updated by moving along the
“approximated” descent direction using a stepsize αk.
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Algorithm 4 Differentiable Architecture Search (DARTS)

Input: (x0, y0) ∈ Rn × Rm, {αk}k≥0 > 0, η > 0.

For k = 0, 1, 2, . . . do
Step 1. Compute ỹk = yk − η gℓy(xk, yk, ϑ

ℓ
k).

Step 2. Compute xk+1 = xk−αk

(
gux(xk, ỹk, ϑ

u
k)−

η
2ε(g

ℓ
x(xk, y

+
k , ϑ

ℓ
k)− gℓx(xk, y

−
k , ϑ

ℓ
k))
)
,

with y±k and ε as in (5.12), with guy (xk, ỹk, ϑ
u
k) instead of ∇yfu(xk, ỹk), and set yk+1 = ỹk.

End do

5.3 Numerical results for synthetic quadratic bilevel problems

We first report results for a “synthetic” bilevel problem, where both levels are defined by
quadratic objective functions. Given h1 ∈ Rn, h2 ∈ Rm, symmetric positive definite matri-
ces H2 ∈ Rn×n and H3 ∈ Rm×m, and matrices H1 ∈ Rn×m and H4 ∈ Rm×n, we consider the
following problem

min
x∈Rn

fu(x, y) = h⊤1 x+ h⊤2 y +
1

2
x⊤H1y +

1

2
x⊤H2x

s.t. y ∈ argmin
y∈Y (x)

fℓ(x, y) =
1

2
y⊤H3y − y⊤H4x,

(5.13)

where the set Y (x) used for the numerical experiments will be specified in Subsections 5.3.1–
5.3.3 below. In particular, Subsection 5.3.1 focuses on the LL unconstrained case and Subsec-
tions 5.3.2–5.3.3 address the LL constrained case.

For all of the algorithms, we used the best UL and LL fixed stepsizes (i.e., αu and αℓ,
respectively) found by performing a grid search over the set {10−su | su ∈ {su, . . . , s̄u}} for
the UL stepsize and {10−sℓ | sℓ ∈ {sℓ, . . . , s̄ℓ}} for the LL stepsize. We used independent
bounds su, s̄u, sℓ, s̄ℓ for each algorithm with the goal of selecting stepsize values that capture
their best performances on the different types of problems. The domain of possible values for
the bounds su, s̄u, sℓ, s̄ℓ was restricted to the set {1, . . . , 8}. We chose the values of such bounds
to include two to three consecutive values in the grid searches for both su and sℓ.

With the exception of DARTS in the LL unconstrained case, we utilized the LL inc. acc.
strategy (introduced in Subsection 5.1) for the rest of the algorithms, with an fu difference
threshold for increasing the number of LL iterations equal to 10−1 (and a maximum limit
of 30 LL iterations). In all the figures included in this subsection, we plot the true function f
of the BLP (f(xk) = fu(xk, y(xk))). The number of UL iterations and running time were
both used as metrics for the comparison of the algorithms. In the LL constrained case, in
accordance with the procedure described in Subsection 5.1, we obtain approximate Lagrange
multipliers at each iteration by solving the corresponding overdetermined linear system (5.2)
with the linear CG method, using a maximum number of iterations equal to 3 and tolerance
equal to 10−4. The system in (5.11), which is non-symmetric, is solved by using the GMRES
method with a maximum number of 3 iterations and tolerance equal to 10−4.
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5.3.1 Results for the LL unconstrained case

In the numerical experiments for the LL unconstrained version (Y (x) = Rm) of problem (5.13),
we considered a dimension of 300 at both the upper and lower levels (i.e., n = m = 300), with H2

and H3 randomly generated and H1 and H4 set equal to the identity matrix. Note that prob-
lem (5.13) is deterministic. To investigate the numerical performance of the stochastic methods
considered in the experiments, we computed stochastic gradient and Hessian estimates by adding
Gaussian noise with mean 0 to each corresponding deterministic gradient (i.e.,∇xfu,∇yfu,∇xfℓ,
∇yfℓ) and Hessian (i.e., ∇2

xyfℓ, ∇2
yyfℓ). In the stochastic case, the standard deviations for the

stochastic estimates of the gradients and Hessians were set to 5 and 0.05, respectively.
In the experiments for this subsection, we compared BSG-N-FD, BSG-1, and BSG-H

against DARTS and StocBiO, the latter of which was introduced in Subsection 1.2. Regarding
the grid searches for the stepsizes αu and αℓ, in the deterministic case, we used su = sℓ = 2
and s̄u = s̄ℓ = 4 for BSG-N-FD, BSG-H, BSG-1, and StocBiO, and su = 3, s̄u = 5, sℓ = 2,
and s̄ℓ = 4 for DARTS. In the stochastic case, we used su = sℓ = 2 and s̄u = s̄ℓ = 4 for BSG-
N-FD, BSG-1, and StocBiO, and su = 3, s̄u = 5, sℓ = 2, and s̄ℓ = 4 for BSG-H and DARTS.
For StocBiO, we set the constant C0 introduced in Subsection 1.2 to 0.05 and the parameter q
introduced in Subsection 2.5 to 2, which led to the best results.

