
An indicator for the switch from derivative-free to

derivative-based optimization

S. Gratton1 N. Soualmi 2 L. N. Vicente3

April 24, 2017

Abstract

In some optimization problems found in applications, the derivatives of the objective
function can be computed or approximated but at an expensive cost, and it is desirable to
know when to use derivative-free methods (such as direct search, for instance) or derivative-
based methods (such as gradient or quasi-Newton methods). Derivative-free methods may
achieve a steady initial progress for some problems, but after some advance they may also
become slower or even stagnate due to the lack of derivatives. It is thus of interest to provide
a way to appropriately switch from a derivative-free method to a derivative-based one. In
this paper we develop a family of indicators for such a switch based on the decrease properties
of both classes of methods (typically used when deriving worst case complexity bounds).

Keywords: Derivative-free optimization, derivative-based optimization, indicators, direct-search
methods, gradient methods, worst case complexity, global rates.

1 Introduction and basic concepts

The calculation of functions involved in optimization problems appearing in computational sci-
ences and engineering is frequently based on numerical simulation. The smoothness of the
function and the access to whatever form of derivatives vary considerably across applications.
While there are problems of totally black-box type where only function values can be computed
in a certain (sometimes unknown) feasible region, there are other more structured problems
of continuously differentiable type where both function values and gradients can be computed,
an example of special interest to us being the acoustic full-waveform inverse problem in Earth
imaging [11]. In such problems, the calculation of the gradient may come at a cost higher than
the one for the function value, and such difference may depend on the dimension of the problem
and the accuracy required.
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Although Derivative-Free Optimization provides now a theory [1] to understand models
and families of directions used in the various classes of methods as well as their convergence
properties, a question that to our knowledge has never been addressed is when should one switch
from a derivative-free method to a derivative-based one, when the gradient can be computed
(or possibly approximated by finite differences). Such a general question can be posed in many
different ways depending on the methods under consideration, their costs per iteration, the
computational budget available, and the final accuracy desired for a solution. Other issues like
non-smoothness or local vs global optimization may also play a relevant role when analyzing
such an issue.

In this paper we try to make a first contribution to the topic by considering a continuously
differentiable setting where the gradient of the objective function f : Rn → R can be computed
(or possibly approximated by finite differences), and the minimization of the function is un-
constrained. The gradient of f will be considered Lipschitz continuous in Rn (or in a level set
corresponding to an initial iterate), with constant L∇f > 0. Our idea to develop an indicator
for the switch under consideration will be to form appropriate ratios of lower bounds for the
decreases attained in successful iterations (involving the derivative-free method and what would
be expected for the derivative-based one). These lower bounds will be the ones used when de-
riving worst case complexity bounds (WCC) or global rates for such methods, and we will try to
take advantage of the mismatches that appear in such bounds with or without using derivatives.
Our ultimate goal is to detect a switch when not enough progress is being achieved compared
to the one that could be done if derivatives were available, letting the derivative-free method
continue otherwise (meaning to do not switch).

To illustrate and test our ideas we will consider the following simple direct-search method
which imposes a sufficient decrease condition based on a quadratic forcing function. We consider
an iteration uniquely defined by a poll step which evaluates the objective function using a positive
spanning set (PSS), i.e., a set of non-zero vectors that spans Rn with non-negative coefficients.

Algorithm 1.1 Direct-search method (polling)

Initialization: Choose a PSS D, an initial point x0, and an initial step size α0 > 0. The
constants 0 < β < 1 ≤ γ are specified. Set k = 0.

1. Poll step: Order the set of poll points Pk = {xk + αkd : d ∈ D}. Start evaluating f
at the poll points following the chosen order. If a poll point xk + αkd is found such that
f(xk+αkdk) < f(xk)−α2

k/2, then set xk+1 = xk+αkdk and declare the iteration successful.
Otherwise, declare the iteration unsuccessful and set xk+1 = xk.

2. Update iterate and step size: If the iteration was successful, then maintain or increase
the step size parameter: αk+1 ∈ [αk, γαk]. Otherwise, decrease the step size parameter
αk+1 = βαk. Increment k by one and go to Step 1.

