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t. We show how pattern sear
h methods 
an be adapted to theoptimization problem 
ontexts where there are ways to provide pointsthat 
an lead to an obje
tive fun
tion de
rease. The paradigm here isthat it is the user and the optimization algorithm together, and not theoptimization algorithm alone, that lead the 
al
ulation of new points.We are espe
ially 
on
erned with problems where obje
tive fun
tion eval-uations are expensive and for whi
h parallel 
omputing is available.In this short paper we des
ribe how pattern sear
h methods for un
onstrainedoptimization problems of the formmin f(x); x 2 Rn
an be applied when the user 
an and wishes to provide a routine to 
omputenew points. An example of this situation arises in mole
ular geometry opti-mization, where new points 
an be provided by the user by applying physi
allyrelevant geometri
al transformations to the 
urrent 
on�guration. These geomet-ri
al transformations 
an potentially lead to a de
rease in the obje
tive fun
tion,i.e., in the total energy of the 
luster of atoms that is being 
onsidered [1℄.Pattern sear
h methods exhibit enough 
exibility to a

ommodate the user-provided point 
al
ulation. The main idea is to use patterns that �ll the spa
esurrounding the 
urrent iterate with a reasonable distribution of pattern pointsand pattern dire
tions. In this way, a new point 
al
ulated by the user 
an beproje
ted onto the pattern in su
h a way that the proje
ted pattern point isreasonably 
lose to the point provided by the user. The obje
tive fun
tion isonly evaluated at the proje
ted pattern point and not at the user-provided point{ an important requirement to regularize the overall algorithm and guarantee
onvergen
e properties [1℄. The pattern must also be de�ned so that the linearalgebra involved in the proje
tion 
an be 
heaply 
omputed.We will provide a very brief introdu
tion to pattern sear
h methods, introdu
-ing only the notation ne
essary to des
ribe the a
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points. The reader is referred to the papers [2, 3, 5, 7℄ for motivation, theory, andother related material on pattern sear
h methods.If the iteration k of a pattern sear
h method is su

essful, the next iteratemust provide a de
rease in the obje
tive fun
tion: f(xk+1) < f(xk). Patternsear
h methods iteratively generate points in an integer latti
e (pattern), visitingat ea
h iteration k a subset of the pattern 
alled the mesh Mk. The mesh Mk
an be de�ned through a set V of m positive bases1 and a mesh size parameter�k > 0 in the following way:Mk = fxk +�kVz : z 2W � ZjVjg ;where jVj is the sum of the number of ve
tors in all positive bases. The 
hoi
ewe a
tually made in our implementation of the pattern sear
h methods for user-provided points is W = fnei : n 2 N; i = 1; : : : ; jVjg;where ei is the i-th 
olumn of the identity matrix of order jVj. Choi
es for V aredes
ribed and dis
ussed in [1℄.The me
hanism of pattern sear
h methods 
onsists of two steps at everyiteration. In the �rst step, 
alled the sear
h step, a �nite sear
h is performedon the mesh, with the goal of �nding a new iterate that de
reases the value ofthe obje
tive fun
tion at the 
urrent iterate. This step, 
alled the sear
h step,sear
hes only a �nite number of points in the mesh. The sear
h step provides the
exibility for a global sear
h, and in
uen
es the quality of the lo
al minimizer orstationary point found by the method [1, 4, 6℄. If the sear
h step is unsu

essful,a se
ond step, 
alled the poll step, is performed around the 
urrent iterate withthe goal of de
reasing the obje
tive fun
tion.The poll step follows stri
ter rules and appeals to the 
on
ept of positivebases. In this step the 
andidate for a new iterate xk+1 is 
hosen in the meshneighborhood around xkN (xk) = fxk +�kv : for all v 2 Vk(xk)g;where Vk(xk) is a positive basis 
hosen from the �nite set V of positive bases.The poll step attempts to perform a lo
al sear
h in a mesh neighborhood that,for a suÆ
ient small mesh parameter �k, is guaranteed to provide an obje
tivefun
tion redu
tion, unless the 
urrent iterate is at a stationary point. If the pollstep also fails, then the mesh parameter �k must be de
reased.Pattern sear
h methods for user-provided points 
an now be des
ribed foruse in a parallel environment where, say, Np pro
essors are available.Algorithm 1 (Pattern sear
h methods for user-provided points)0. Initialization Choose a rational number � > 1 and an integer numbermmax � 1. Choose x0 2 Rn and �0 2 R+ . Set k = 0.1 A positive basis for Rn 
an be de�ned as a set of nonzero ve
tors of Rn whosenonnegative 
ombinations span Rn , but no proper set does. It 
an be shown thatevery positive basis has between n+ 1 and 2n elements.