Starting with the deterministic results displayed in the top two plots of Figure 1, we can
see that both BSG-N-FD and BSG-H (these methods completely overlap in the iterations plot)
clearly outperform all the other methods in terms of both iterations and time, with StocBiO
performing slightly worse. Note that compared to BSG-N-FD, BSG-H is less efficient in terms of
time due to the high computational cost of computing Hessian matrices. As somewhat expected,
due to the lack of Gauss-Newton structure in problem (5.13), BSG-1 performs worse than the
other versions of the BSG method, but it is still able to yield a decrease in the true function
and outperform DARTS, which has the worst performance out of the five methods. It bears
mentioning that only BSG-N-FD and BSG-H are able to achieve the optimal value of the true
function f (represented by the red dotted horizontal lines in all the plots of Figure 1) within the
iteration and time limit used.

We will now focus on the results for the stochastic case displayed in the bottom two plots
of Figure 1. Firstly, BSG-N-FD still performs the best in terms of both iterations and time,
closely followed by StocBiO. BSG-H is able to achieve a similar function value to those achieved
by BSG-N-FD and StocBiO but after several more iterations. The performance decline of BSG-
H in the presence of noise is expected, as it is well known that stochastic Hessians require lower
noise levels (i.e., larger mini-batch sizes when noise arises from sampling finite-sum Hessians
in SG contexts) than stochastic gradients to perform well [5, Section 6.1.1]. In particular,
BSG-H is very sensitive to the value of the Hessian standard deviation, and its performance
significantly degrades for values much larger than 0.05. Finally, BSG-1 and DARTS seem to be
relatively robust to the noise and exhibit similar performance to the deterministic case in terms
of iterations.

5.3.2 Results for the LL linearly constrained case

In the experiments for the LL linearly constrained version of problem (5.13), the LL constraint
set Y (x) = Y was defined by the following |I| linear inequality constraints in y

Y = {y | Wy ≤ s}, (5.14)
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Figure 1: Numerical results of the BSG-N-FD, BSG-H, BSG-1, DARTS, and StocBiO algo-
rithms on problem (5.13) for the LL unconstrained case in terms of both iterations and time (in
milliseconds).
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where W ∈ R|I|×m and s ∈ R|I| were both randomly generated according to a uniform distri-
bution, respectively. In this section, we focus on LL linear constraints in y because this allows
us to compare the performance of the BSG algorithms developed in this paper against SIGD,
which is only designed for handling these types of constraints (as mentioned in Subsection 1.2).
We again considered a dimension of 300 at both the upper and lower levels (i.e., n = m = 300)
along with |I| = 50 constraints, with H1, H2, H3, and H4 chosen in the same manner as in
Subsection 5.3.1.

In the stochastic case, we added Gaussian noise with mean 0 to the gradients and Hessians
as in Subsection 5.3.1 and also to the Jacobians ∇xcI , ∇xcE , ∇ycI , and ∇ycE . Note that we
did not add noise to ∇2

yxci and ∇2
yyci, with i ∈ I ∪E, because they are null matrices in the LL

linearly constrained case. The value of the standard deviation was chosen from {0.005, 0.05}
(referred to as the “low” and “high” values, respectively) for the stochastic Hessian matrices,
∇2

xyfℓ and ∇2
yyfℓ, and was set to 0.5 for all the other stochastic estimates. Using two different

values for the standard deviation of the stochastic Hessian allows us to demonstrate the impact
of different noisy Hessian estimates on the performance of BSG-H and SIGD, which use second-
order derivatives. Regarding the stepsizes αu and αℓ, in the deterministic case, we used su = 2,
s̄u = 4, sℓ = 3, and s̄ℓ = 5 for BSG-N-FD and BSG-H and su = sℓ = 2 and s̄u = s̄ℓ = 4
for SIGD. For the stochastic case with Hessian standard deviation equal to 0.005, we used the
same UL and LL stepsizes for SIGD as in the deterministic case. However, we changed to values
of sℓ = 7 and s̄ℓ = 8 for BSG-N-FD along with sℓ = 3 and s̄ℓ = 5 for BSG-H. When the
Hessian standard deviation was equal to 0.05, we used the same UL and LL stepsizes as in the
deterministic case, with the exception of su = 5 and s̄u = 7 for SIGD. We do not include any
results for BSG-H when the Hessian standard deviation is 0.05 because we were unable to find
stepsizes that allowed the algorithms to converge. Additionally, we do not present any results
for BSG-1, which exhibited poor performance on synthetic problems in the LL constrained case.

Starting with the deterministic results displayed in the top two plots of Figure 2, we can
clearly see that both BSG-N-FD and BSG-H outperform SIGD in terms of iterations and time.
In fact, BSG-N-FD and BSG-H yield the exact same performance in terms of iterations, resulting
in overlapping lines.

In the stochastic setting with low Hessian standard deviation displayed in the two mid-
dle plots of Figure 2, we can see that BSG-H is still able to outperform SIGD both in terms
of iterations and time, despite its inferior performance compared to the deterministic case. Al-
though BSG-N-FD has the worst performance here in terms of iterations, it is able to outperform
both BSG-H and SIGD in the long run due to its superior efficiency in terms of time. Looking
now at the setting with high Hessian standard deviation displayed in the two bottom plots of
Figure 2, we can see that BSG-N-FD is clearly the superior method. Similar to the behavior
of BSG-H, SIGD is no longer able to converge. By contrast, BSG-N-FD is less affected by the
noise, yielding the best performance.