It is well known that such an algorithm is well defined (for functions with Lipschitz contin-
uous gradients) in the sense that a successful iteration is found in a finite number of step-size
reductions [7]. In fact, it is possible to prove [7] that if the iteration k is unsuccessful, then

‖∇f(xk)‖ ≤ cm(D)−1
(
L∇f

maxd∈D ‖d‖
2

+
1

2 mind∈D ‖d‖

)
αk, (1)
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where cm(D) is the cosine measure of the PSS D, defined as

cm(D) = min
06=v∈Rn

max
d∈D

v>d

‖v‖‖d‖
.

The cosine measure of a PSS is always positive. For instance, the PSS D⊕ formed by the
coordinate vectors and their negatives is such that cm(D⊕) = 1/

√
n, and so is QD⊕ where Q

is an orthogonal matrix. Given an ε ∈ (0, 1), it is known that such an algorithm takes at most
O(nε−2) iterations and O(n2ε−2) function evaluations to drive the norm of the gradient below ε
(see [10])1. The dependence of these WCC bounds on ε reduces to ε−1 if the function is convex
and to − log(ε) if the function is strongly convex (see [2]). These bounds depend quadratically
on the Lipschitz constant L∇f .

For the sake of simplicity, we take the gradient method with backtracking as our derivative-
based method.

Algorithm 1.2 Gradient method (backtracking)

Initialization: Choose initial point x0. Let c ∈ (0, 1) and b > 0 be specified. Set k = 0.

1. Backtrack: Let αk be the first scalar in b, b/2, b/4, . . . such that

f(xk − αk∇f(xk)) ≤ f(xk)− cαk‖∇f(xk)‖2. (2)

2. Update iterate: Compute xk+1 = xk − αk∇f(xk). Increment k by one and go to Step 1.

It is known that Algorithm 1.2 is well defined in the sense that it is always possible to
find αk of the form given in the algorithm such that (2) is satisfied (see, e.g., [9]). Moreover,
each iteration of Algorithm 1.2 satisfies

f(xk)− f(xk+1) ≥ C‖∇f(xk)‖2, (3)

with

C = cmax

(
1− c
L∇f

, b

)
. (4)

It is also well known (see [8]) that the WCC effort for the gradient method (to reduce the norm
of the gradient below ε) is of O(ε−2) in general, reducing to O(ε−1) and O(− log(ε)) in the
convex and strongly convex cases, respectively. Note that these bounds depend linearly on L∇f .

The rest of this paper is organized in three sections. In Section 2 we will describe our main
idea to develop a family of indicators for the switch from derivative-free to derivative-based
iterations using direct search and the gradient method as motivation. Two concrete indicators
are then proposed in Section 3 and their numerical performance (using Algorithms 1.1 and 1.2)
reported. Finally, in Section 4 we will further discuss the scope of our approach.

1The notation O(A) will mean a scalar times A, where the scalar does not depend on the iteration counter of
the method under analysis (thus depending only on the problem or on algorithmic constants).
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2 Elements for the indicators

At each iteration of a gradient-based method, one typically has

f(xk)− f(xk+1) ≥
G

L∇f
‖∇f(xk)‖2, (5)

where G > 0 is a fixed constant independent of f or of the iteration counter. This is the case
for the gradient method with line search satisfying both Wolfe conditions (sufficient decrease
condition (2) and curvature condition), or for the gradient method with backtracking line search
imposing only the sufficient decrease condition (2); (see Algorithm 1.2 and (3)–(4)).

At each successful iteration of a derivative-free method based on sufficient decrease, one
typically has

f(xk)− f(xk+1) ≥ D1 t
2
k,

where D1 > 0 is a fixed algorithmic parameter independent of f and of the iteration counter.
The step-size parameter tk represents the trust-region radius δk in derivative-free trust-region
methods or the step size αk in direct-search methods (see Algorithm 1.1). If ` is an iteration
where the step-size parameter t` is reduced (for either class of methods), one has

‖∇f(x`)‖ ≤ D2(n)L∇f t`, (6)

where D2(n) > 0 is a fixed constant independent of f and of the iteration counter (but typically
dependent on n); see (1) for the direct-search case and [3] for the trust-region one.

Let k be a given successful iteration and rk the last iteration before k where the step size
has been reduced. Let Ck be the set of indices corresponding to successful iterations between
rk and k where some approximation to the gradient is known.

