
Implicitly and Densely Discrete Black-Box
Optimization Problems∗

L. N. Vicente†

February 26, 2009

Abstract

This paper addresses derivative-free optimization problems where the variables lie
implicitly in an unknown discrete closed set. The evaluation of the objective function
follows a projection onto the discrete set, which is assumed dense (and not sparse as
in integer programming). Such a mathematical setting is a rough representation of
what is common in many real-life applications where, despite the continuous nature
of the underlying models, a number of practical issues dictate rounding of values or
projection to nearby feasible figures.

We discuss a definition of minimization for these implicitly discrete problems and
outline a direct-search algorithm framework for its solution. The main asymptotic
properties of the algorithm are analyzed and numerically illustrated.

Keywords: Derivative-free optimization, (dense) discrete optimization, direct search,
projection, rounding, location, grids.

1 The implicitly and densely discrete problem

Many optimization problems are only apparently continuous. The practical nature of
many applications involves an underlying discrete (usually unknown) structure which is
not taken explicitly in the modeling or solution phases and only revealed later when the
result determined by some optimization process is actually applied. In other application
problems, which are of interest to us in this paper, an evaluation of the objective function
is done first by ‘rounding’ the values of the variables to allowable figures or by ‘projecting’
them to nearby values or grid points where it is possible or desirable to evaluate the real
function. The underlying discrete structure is thus unknown to the optimizer and its
manifestation is detected only when a function evaluation is demanded.
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We can pose the problem under consideration as follows

min
x∈L

f(x)

s.t. x ∈ Ω,
(1)

where Ω ⊆ Rn is some feasible region and L is an unknown set in Rn that meets the
following requirements:

(L1) The set is discrete (i.e., for every x ∈ L there exists a neighborhood Nx ⊆ Rn of x
such that L ∩Nx = {x}).

(L2) The set is closed.

(L3) The distance between points in Rn and the closest points in L cannot be arbitrarily
large.

Due to (L1) and (L2), L has no any accumulation points or, less formally, points in L
are not arbitrarily close to each other. Also, because of (L1) and (L2) the intersection
of L with a compact set must necessarily be finite. Integer lattices are examples of sets
satisfying conditions (L1)–(L3). Let PL : 2Rn → 2L denote a (idempotent) projection
operator onto L.

Definition 1.1 We say that x∗ ∈ Ω∩L is an implicitly and densely discrete local minimizer
if for some σout > σin > 0, the following conditions are satisfied:

f(x∗) ≤ f(x) ∀x ∈ Rout, (2)

f(x∗) ≤ f(x) ∀x ∈ Rbetween, (3)

PL ({y ∈ Rn : ‖y − x∗‖ ≤ σin} ∩ Ω) = {x∗}, (4)

where

Rout = PL ({y ∈ Rn : ‖y − x∗‖ = σout}) ∩ Ω, (5)

Rbetween = [(Ω ∩ L) ∩ {y ∈ Rn : σin < ‖y − x∗‖ < σout}] \Rout. (6)

We depict an example of the sets Rout and Rbetween in Figure 1.
Definition 1.1 implies a natural notion of local minimization (when PL is the minimum

`2–distance projection operator), in the sense that if x∗ ∈ Ω∩L is an implicitly and densely
discrete local minimizer there is a neighborhood Nx∗ of x∗ such that f(x∗) ≤ f(x) for all
x ∈ Ω ∩ L ∩Nx∗ and Ω ∩ L ∩Nx∗ 6= {x∗}.

Note also that the existence of a σin > 0 such that condition (4) is satisfied is trivially
guaranteed given the properties of L. However, our definition splits the main properties
of local minimization into (2) and (3) and thus introduces Rbetween, which in turn depends
on σin.
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These definitions of local minimization might not be appropriate for sparsely discrete
problems (such as integer programming problems). According to our definition, for ex-
ample, all the points in L ∩ Ω = {−13,−8,−4,−1, 1, 4, 8, 13} are local minimizers for
f(x) = −|x| when PL is the minimum `2–distance projection operator. This example was
pointed out to us by Audet [2] who suggested an alternative definition which does not
break down for this example. However, in this paper we have in mind densely discrete
optimization problems for which Definition 1.1 seems appropriate. Also, as we will see in
this paper, Definition 1.1 suits the convergence purposes of a vast class of direct-search
methods.

x∗

Figure 1: Example where the filled squares correspond to points in Rout and the empty
circles to points in Rbetween. The circles have radii σin (inner) and σout (outer).