31



0.0 0.2 0.4 0.6 0.8 1.0
UL Iterations 1e3

1

0

1

2

3

4

f

1e4
 UL grad std dev = 0, LL grad std dev = 0,

 Hess std dev = 0
BSG-N-FD (inc. acc.) u = 0.001, = 0.0001
BSG-H (inc. acc.) u = 0.001, = 0.0001
SIGD (inc. acc.) u = 0.001, = 0.001

0.0 0.2 0.4 0.6 0.8 1.0
Time (ms) 1e5

1

0

1

2

3

4

f

1e4
 UL grad std dev = 0, LL grad std dev = 0,

 Hess std dev = 0
BSG-N-FD (inc. acc.) u = 0.001, = 0.0001
BSG-H (inc. acc.) u = 0.001, = 0.0001
SIGD (inc. acc.) u = 0.001, = 0.001

0.0 0.2 0.4 0.6 0.8 1.0
UL Iterations 1e3

1

0

1

2

3

4

f

1e4
 UL grad std dev = 0.5, LL grad std dev = 0.5,

 Hess std dev = 0.005
BSG-N-FD (inc. acc.) u = 0.001, = 1e 08
BSG-H (inc. acc.) u = 0.001, = 0.0001
SIGD (inc. acc.) u = 0.001, = 0.001

0.0 0.2 0.4 0.6 0.8 1.0
Time (ms) 1e5

1

0

1

2

3

4

f

1e4
 UL grad std dev = 0.5, LL grad std dev = 0.5,

 Hess std dev = 0.005
BSG-N-FD (inc. acc.) u = 0.001, = 1e 08
BSG-H (inc. acc.) u = 0.001, = 0.0001
SIGD (inc. acc.) u = 0.001, = 0.001

0.0 0.2 0.4 0.6 0.8 1.0
UL Iterations 1e3

1

0

1

2

3

4

f

1e4
 UL grad std dev = 0.5, LL grad std dev = 0.5,

 Hess std dev = 0.05
BSG-N-FD (inc. acc.) u = 0.001, = 1e 08
SIGD (inc. acc.) u = 1e 06, = 0.001

0.0 0.2 0.4 0.6 0.8 1.0
Time (ms) 1e5

1

0

1

2

3

4

f

1e4
 UL grad std dev = 0.5, LL grad std dev = 0.5,

 Hess std dev = 0.05
BSG-N-FD (inc. acc.) u = 0.001, = 1e 08
SIGD (inc. acc.) u = 1e 06, = 0.001

Figure 2: Numerical results of the BSG-N-FD, BSG-H, and SIGD algorithms on problem (5.13)
with linear constraints in y defined by (5.14) in terms of both iterations and time (in millisec-
onds).
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5.3.3 Results for the LL quadratically constrained case

In the experiments for the LL quadratically constrained version of problem (5.13), the LL
constraint set Y (x) was defined by the following |I| quadratic inequality constraints

Y (x) =


y⊤Q

(1)
1 y + x⊤Q

(1)
2 y ≤ s(1),

y⊤Q
(2)
1 y + x⊤Q

(2)
2 y ≤ s(2),

...

y⊤Q
(|I|)
1 y + x⊤Q

(|I|)
2 y ≤ s(|I|),

(5.15)

where Q
(i)
1 ∈ Rm×m, Q

(i)
2 ∈ Rn×m, and s(i) ∈ R, for all i ∈ {1, 2, ..., |I|}, were all randomly

generated according to a uniform distribution. We again considered a dimension of 300 at both
the upper and lower levels (i.e., n = m = 50) along with |I| = 5 constraints, with H1, H2, H3,
and H4 chosen in the same manner as in Subsection 5.3.1.

We now present numerical results for BSG-N-FD and BSG-H on a deterministic and two
stochastic versions of problem (5.13) with constraints defined by (5.15), again testing two dif-
ferent levels of Hessian noise (with standard deviation values chosen from {0.005, 0.5}) as in
Subsection 5.3.2. To the best of our knowledge, there do not exist any other bilevel stochas-
tic algorithms that can handle general nonlinear constraints in the LL problem, specifically
quadratic constraints in this case, and as a result, the following numerical experiments are the
first for this type of problem. We added noise to each gradient, Jacobian, and Hessian (in-
cluding ∇2

xyci and ∇2
yyci, for all i ∈ I ∪ E), as described in Subsection 5.3.1. Regarding the

stepsizes αu and αℓ, we used su = 2, s̄u = 4, sℓ = 6, and s̄ℓ = 8 for both BSG-N-FD and BSG-H
in both the deterministic and stochastic cases.

Starting with the deterministic results displayed in the top two plots of Figure 3, we can
clearly see that BSG-N-FD and BSG-H have the same exact performance in terms of iterations
and time. It would be expected that BSG-N-FD yields better results in terms of time due to the
efficiency we noted in Subsection 5.3.2. In fact, this still holds true in general, but the specific
stepsizes we chose allow both algorithms to perform well, although they also cause increased
fluctuations towards the end of the run.

In the stochastic setting with a low level of Hessian noise (the middle two plots), we notice
that BSG-N-FD is impacted by the noise, while BSG-H is still able to retain almost the same
behavior as in the deterministic case. Although BSG-H looks very favorable here, the stochastic
setting with a high level of Hessian noise (the bottom two plots) shows similar results to the
linearly constrained case in Subsection 5.3.2 (bottom two plots of Figure 2). Specifically, the
performance of BSG-N-FD remains unchanged, while we were not able to find stepsize values
that allowed BSG-H to converge.