The decrease produced by a gradient-based method would have been at least

f(rk)− f(xk+1) ≥
∑
j∈Ck

G

L∇f
‖∇f(xj)‖2. (7)

On the other hand, the decrease produced by a derivative-free method would have been at least

f(rk)− f(xk+1) ≥
∑
j∈Ck

D1t
2
j ≥

D1|Ck|
D2(n)2L2

∇f
‖∇f(xrk)‖2. (8)

Establishing a ratio between the decreases in (8) with those in (7), yields two quantities

D1L∇f
∑

j∈Ck
t2j

G
∑

j∈Ck
‖∇f(xj)‖2

and
D1|Ck|‖∇f(xrk)‖2

GD2(n)2L∇f
∑

j∈Ck
‖∇f(xj)‖2

.

This motivates the introduction of the following two indicators

I1k =

∑
j∈Ck

t2j∑
j∈Ck

‖gj‖2
and I2k =

|Ck|‖grk‖2∑
j∈Ck

‖gj‖2
(9)

for the switch from the derivative-free regime to the derivative-based one, where gi represents an
approximation for ∇f(xi). Such approximations can be computed based on previous evaluations
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of the objective function (or in a last resource using finite differences) as we explain later in the
paper.

These indicators should be in principle increasing in k. In the I1 case this is because the
gradient is expected to go to zero faster than the step size (see (6)). In the I2 case this is because
the gradient in the derivative case is expected to go to zero faster than in the derivative-free
one. A possible switch is therefore when such indicators become larger than a specified positive
threshold.

Note that we omitted the constant D2(n)2 in (9) but such a constant could have been kept
in the indicator I2k since it scales with n and thus provides some relevant information. Also, we
have omitted the unknown Lipschitz constant, although it should be noticed that this constant
appears differently in both indicators.

3 Two concrete indicators and their numerical performance

A number of issues have to be addressed to make such indicators of practical use.

3.1 Two concrete indicators

First, a switch based on the size of an indicator has to be made relatively to its scaling. So,
one has to compute an initial indicator of reference Iscaling (see Algorithm 3.2) that can be then
used as a scaling factor to determine the moment of the switch. Such a switch will occur when
Ik/Iscaling ≥ Cthreshold, for a certain positive threshold Cthreshold (see Algorithm 3.1).

Our first concrete indicator is solely based on I1k in (9). The rationale here is that I1k is
derived from a tighter bound in (8). The computation of the indicator and of the scaling factor
Iscaling for this pure I1 case is given in Algorithms 3.1 and 3.2 respectively. In the definition of I1k
one takes into account all successful iterations from k until the last unsuccessful one rk. Hence,
one has to take provision for the fact that one can make a long series of successful iterations,
and that such an event may occur from the initial iteration. Algorithm 3.3 (pure I1) below
takes these aspects into consideration by using a maximum prespecified number E of successful
iterations for backtracking from k.

We assume that we are using Direct Search (Algorithm 1.1) as our derivative-free method
(DF–Method) and the Gradient Method (Algorithm 1.2) as our derivative-based one (DB–
Method), but the presentation is sufficiently abstract to be independent of the specifics of these
methods as long as they conform with the presentation of Section 2. After the algorithm de-
scriptions of the indicators we discuss the calculation of the gradient approximations mentioned
there.

Algorithm 3.1 Procedure for computing the (pure) indicator I1 at a successful iteration k ≥ E.
It is assumed that the k-th iteration of the DF–Method has been performed and was successful. It
requires the constants E, Iscaling, and Cthreshold.

Set rk = index of last previous unsuccess (rk = −∞ if it does not exist).
Set Ck = {max(rk + 1, k − E), . . . , k}.
Set Ik =

∑
j∈Ck

t2j∑
j∈Ck

‖gj‖2 .

if Ik
Iscaling

≥ Cthreshold then

Switch to the DB–Method.
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else
Continue the calculation of the indicator in the DF–Method.

end if

Now we present a possible way to compute the scaling factor Iscaling.

Algorithm 3.2 Procedure for computing the scaling factor Iscaling for the (pure) indicator I1.
It is assumed that the first Escaling(≤ E) iterations of the DF–Method have been run.

Set rk = the last unsuccessful iteration (rk = −1 if all the first Escaling are successful).
Set Ck = {rk + 1, . . . , Escaling − 1}.
if Ck 6= ∅ then

Set Iscaling =

∑
j∈Ck

t2j∑
j∈Ck

‖gj‖2 .

else
Run DF–Method until a successful iteration ks is performed.