In an algorithmic context we assume that the projection operator always returns a
singleton when operating on a single point, and any ties are broken according to some
application-dependent criterion. In such situations, PL(x) = y corresponds to PL({x}) =
{y}. For simplicity, we will consider that PL is the minimum `2–distance projection oper-
ator, but this can be relaxed. In fact, we will see that all is needed is that, whenever the
distance between a point in Rn and its projection become arbitrarily large, Condition (L3)
is violated.
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2 A direct-search approach

Below we describe a general direct-search method for the solution of the implicitly and
densely discrete optimization problem (1). We make use of the extreme barrier function:

fΩ(x) =

{
f(x) if x ∈ Ω,

+∞ otherwise.

The set of directions Dk used in the algorithm is not necessarily a positive spanning set.
The discrete aspect is detected implicitly each time a function evaluation is attempted.

The function is calculated at PL(xk+αkd) and not at xk+αkd, where xk is the current point,
d a direction, and αk the mesh or step size parameter. The user returns to the optimizer
the point PL(xk +αkd) and the objective value f(PL(xk +αkd)) if PL(xk +αkd) ∈ Ω. Note
that this might be made in two separate stages (projection and evaluation) depending on
the application. If it is done in two stages, then the algorithm takes advantage of it. Note
that if the user only returns the function value, then the corresponding class of problems is
outside the scope of this paper. In such cases, we would be dealing with ‘noisy’ problems
or problems of ‘dynamic accuracy’ (this latter term is the one used in the book [4]), which
are treated differently.

Algorithm 2.1 (Direct-search algorithm)

Step 0 (initialization): Let x0 ∈ Ω ∩ L be provided by the user and select α0 > 0 and
c ∈ (0, 1).

Step 1 (polling): Select a set of directions Dk.

For all d ∈ Dk:

(A) Ask the user to provide PL(xk + αkd).

(B) If ‖PL(xk + αkd) − xk‖ ≤ c αk then stop polling, set xk+1 = xk (and, for later
presentation, set vk = d), increase αk, increment k by one unit, and return to
the beginning of Step 1.

(C) Ask the user to provide fΩ(PL(xk + αkd)) (if not yet available when computing
PL(xk + αkd) in (A) above).

(D) Otherwise (‖PL(xk + αkd)− xk‖ > c αk) then

– If fΩ(PL(xk + αkd)) < f(xk) then stop polling, set xk+1 = PL(xk + αkd)
(and, for later presentation, set dk = d), increase or retain αk, increase k
by one unit, and return to the beginning of Step 1.

– Otherwise continue the polling loop.

Step 2 (unsuccessful polling): When fΩ(PL(xk + αkd)) ≥ f(xk) and ‖PL(xk + αkd)−
xk‖ > c αk for all d ∈ Dk, set xk+1 = xk, decrease αk, increment k by one unit, and
return to the beginning of Step 1.

4



Note that the sequence of iterates {xk} generated by this algorithm necessarily lies
in Ω ∩ L.

We ask the sets of directions Dk to satisfy the following assumptions:

(D1) ‖d‖ ≥ 1 ∀d ∈ Dk, ∀k.

(D2) αkd → 0 ∀d ∈ Dk whenever αk → 0 for some subsequence.

(D3)
⋃
k∈K

Dk is dense in the unit sphere of Rn for all subsequences K for which αk → α > 0.

These conditions, in particular (D2), are compatible with those imposed on positive span-
ning sets Dk by mesh adaptive direct search (MADS) methods [3] for continuous problems.

Also, one can see that the only difference between the standard polling procedure of di-
rectional direct-search methods and the polling scheme of Algorithm 2.1 is the introduction
of the test ‖PL(xk + αkd)− xk‖ ≤ c αk. Thus, one could use this test in the polling proce-
dure of directional direct-search methods and, based on it, one could detect whether the
algorithmic mesh associated with an iteration of these methods is too fine when compared
to L.