5.4 Continual learning

We are going to use instances of Continual Learning (CL) as practical stochastic bilevel problems
to test the performance of BSG-N-FD, BSG-1, StocBiO, and DARTS. CL was briefly described
in Section 1, and is now introduced in more detail. Let us denote a whole features/labels
dataset by D = {(uj ,vj), j ∈ {1, . . . , N}}, consisting of N pairs of a feature vector uj and the
corresponding true label vj . For any data point j, the classification is deemed correct if the
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Figure 3: Numerical results of the BSG-N-FD and BSG-H algorithms on problem (5.13) with
quadratic constraints defined by (5.15) in terms of both iterations and time (in milliseconds).
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right label is predicted. To evaluate the loss incurred when using the prediction function ϕ(u; θ),
which in this section is supposed to be a DNN, we use a loss function ℓ(ϕ(u; θ),v).

The goal of CL is to minimize the prediction error over a sequence of tasks that become
available one at a time. Among the many different formulations proposed for CL, hierarchical
objectives have been used in [47, 56]. In this section, we present an incremental setting where
each task is available as a subset of samples, similar to the formulation in [47]. Given t ∈
{1, . . . , T}, let Dt be the set of samples for a new task Tt, which can be split into a training
setDt

tr and a validation setDt
v. Moreover, let us split the parameters θt of the model ϕ(u; θt) into

two subvectors, λt and δt, whose roles are to give us flexibility in minimizing the classification
error on the training and validation data along the sequence of tasks. According to [21], when
using a neural network as a prediction function, a reasonable strategy is to choose λt and δt as
the vectors of weights in the hidden and output layers, respectively.

To solve the overall CL problem, one starts from the first task T1 and, after an arbitrary
number of iterations or amount of time, we include in the problem the second task T2. One
reiterates this procedure until all the tasks have been added to the problem. Let us now suppose
that one has already added t tasks. At this stage, the goal of the UL and LL problems is to
determine the values of λt and δt that ensure a small classification error on Tt and on all the
previous tasks Ti, with i < t. To this end, the UL problem determines (λt, δt) by minimizing
the prediction error on

Dt
val = ∪i≤tD

i
v,

which is composed of the data sampled from the validation sets associated with the current and
previous tasks. Similarly, the LL problem determines δt by minimizing the error on

Dt
train = ∪i≤tD

i
tr.

Note that at each stage one solves a different problem since the objective functions of the UL
and LL change as new tasks are included in the problem. The formulation of the problem solved
at stage t, with t ∈ {1, . . . , T}, can be written as follows:

min
(λt, δt)

fu(λt, δt) =
1

|Dt
val|

∑
(u,v)∈Dt

val

ℓ(ϕ(u;λt, δt),v)

s.t. δt ∈ argmin
δt

fℓ(λt, δt) =
1

|Dt
train|

∑
(u,v)∈Dt

train

ℓ(ϕ(u;λt, δt),v).

(5.16)

We point out that the large dimension of the datasets usually considered in ML may prevent
the use of the whole sets Di

tr and Di
v from previous tasks i’s, where i < t and t is the current

task. In such cases, it may be necessary to resort to subsets D̄i
tr ⊂ Di

tr and D̄i
v ⊂ Di

v, which we
will not do in this paper given that our interest focuses on the solution of stochastic BLPs.

Once a new task is included in the problem, the classification accuracy of the DNN on the
previous tasks tends to deteriorate, thus resulting in the well-studied phenomenon of catastrophic
forgetting [26], which can be alleviated by adding LL inequality constraints to the lower level
of problem (5.16). Such inequality constraints are inspired by [37] and ensure that, at each
stage, the current model outperforms the old model on all the previous tasks, thus preventing
the deterioration of the classification accuracy when learning new tasks. In particular, for all
i < t and t ≥ 2, we have∑

(u,v)∈Di
tr

ℓ(ϕ(u;λt, δt),v)−
∑

(u,v)∈Di
tr

ℓ(ϕ(u;λt−1, δt−1),v) ≤ 0. (5.17)
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We point out that similar constraints were also used in the bilevel formulation proposed in [56],
where the violation of the constraints is penalized. Note that, in general, the constraints in (5.17)
may be nonconvex when using a neural network as the prediction function ϕ(u;λt, δt). However,
our theory does encompass nonconvexity of the LL constraints as long as the LL SOSC is
satisfied (Assumption 3.7) and one is able to converge to a global optimal solution of the LL
problem (Assumption 3.10).

5.5 Results for continual learning instances

We now present numerical results comparing BSG-N-FD and BSG-1 against both DARTS
and StocBiO on the CL problem (5.16) that was posed in Section 5.4. We also include numerical
results on the CL problem with LL constraints defined by (5.17) for BSG-N-FD and BSG-1, as
no other method applies in this case. In our implementation, we determine λt (the UL variables)
on the current problem by starting from the parameter values found from the previous prob-
lem. However, since each consecutive task increases the output space of the DNN, we entirely
re-initialize δt (the LL variables) at the start of each new task (when first applying an LL step)
so that the model outputs are not biased from previous tasks.