Set Iscaling =
‖t2ks‖
‖gks‖2

.

end if

In our second concrete indicator (Algorithm 3.3), we would like to use the indicator I2k in (9)
as much as possible as it relates comparable information with or without using derivatives.
However, such an indicator requires explicitly a previous unsuccessful iteration. Also here, one
has to take provision for the fact that one can make a long series of successful iterations, and
that such an event may occur from the initial iteration. Algorithm 3.3 (hybrid I1/I2) below
takes these aspects into consideration by using a prespecified number E of successful iterations
after which we resort to using I1k in (9) instead.

Algorithm 3.3 Procedure for computing the hybrid indicator I1/I2 at a successful iteration
k ≥ E. It is assumed that the k-th iteration of the DF–Method has been performed and was suc-
cessful. It requires the constants E, Iscaling, and Cthreshold.

Set rk = index of last previous unsuccess (rk = −∞ if it does not exist).
if (k > E and rk = −∞) or (k − rk > E) then

Set Ck = {k − E, . . . , k}.
Set Ik =

∑
j∈Ck

t2j∑
j∈Ck

‖gj‖2 .

else
Set Ck = {rk + 1, . . . , k}.
Set Ik =

|Ck|‖grk‖
2∑

j∈Ck
‖gj‖2 .

end if
if Ik

Iscaling
≥ Cthreshold then

Switch to the DB–Method.
else

Continue the calculation of the indicator in the DF–Method.
end if
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Algorithm 3.4 Procedure for computing the scaling factor Iscaling for the hybrid indicator
I1/I2. It is assumed that the first Escaling(≤ E) iterations of the DF–Method have been run.

if the first Escaling iterations are successful then
Set Ck = {0, . . . , Escaling − 1}.

Set Iscaling =

∑
j∈Ck

t2j∑
j∈Ck

‖gj‖2 .

else
if the Escaling-th iteration is successful then

Set rk as the index of the last unsuccessful iteration.

Set Iscaling =
|Ck|‖grk‖

2∑
j∈Ck

‖gj‖2 .

else
Run DF–Method until a successful iteration ks is performed.

Set Iscaling =
‖gks−1‖2
‖gks‖2

.

end if
end if

These procedures to calculate indicators for the switch to derivative-based optimization may
require the use of approximations to the gradient. There are different ways of estimating the
gradient when using a derivative-free method. If one applies a trust-region method, one can use
of the gradients of the models.

When using a direct-search method as we do in our paper, one can compute simplex gradients
based on the previous evaluated points. Given a sample set Y = {y0, . . . , yp}, a simplex gradient
is nothing else than the gradient g of a linear interpolation or regression model m(y; y0) =
f(y0)+g>(y−y0) centered at one of the points y0 ∈ Y (typically y0 = xk). Let the interpolating
conditions m(yi; y0) = f(yi), i = 1, . . . , p, be written as L>g = δf(Y ) where

L =
[
y1 − y0 · · · yn − y0

]>
and δf(Y ) =

 f(y1)− f(y0)
...

f(yn)− f(y0)

 .
Assume that the columns of L are linearly independent. Then the simplex gradient is computed
as g = ∇sf(y0) = L−1δf(Y ) if p = n (determined case) or as g = ∇sf(y0) = L−†δf(Y ) if p > n
(regression/overdetermined case), where L† denotes the left inverse of A. Finally, a practical way
to determine a set Y of previously evaluated points in the context of direct search is specified
in the next section.

3.2 A numerical illustration

We have run Algorithm 1.1 (Direct Search) and Algorithm 1.2 (Gradient Method) on twenty
problems from the CUTEr collection [4] of dimension n = 20. Algorithm 1.1 was applied with
β = 1/2, γ = 1, and D = D⊕. The poll step was implemented in a cyclic way, where one starts
using a direction in D stored one column after the column corresponding to the last direction
used in the previous poll step. Algorithm 1.2 was applied with c = 10−4 and b = 1. When
running Direct Search we applied Algorithms 3.3 and 3.4 to compute the indicator and trigger
the moment of the switch to the Gradient Method, with E = 20 and Escaling = 5. The threshold
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was set to Cthreshold = 2. In the hybrid I1/I2 case, we have multiplied I1k by 100 which has an
effect equivalent to dividing I2k by D2(n)2 = 20.