3 Analysis of the direct-search method

Now we analyze the convergence properties of Algorithm 2.1. Essentially we will show that
part of the conditions of implicitly and densely discrete local minimization are asymptoti-
cally satisfied.

Theorem 3.1 Let {xk} be a sequence of iterates generated by Algorithm 2.1 where the sets
of polling directions satisfy Assumptions (D1)–(D3).

If L(x0) = {x ∈ Rn : f(x) ≤ f(x0)} is bounded then there exist x∗ ∈ Ω ∩ L and
subsequences Kin and Kout and positive numbers 0 < αin < αout such that

(i) αk → αout when k ∈ Kout and

fΩ(PL(x∗ + αkd)) ≥ f(x∗) ∀d ∈ Dk, ∀k ∈ Kout, (7)

where ∪k∈KoutDk is dense in the unit sphere in Rn, and

(ii) αk → αin when k ∈ Kin and

∃vk∈Dk,‖vk‖≥1 : ‖PL(x∗ + αkvk)− x∗‖ ≤ c αin ∀k ∈ Kin, (8)

with ‖vk‖ → 1 in Kin.
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Proof. First we note that, because L(x0) is bounded, the set L∩L(x0) is finite. Since
the algorithm only moves to a new point in L when a decrease is found, there must exist
a k̄ such that

xk = xk̄ = x∗ ∀k ≥ k̄.

Let us first prove that {αk} is a bounded sequence. For this purpose let us assume that
there exists a subsequence driving αk to +∞. If that is the case, there must exist another
subsequence denoted by K where αk is increased and αk → +∞ for k ∈ K. From the
algorithm we have ‖PL(x∗ + αkvk)− x∗‖ ≤ c αk for k sufficiently large in K, and it can be
easily proved for such values of k that

‖(x∗ + αkvk)− PL(x∗ + αkvk)‖ ≥ (‖vk‖ − c) αk.

Using Assumption (D1) and taking αk → +∞ for k ∈ K in both sides of this inequality
contradict Condition (L3) of the definition of L (note that it is here that one needs to
qualify the projection operator).

It can also be proved that αk is uniformly bounded away from zero. In fact, if there
was a subsequence driving αk to zero, then there would exist another subsequence, denoted
by J , for which αk is decreased (which then means that ‖PL(x∗ + αkd) − x∗‖ > c αk > 0
for k sufficiently large) and αk → 0 for k ∈ J . From Assumption (D2) we obtain αkd → 0
in J for some d ∈ Dk. Thus, we derive that

x∗ + αkd → x∗ ∈ L and PL(x∗ + αkd) 6= x∗ ∀k ∈ J sufficiently large,

which contradicts conditions (L1)–(L2) of the definition of L.
Since αk is uniformly bounded from above and away from zero, there must exist subse-

quences Kin and Kout and positive numbers 0 < αin < αout such that (i) αk → αout and αk

is decreased for all k ∈ Kout and (ii) αk → αin and αk is increased for all k ∈ Kin. Thus,

fΩ(PL(x∗ + αkd)) ≥ f(x∗) ∀d ∈ Dk, ∀k ∈ Kout,

and
‖PL(x∗ + αkvk)− x∗‖ ≤ c αk for some vk ∈ Dk, ∀k ∈ Kin.

The proof is completed by using Assumptions (D1) and (D3).

It is clear that the point x∗ identified in this theorem satisfies a condition (see (7))
which is practically the same as (2), with σout = αout.

Condition (4) is roughly approximated by (8) if the constant c is small and {vk : k ∈
Kin} is dense in the unit sphere. The absolute satisfaction of (4) would require some form
of dense sampling close to x∗.