In order to test our algorithm on a large-scale ML scenario, we chose the well-studied CIFAR-
10 dataset [32], which consists of a total of 60,000 colored images (32 × 32) of 10 different classes
(i.e., airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks). The dataset
is split into a training set that consists of 50,000 images and a testing set that consists of 10,000
images. For our experiments, we used only the training set. From this set, we selected a subset
of 40,000 images for training and used the remaining 9,999 images for validation (since one of
the images had an issue, we removed it from the dataset). We solved five problems (5.16) with
an increasing number of tasks from 1 to 5, where the first task datasets (D1

val and D1
train) consist

of only the images with class labels in {0, 1} (these correspond to airplanes and automobiles),
the second task datasets (D2

val and D2
train) consist of the images with class labels in {0, 1, 2, 3}

(airplanes, automobiles, birds, and cats), etc., until the final task datasets (D5
val and D5

train),
which are the original training and validation sets and consist of all the class labels {0, 1, ..., 9}.
Further, we implemented a DNN with two convolutional layers, a max-pooling layer, and one
linear fully-connected layer as our model. The network consisted of 19,392 and 163,840 weights
in the hidden and output layers, respectively. For the UL and LL problems, we have used batch
sizes equal to 0.05% and 0.01% of the sizes of the current task’s validation and training datasets,
respectively.

All of the algorithms, with the exception of DARTS in the LL unconstrained case, were run
while using an increasing accuracy strategy in the LL problem with an fu difference threshold
for increasing the number of LL iterations equal to 10−2 (and a maximum limit of 30 LL
iterations). The number of UL iterations and running time (in seconds) were both used as
metrics for the comparison. As a loss function, we used the well-known binary cross-entropy
loss. In Figures 4 and 6 of this section, we plot the approximation of the true function f
given by fu, which represents the loss on the validation data used in the UL problem, referred
to as “Validation Loss”. Plotting the approximation fu instead of f is a common practice in
bilevel ML [27, 38, 46, 59, 65]. In Figures 5 and 7, we plot the fraction of validation data images
that are correctly classified, referred to as “Validation Accuracy”.

The results for the unconstrained LL case are shown in Figures 4 and 5. We are not in-
cluding BSG-H because of the extremely high computational cost of dealing with second-order
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Figure 4: Comparison of the loss on the validation data obtained by BSG-N-FD, BSG-1, DARTS,
and StocBiO on the CL problem (5.16) in terms of both iterations (top plot) and time (bottom
plot, in seconds).
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Figure 5: Comparison of the accuracy on the validation data obtained by BSG-N-FD, BSG-1,
DARTS, and StocBiO on the CL problem (5.16) in terms of both iterations (top plot) and time
(bottom plot, in seconds).
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Figure 7: Comparison of the accuracy on the validation data obtained by BSG-N-FD and BSG-1
on the CL problem (5.16) with constraints (5.17) in terms of both iterations (top plot) and time
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derivatives given the choices of DNN and dataset. We compare four algorithms, BSG-N-FD
and BSG-1 against DARTS and StocBiO, using the best UL decaying stepsize sequence {αu

k}k∈N
and the best LL fixed stepsize αℓ found for each algorithm. The step sizes for each algorithm were
obtained by performing grid searches over the following sets: αu ∈ {5·10−3/k, 10−3/k, 5·10−4/k}
for BSG-1, and DARTS and αu ∈ {10−7/k, 10−8/k} for BSG-N-FD and StocBiO; αℓ ∈ {10−1, 5 ·
10−2, 10−2} for BSG-N-FD, BSG-1, and StocBiO, αℓ ∈ {1, 5 ·10−1, 10−1} for DARTS. Again, for
StocBiO, we set the constant C0 introduced in Subsection 1.2 to 0.05 and the parameter q intro-
duced in Subsection 2.5 to 2, which led to the best results. By the nature of the CL problem, we
expect to see five separate “jumps” in the validation loss (the UL objective function) indicating
the start of a new task. Among the four algorithms, BSG-N-FD, BSG-1, and StocBiO have
similar performance in terms of iterations and time. In particular, in terms of iterations, they
perform the best across all tasks excluding the first two, where DARTS outperforms them due
to some initial noise observed in BSG-N-FD, BSG-1, and StocBiO. In terms of time, DARTS
has the most competitive performance, though the other algorithms are nearly comparable.

Lastly, in Figures 6 and 7, we provide numerical results for BSG-N-FD and BSG-1 on the CL
problem (5.16) when considering LL constraints (5.17). In accordance with the procedure de-
scribed in Subsection 5.1 for the LL constrained case, approximate Lagrange multipliers are
obtained at each iteration by solving the corresponding overdetermined linear system (5.2)
with the linear CG method, using a maximum number of iterations equal to 3 and tolerance
equal to 10−4. The system in (5.11), which is non-symmetric, is solved by using the GM-
RES method with maximum number of iterations equal to 3 when running BSG-N-FD and 50
when running BSG-1, with a tolerance equal to 10−4. In a similar manner for the CL un-
constrained case, we chose the stepsizes for each algorithm by performing the following grid
searches: αu ∈ {5 ·10−4/k, 10−4/k, 5 ·10−5/k} for both algorithms, αℓ ∈ {5 ·10−3, 10−3, 5 ·10−4}
for BSG-N-FD, and αℓ ∈ {10−3, 5 · 10−4, 10−4} for BSG-1. Referring to Figure 6, BSG-N-FD
performs best in terms of iterations on all tasks. In terms of time, BSG-1 yields similar per-
formance to BSG-N-FD except for the first task. While BSG-1 experiences some noise in the
validation loss on the third task, this does not affect the validation accuracy. It should be noted
that both algorithms seem to plateau after the second task in terms of time as the number of
iterations in each consecutive task decreases substantially. This is due to the amount of time
allotted to each task. The results in Figure 6 demonstrate that our BSG methods are able to
solve large-scale bilevel optimization problems with nonlinear constraints in the LL problem,
and similar to Section 5.3.3, these results are the first of their kind for this type of problem, to
the best of our knowledge.