The sample set used to compute simplex gradients was selected as follows. First, we only
computed simplex gradients after having at least n + 1 overall evaluations. If there is a need
to compute an approximation to a gradient for indicator purposes when there are less than
overall n+ 1 evaluations, one applies finite differences; such a situation has rarely occurred but
was anyhow taken in consideration when counting number of function evaluations. At each
iteration, the overall sample set of evaluated points is ordered by increasing distance to the
current iterate. Then one selects the sample set for the simplex gradient calculation as all the
points within a distance of 5αk of the current iterate. If there are less than n points within this
distance, we fill the set using the remaining ones until there are at least n. In such a way, we
never compute underdetermined simplex gradients. If there are more than n + 1 points in the
sample set, we solve the regression system in the least squares sense. In all cases (determined
and overdetermined), the linear systems are solved by means of the QR factorization, and a
regularization is applied to the diagonal elements of R, replacing them by sign(Rii)10−8 when
|Rii| < 10−8.

The results are shown first in Figures 1 and 2 for the hybrid I1/I2 case which performed
better than the pure I1 one. In all cases the budget of function evaluations for Direct Search
was 500, except for problem penalty1 where we went until 3000. The plots of the functions
values in Figure 1 are given in a logarithmic scale (log(f − f∗) where f∗ denotes the optimal
value). Table 1 contains the relevant data corresponding to Figure 1.

Although we report numbers of function and gradient evaluations we remark that the primary
goal of our work is not to develop a switched method more efficient or robust than both the
derivative-free and the derivative-based underlying ones. Instead we tried to develop a technique
that can identify an appropriated moment for the switch with desirable properties such as (i)
not to switch when that can be foreseen as worse; (ii) switch when not enough progress is being
achieved compared to the one that could be done if derivatives were available.

One can see that a switch occurred in 15 out of the 20 problems. Among the 5 problems
where no switch occurred, in four of these (arglina, arwhead, nondia, and tquartic) direct search
did better than gradient descent — a manifestation of a feature that is desirable for the indicators
in question. The other one (integreq) is somehow the single failure of our approach in the sense
that a switch should have occurred.

In an attempt to better balance the relative costs of a gradient calculation, it is reported in
Table 2 the effort of the gradient and switched methods in the hybrid I1/I2 case for the problems
for which the curve corresponding to switched one passed the one corresponding to gradient one
(in the plots of Figure 1). The effort is measured in two ways: (i) summing the number of
function evaluations with the number of gradient evaluations multiplied by a factor of 5 (to
match the case where the gradient is computed from automatic differentiation; see [6]); (ii)
summing the number of function evaluations with the number of gradient evaluations multiplied
by a factor of n = 20 (for the case where the gradient is approximated by finite differences). In
8 out of these 10 problems, the effort of the switched method was considerable less than the one
of the gradient method.

In Table 3 we provide more information about the relative effort of these two methods in
the hybrid I1/I2 case for the remaining problems, meaning those not listed in Table 2 and for
which there was a switch. Problem dqrtic is an example where depending on the way a gradient
evaluation is weighted, it can be worth or not worth to use a switched version when compared
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Figure 1: Plots of functions values for Direct Search (solid, blue), Gradient Method (dash-dot,
red), and Direct Search switched to Gradient Method in the hybrid I1/I2 case (dash, magenta).
In the x-axis we count function evaluations.
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Figure 2: Plots of the indicator values Ik/Iscaling in the hybrid I1/I2 case when they were
calculated (points, in green or lighter for I1k and in red or darker for I2k). The solid (blue) line is
plotted for better visualization. The (black) vertical line signals the moment of the switch. Note
that in the x-axis we count iterations, not function evaluations, and that all indicator values
above 100 were plotted using this value for better visualization.
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#∇f GM #∇f SM #f GM #f SM f GM f SM