What is clearly missing in the result of Theorem 3.1 is a condition of type (3). However,
to capture the points in Rbetween seems a rather difficult task for any reasonable algorithmic
framework, since it seems to require more than the generation of directions dense in the
unit sphere (which is what is required in this paper and in MADS [3]), i.e., something like
dense sampling in the unit ball seems to be also necessary for such a purpose.
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4 A numerical illustration

We made some experiments in MATLAB [1] to observe and possibly confirm our theoretical
findings. The implementation chosen for Algorithm 2.1 was rather simple. The set Dk

is set to the positive basis [Qk − Qk] where Qk is an orthogonal matrix computed by
first randomly generating the first column (independently of αk) and then computing the
remaining columns using a QR factorization. We report here some results obtained for the
minimization in L of a quadratic function perturbed by oscillatory noise:

min(x1,x2)∈L 10(x2
1)(1 + 0.75 cos(70x1)/12) + cos(100x1)

2/24 +

2(x2
2)(1 + 0.75 cos(70x2)/12) + cos(100x2)

2/24 + 4x1x2.

The unique minimizer of this problem is x∗ = (0, 0). The set L has been chosen as the
integer lattice {γz : z ∈ Zn}, with γ 6= 0. For these experiments we ran the algorithm for a
specified number of iterations (500 in the first case and 1000 in the second one). Introducing
an appropriate stopping criterion for the algorithm would require some practical rules to
approximate the inferior and superior limits of the sequence {αk}. In Figure 2, we plot the
behavior of the mesh or step size parameter αk. One can easily observe in both plots that
αk oscillates between an upper and a lower value as predicted by Theorem 3.1.

Figure 2: Illustration of the behavior of the mesh or step size parameter αk in Algorithm 2.1.
For the run reported on the left we chose γ = 0.1 and c = 0.95, increased αk by a
factor of 2 (in both occurrences of the algorithm), and decreased it by a factor of 0.5 in
unsuccessful polling steps. The plot on the right corresponds to a finer lattice (γ = 0.01)
and a decreasing factor of 0.75. Both runs started from x0 = (5,−10) and α0 = 1.
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5 Discussion and open issues

This paper is a first attempt to shed some light on the solution of implicitly discrete
black-box optimization problems. These problems are characterized by the existence of an
implicit and unknown discrete set (assumed relatively dense) where optimization points
are first projected before the objective function is evaluated. In this paper we suggested a
reasonable working definition of local minimization which suits the needs of direct-search
methods.

The proposed direct-search method is directional and resembles MADS [3] when ‘L →
Rn’. The denser the set L is in Rn the smaller the value of σin becomes (see Definition 1.1).
When one suspects that L is ‘sufficiently dense’ in Rn, the set of directions must also satisfy
the property that for all subsequences driving αk to zero the union of the Dk’s is dense
in Rn. It is also important to remark that the suggested polling procedure is only slightly
different from the traditional (see (B) in Step 1 of Algorithm 2.1) which makes it applicable
to most directional direct-search methods.

A number of issues are of interest and have not been fully addressed here. The following
is an attempt to enumerate some of them:

• Can we incorporate other mechanisms in the suggested direct-search framework to
look for points in Rbetween? Could we, for instance, target different circles instead of
one (the one now corresponding to σout in Definition 1.1)? We doubt, however, that
it would be possible to capture all the points in Rbetween without some form of dense
circles in the unit ball.

• Would it be possible to develop stopping criteria which can be satisfied asymptotically
without approximating the inferior and superior limits of the sequence {αk}?

• It is known that pattern search algorithms [5, 6] generate points in an integer lattice.
Would it be possible for such type of direct-search algorithms to ‘align’ their integer
lattices with the application discrete structure? Under what conditions would that
be achievable?

• We wanted the current approach to be as general as possible. We have not taken
advantage, for instance, of the size of ‖PL(xk + αkd)− (xk + αkd)‖ in the algorithm
when compared to αk.

• Is it possible to derive other definitions of local minimization for implicitly and
densely discrete problems both capable of giving a satisfactory answer for sparsely
discrete problems and of fitting the convergence needs of direct-search methods?
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black-box optimization (the querying of a cache of previously evaluated points in derivative-
free optimization): Typically, a computational savings is achieved by first searching through
the cache before evaluating a potentially expensive objective function at a trial point. If the
trial point is “sufficiently close” to the point in the cache, then the function returns the
function value of the cached point instead of evaluating the trial point at high cost.
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