6 Concluding remarks and future work

In this paper, we proposed a general framework for bilevel stochastic gradient (BSG) methods
that applies to both the LL unconstrained and constrained cases, we provided a corresponding
convergence theory that allows for any inexactness in the calculation of adjoint gradients and
that also rigorously covers the inexact solution of the LL problem, and we introduced practi-
cal BSG methods for large-scale bilevel optimization problems (BSG-N-FD and BSG-1). The
numerical results showed that BSG-N-FD, which is consistent with the theory, performs well on
the synthetic quadratic bilevel problem, regardless of the presence of constraints. For the contin-
ual learning instances, BSG-N-FD has a similar performance to the practical algorithms BSG-1
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and StocBiO on the unconstrained instances, with DARTS being slightly more competitive in
terms of time. On the constrained instances, BSG-N-FD slightly outperforms BSG-1 in terms
of iterations, while their performance in terms of time is comparable.

The results on the ML instances considered in this proposal suggest that our BSG methods
have the potential to perform well on the unconstrained bilevel formulations of NAS, which
in the literature are mostly still tackled by using DARTS when a continuous relaxation of the
(discrete) search space is used [49]. We point out that using finite differences like in BSG-N-
FD or rank-1 Hessian approximations like in BSG-1 is crucial to allow the application of the
BSG method to NAS, which would not be possible otherwise due to the extreme dimensions
of the resulting bilevel problems. Moreover, the fact that our BSG methods can solve bilevel
optimization problems with constrained LL problems paves the way for the solution of new
NAS formulations. In particular, one could think of including in the LL problem constraints
that help the model avoid overfitting [48] or constraints that depend on the specific learning
instances considered [54]. Also left for future work are variance reduction techniques, which
can be incorporated into our BSG methods to ensure faster convergence, as already proposed
in [8, 65].
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A Proposition 3.1

Proof. Let us prove (3.2). From the unified notation introduced in Subsection 2.3, D can
represent either deterministic data (i.e., D = D(x,w)) or stochastic data (i.e., D = D(x,w, ξ)).
There are two cases to consider: inexact adjoint system and truncated Neumann series. In both
we will use the fact that when B1 and B2 are non-singular,

∥B−1
1 −B−1

2 ∥ ≤ ∥B−1
1 (B1 −B2)B

−1
2 ∥ ≤ ∥B−1

1 ∥∥B−1
2 ∥∥B1 −B2∥. (A.1)

1) Inexact adjoint system.
The approximate BSG direction is d(D) = −(a−AB−1b̃), where b̃ = b+ r̃ and r̃ is the residual
error due to the inexact solution of the ajoint equation (see Subsection 2.5). Now, we have

∥d(D1)− d(D2)∥ = ∥ − a1 +A1B
−1
1 b̃1 + a2 −A2B

−1
2 b̃2∥.

Adding and subtracting A1B
−1
1 b̃2 and using the triangle inequality, we obtain

∥d(D1)− d(D2)∥ ≤ ∥a1 − a2∥+ ∥A1B
−1
1 ∥∥b̃1 − b̃2∥+ ∥b̃2∥∥A1B

−1
1 −A2B

−1
2 ∥.

Adding and subtracting A2B
−1
1 in the last norm on the right, we have

∥d(D1)− d(D2)∥ ≤ ∥a1 − a2∥+ ∥A1∥∥B−1
1 ∥∥b̃1 − b̃2∥

+ ∥b̃2∥∥A2∥∥B−1
1 −B−1

2 ∥+ ∥b̃2∥∥B−1
1 ∥∥A1 −A2∥. (A.2)

Let us define the positive constants C1 = max{CCℓ, C̄C̄ℓ}, C2 = max{C2C2
ℓ , C̄

2C̄2
ℓ }, C3 =

max{CC2
ℓ , C̄C̄2

ℓ }, and C4 = max{Cℓ, C̄ℓ}, where C, Cℓ, C̄, and C̄ℓ are the constants introduced in
Remark 3.1. From the assumptions of Proposition 3.1 and (A.1), and setting r1 = r̃1 and r2 = r̃2,
there exists L = max{1, C1, C2 + C3∥r2∥, C1 + C4∥r2∥}, such that

∥d(D1)− d(D2)∥ ≤ ∥a1 − a2∥+ C1(∥b1 − b2∥+ ∥r1 − r2∥)
+ (C2 + C3∥r2∥) ∥B1 −B2∥+ (C1 + C4∥r2∥) ∥A1 −A2∥

≤ L(∥a1 − a2∥+ ∥b1 − b2∥+ ∥B1 −B2∥+ ∥A1 −A2∥) + L∥r1 − r2∥. (A.3)

From the equivalence of norms, there exists a positive constant C̃ such that the proof of Part 1)
is completed with LBSG = Lmax{C̃, 1}.