1. Sear
h step (in 
urrent mesh)1. For ea
h pro
essor p in f1; : : : ; Npg:(a) Obtain a point upk+1 from the user.(b) Compute xpk+1 = xk + �kVzp, where zp is the optimal solution ofthe integer programming problemminz2W kupk+1 � (xk +�kVz)k : (1)(
) Evaluate f on the mesh point xpk+1.2. If minp2f1;:::;Npg f(xpk+1) < f(xk) ;then set xk+1 = argminxpk+1 f(xpk+1) ;and go to step 3, expanding Mk (sear
h step and iteration are de
laredsu

essful).2. Poll step (in mesh neighborhood given by the positive basis)This step is rea
hed only if the sear
h step is unsu

essful.1. Obtain a point uk+1 from the user.2. Determine vk 2 V su
h thathuk+1 � xk; vkikuk+1 � xkk = maxv2V huk+1 � xk ; vikuk+1 � xkk : (2)3. Set Vk(xk) to the positive basis in V that 
ontains vk, and then setN (xk) = fxk +�kv : for all v 2 Vk(xk)g.4. List the points in N (xk) by in
reasing order of the values of the anglesbetween uk+1 � xk and the 
orresponding ve
tors in Vk(xk).5. Following the list given above, divided in groups of Np points, startevaluating in parallel the fun
tion f in N (xk).Stop if a point xk+1 2 N (xk) is found su
h that f(xk+1) < f(xk). In this
ase go to step 3, expanding Mk (poll step and iteration are de
laredsu

essful).If f(xk) � f(x) for every x in the mesh neighborhood N (xk), go to step4, shrinking Mk (poll step and iteration are de
lared unsu

essful).3. Mesh expansion (at su

essful iterations) Let �k+1 = �m+k �k (with0 � m+k � mmax). In
rease k by one, and move to step 1 for a new iteration.(The value of �m+k 
an be 
hosen a

ording to user-provided information.)4. Mesh redu
tion (at unsu

essful iterations) Let�k+1 = �m�k �k (with�mmax � m�k � �1). In
rease k by one, and move to step 1 for a newiteration. (The value of �m�k 
an be 
hosen a

ording to user-provided infor-mation.)We point out that due to our 
hoi
e of W , problems (1) and (2) are easilysolved in the order of jVjn 
oating point operations.



It is also important to note that by listing the points in N (xk) using theorder suggested in step 2.4, the poll step starts by evaluating f in the points ofN (xk) 
loser to uk+1.Although we have des
ribed a parallel algorithm, a serial version of the algo-rithm is a straightforward adaptation of the parallel version. Both versions havebeen implemented in Fortran 95. The parallel version uses the parallelizationproto
ol MPI. The 
odes and their do
umentation 
an be downloaded from theweb site:http://www.mat.u
.pt/~lvi
ente/psm/The user must provide a routine to 
ompute new points, and a routine to evaluatef at points spe
i�ed by the algorithm. The 
alling sequen
es of these two routinesare 
urrently 
oded in the following form:SUBROUTINE fun
( n, xk, f )SUBROUTINE trial_point( n, xk, n_i_userpar, i_userpar, &n_r_userpar, r_userpar, xtrial )The output parameters are f and xtrial. In the routine trial point, theuser is given some information, stored in the integer ve
tor i userpar and inthe real ve
tor r userpar, to indi
ate the amount of e�ort that 
an be put inthe 
al
ulation. For instan
e, it is natural in the sear
h step to ask the user tomake a trial point 
al
ulation greedier or less 
onservative than in the the pollstep.Referen
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