2) Truncated Neumann series.
The approximate BSG direction is d(D) = −(a−ABb), where B = B−1−R̃ and R̃ is a residual
matrix (see Subsection 2.5). By repeating the reasoning used to prove Part 1) until (A.2), we
arrive at

∥d(D1)− d(D2)∥ ≤ ∥a1 − a2∥+ ∥A1∥ ∥B1∥ ∥b1 − b2∥
+ ∥b2∥ ∥A2∥ ∥B1 − B2∥+ ∥b2∥ ∥B1∥ ∥A1 −A2∥ .

Let us define the positive constants C1 = max{CCℓ, C̄C̄ℓ}, C2 = max{C, C̄}, C3 = max{C2C2
ℓ ,

C̄2C̄2
ℓ }, C4 = max{C2, C̄2}, and C5 = max{C, C̄}, where C, Cℓ, C̄, and C̄ℓ are again the

constants introduced in Remark 3.1. Therefore, by using the same arguments as in Part 1), but
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now with r1 = R̃1 and r2 = R̃2, there exists L = max{1, C1+C2∥r1∥, C3, C4, C1+C5∥r1∥}, such
that

∥d(D1)− d(D2)∥ ≤ ∥a1 − a2∥+ (C1 + C2∥r1∥) ∥b1 − b2∥
+ C3∥B1 −B2∥+ C4∥r1 − r2∥+ (C1 + C5∥r1∥) ∥A1 −A2∥

≤ L(∥a1 − a2∥+ ∥b1 − b2∥+ ∥B1 −B2∥+ ∥A1 −A2∥) + L∥r1 − r2∥. (A.4)

Again, from the equivalence of norms, there exists a positive constant C̃ such that the proof of
Part 2) is completed with LBSG = Lmax{C̃, 1}. □

B Proposition 3.2

Proof. We start by handling the LL unconstrained case. Taking the norm of equations (1.4)
and (2.7) and from Remark 3.1, there exists a positive constant Lℓ = CCℓ such that ∥∇y(x)∥ ≤
Lℓ and ∥∇w(x)∥ ≤ Lℓ. It is well known that these two inequalities imply that y(x) and w(x)
are Lipschitz continuous in x with constant Lℓ (see, e.g., [2, Chapter 5]). Therefore, one can
write

∥y(x1)− y(x2)∥ ≤ Lℓ∥x1 − x2∥ and ∥w(x1)− w(x2)∥ ≤ Lℓ∥x1 − x2∥. (B.1)

To prove (3.24) for the LL unconstrained case, using the derivation followed for the proof of
Proposition 3.1 until (A.3)–(A.4) and considering r1 = r2 = 0, we have

∥∇f(x1)−∇f(x2)∥ ≤ L (∥a1 − a2∥+ ∥b1 − b2∥+ ∥B1 −B2∥+ ∥A1 −A2∥), (B.2)

with ai = ∇xfu(xi, y(xi)), bi = ∇yfu(xi, y(xi)), Bi = ∇2
yyfℓ(xi, y(xi)), andAi = ∇2

xyfℓ(xi, y(xi)),
i ∈ {1, 2}.

By the Lipschitz continuity of ∇xfu in (x, y) due to Assumption 3.1, we have

∥a1 − a2∥ = ∥∇xfu(x1, y(x1))−∇xfu(x2, y(x2))∥ ≤ L1∥(x1 − x2, y(x1)− y(x2))
⊤∥,

where L1 denotes the Lipschitz constant. Squaring both sides and using (B.1), we obtain

∥a1 − a2∥2 ≤ L2
1(∥x1 − x2∥2 + L2

ℓ∥x1 − x2∥2) = L2
1(1 + L2

ℓ )∥x1 − x2∥2.

Taking the square root of both sides yields ∥a1 − a2∥ ≤ La∥x1 − x2∥, where La = L1(1 + L2
ℓ )

1
2 .

Since ∇yfu is Lipschitz continuous in (x, y), after performing the same process as above, we
will obtain the following bound: ∥∇yfu(x1, y(x1))−∇yfu(x2, y(x2))∥ ≤ Lb∥x1 − x2∥. Simi-
larly, since ∇2

yyfℓ and ∇2
xyfℓ are Lipschitz continuous in (x,w), we have ∥∇2

yyfℓ(x1, y(x1)) −
∇2

yyfℓ(x2, y(x2))∥ ≤ LB∥x1 − x2∥ and
∥∥∇2

xyfℓ(x1, y(x1))−∇2
xyfℓ(x2, y(x2))

∥∥ ≤ LA∥x1 − x2∥.
Thus, substituting all of these into (B.2), we obtain

∥∇f(x1)−∇f(x2)∥ ≤ L∇f∥x1 − x2∥,

where L∇f = L (La + Lb + LA + LB). This concludes the proof for the LL unconstrained case.
The proof for the LL constrained case follows very similar steps. However, given the struc-

ture of the adjoint gradient (2.8) in the constrained case, we must first establish the Lipschitz
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continuity in x of ∇vG and ∇xG given in (2.6). At this point of the paper, this follows from
already-seen arguments, which we will briefly summarize here to avoid repetition. The Lipschitz
continuity of the Hessian terms ∇2

yyLℓ and ∇2
yxLℓ results from the Lipschitz continuity of the

Hessians defining the problem, the Lipschitz continuity of the multipliers (B.1), the Lipschitz
continuity of sums and products, and the boundedness of all terms by Assumption 3.5. The
Lipschitz continuity of the terms zI ◦∇xc

⊤
I and zI ◦∇yc

⊤
I results from the Lipschitz continuity of

the Jacobians, the Lipschitz continuity of the multipliers (B.1), the Lipschitz continuity of sums
and products, and the boundedness of all terms. The remaining elements in (2.6) are constraint
functions and their Jacobians, which are Lipschitz continuous per Assumption 3.5. □

C Theorem 4.4

Proof. For any k ∈ N, we can write

Eξallk
[∥xk+1 − x∗∥2] = Eξallk

[∥PX(xk + αk d(xk, w̃k, ξk))− x∗∥2]

≤ Eξallk
[∥xk + αk d(xk, w̃k, ξk)− x∗∥2]

= ∥xk − x∗∥2 + α2
kEξallk

[∥d(xk, w̃k, ξk)∥2]

+ 2αkEξallk
[d(xk, w̃k, ξk)]

⊤(xk − x∗).

Adding and subtracting the term 2αk(Eξallk
[d(xk, w(xk))])

⊤(xk −x∗), noting that d(xk, w(xk)) =

−∇f(xk), and applying the Cauchy-Schwarz and Jensen’s inequalities, we obtain

Eξallk
[∥xk+1 − x∗∥2] ≤ ∥xk − x∗∥2 + α2

kEξallk
[∥d(xk, w̃k, ξk)∥2]− 2αk∇f(xk)

⊤(xk − x∗)

+ 2αkEξallk
[d(xk, w̃k, ξk)− d(xk, w(xk))]

⊤(xk − x∗)

≤ ∥xk − x∗∥2 + α2
kEξallk

[∥d(xk, w̃k, ξk)∥2]− 2αk∇f(xk)
⊤(xk − x∗)

+ 2αkEξallk
[∥d(xk, w̃k, ξk)− d(xk, w(xk))∥]∥xk − x∗∥.

Then, by using Assumption 4.3 and inequalities (3.4), (3.14), and (4.7),

Eξallk
[∥xk+1 − x∗∥2] ≤ (1− 2cαk)∥xk − x∗∥2 + (Gd + 2CdΘ)α2

k.

Denoting M = Gd + 2CdΘ and taking the total expectation on both sides, one obtains

E[∥xk+1 − x∗∥2] ≤ (1− 2cαk)E[∥xk − x∗∥2] +Mα2
k.

Using αk = γ
k for some constant γ > 1

2 c , it follows by induction [43, Eq. (2.9) and (2.10)] that

E[∥xk − x∗∥2] ≤ max{2 γ2M(2cγ − 1)−1, ∥x0 − x∗∥2}
k

, (C.1)

which proves the first result.
From (3.25), one obtains (see, e.g., [2, Lemma 5.7])

f(xk) ≤ f(x∗) +∇f(x∗)
⊤(xk − x∗) +

1

2
L∇f∥xk − x∗∥2. (C.2)
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From (C.1) and (C.2), by taking the total expectation and recalling that x∗ is an interior point
of X (which implies ∇f(x∗) = 0), one can obtain the optimality gap in terms of function values,
yielding

E[f(xk)]− f(x∗) ≤ 1

2
L∇fE[∥xk − x∗∥2]

≤
(L∇f/2)max{2 γ2M(2cγ − 1)−1, ∥x0 − x∗∥2}

k
.

□

D Theorem 4.5

Proof. Assumption 4.5 implies that

∇f(xk)
⊤(xk − x∗) ≥ f(xk)− f(x∗). (D.1)

Repeating the same arguments that in the proof of Theorem 4.4 led to (C.1), but now using (D.1)
instead, we obtain

Eξallk
[∥xk+1 − x∗∥2] ≤ ∥xk − x∗∥2 + 2αk(f(x∗)− f(xk)) + (Gd + 2CdΘ)α2

k.

Letting M = Gd + 2CdΘ, we have

Eξallk

[
∥xk+1 − x∗∥2

]
≤ ∥xk − x∗∥2 + 2αk(f(x∗)− f(xk)) +Mα2

k.

Rearranging, taking total expectations, and dividing by αk, we obtain

2(E[f(xk)]− f(x∗)) ≤
E
[
∥xk − x∗∥2

]
αk

−
E
[
∥xk+1 − x∗∥2

]
αk

+Mαk.

If we replace k by s and sum over s = 0, 1, . . . , k, we obtain

2
k∑

s=0

(E[f(xs)]− f(x∗)) ≤
k∑

s=0

(
E
[
∥xs − x∗∥2

]
αs

−
E
[
∥xs+1 − x∗∥2

]
αs

)
+M

k∑
s=0

αs

=
E
[
∥x0 − x∗∥2

]
α0

+
k∑

s=1

(
1

αs
− 1

αs−1

)
E
[
∥xs − x∗∥2

]
+M

k∑
s=0

αs

=
E
[
∥xk − x∗∥2

]
αk

+M

k∑
s=0

αs,

where the last equality is obtained by observing that the term E
[
∥x0 − x∗∥2

]
/α0 cancels out

with the negative term from the first summation when s = 1. Using Assumption 4.3 and
repeating the same steps used in [36, Theorem 5.3], we can obtain the desired result. □
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