arglina 14 0 59 81 0.0000 0.0000

arglinb 25 15 456 226 4.6341 4.6341

arglinc 23 10 332 271 6.1351 6.1351

arwhead 14 0 157 39 0.0000 0.0000

bdqrtic 68 10 426 111 35.4101 35.4091

broydn3d 35 101 370 399 0.0000 0.0000

dqrtic 50 19 59 481 0.0000 0.0000

engval1 37 13 438 160 20.2787 20.2787

freuroth 87 3 409 168 2696.7893 2660.2755

integreq 8 0 66 500 0.0000 0.0001

nondia 29 0 459 37 1.9242 1.0000

nondquar 77 103 419 281 0.0092 0.0065

penalty1 96 852 1941 2148 0.0002 0.0002

penalty2 46 147 447 353 0.0090 0.0093

sinquad 69 72 424 273 0.1892 0.0660

sparsine 65 133 434 367 0.0002 1.1003

sparsqur 7 8 25 74 0.0000 0.0000

tquartic 7 0 66 83 0.6338 0.6328

vardim 23 103 474 397 0.0000 7.7142

powellsg 105 87 393 269 0.6369 0.0581

Table 1: Detailed results of Figure 1 for Gradient Method (GM) and the Switched Method (SM)
in the hybrid I1/I2 case. Columns 2–3: number of gradient evaluations. Columns 4–5: number
of function evaluations. Columns 6–7: final value of f obtained.
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+5 GM +5 SM +20 GM +20 SM f GM f SM

arglinb 581 301 956 526 4.634146 4.634146

arglinc 447 321 792 471 6.135135 6.135135

bdqrtic 766 161 1786 311 35.410112 35.409468

broydn3d 545 904 1070 2419 0.000000 0.000000

engval1 623 225 1178 420 20.278662 20.278662

freuroth 844 183 2149 228 2696.789277 2679.938911

nondquar 804 796 1959 2341 0.009174 0.009108

sinquad 769 633 1804 1713 0.189190 0.187714

sparsqur 60 114 165 234 0.000000 0.000000

powellsg 918 704 2493 2009 0.636923 0.633652

Table 2: It is reported the effort of the Gradient Method (GM) and the Switched Method (SM)
in the hybrid I1/I2 case for the problems for which the curve corresponding to the SM passes the
GM one in the plots of Figure 1. Columns 2–3: sum of the number of function evaluations with
the number of gradient evaluations multiplied by 5. Columns 4–5: sum of the number of function
evaluations with the number of gradient evaluations multiplied by n = 20. Columns 6–7: value
of f at the pass or right after it.

+5 GM +5 SM +20 GM +20 SM f GM f SM

dqrtic 309 576 1059 861 0.000000 0.000000

penalty1 2421 6408 3861 19188 0.000163 0.000231

penalty2 677 1088 1367 3293 0.008987 0.009266

sparsine 759 1032 1734 3027 0.000227 1.100321

vardim 589 912 934 2457 0.000000 7.714170

Table 3: It is given more information about the Gradient Method (GM) and the Switched
Method (SM) in the hybrid I1/I2 case for the remaining problems (those not listed in Table 2
and for which there was a switch). Columns 2–3: sum of the number of function evaluations with
the number of gradient evaluations multiplied by 5. Columns 4–5: sum of the number of function
evaluations with the number of gradient evaluations multiplied by n = 20. Columns 6–7: final
value of f obtained.

to a derivative-based one. For the remaining problems (in particular for sparsine and vardim),
it seems that the initial derivative-free phase was harmful. We note that numerical convergence
would have been obtained for these two problems with a very large budget.
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Figure 3: Plots of functions values for Direct Search (solid, blue), Gradient Method (dash-dot,
red), and Direct Search switched to Gradient Method in the pure I1 case (dash, magenta). In
the x-axis we count function evaluations.

Similar figures and tables are reported for the pure I1 case. The major difference compared
to the hybrid I1/I2 seems to be a lost of predictability of an appropriate switch. In fact, in the
pure I1 case there was no switch in two other problems (freuroth and sinquad) where it would
be appropriated to do it (see Tables 4–6).

4 Final remarks

One way to stop the run of a derivative-free method in the hope to switch to a faster, higher order
method would be to look at the behavior in function values. In fact, looking at how the function
decreases along the iterations would provide heuristic indicators to such a switch. However,
stagnation in function values could occur for a number of reasons not necessarily because of the
lack of derivatives. In this paper we tried to propose a more systematic indicator for this switch
grounded on certain theoretical principles related to known decrease properties. Our approach
is certainly also of heuristic type as we compare lower bounds on the decreases attained by the
derivative-free method to the ones that would be obtained if a derivative-based one would had
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Figure 4: Plots of the indicator values Ik/Iscaling in the pure I1 case when they were calculated
(points, in green). The solid (blue) line is plotted for better visualization. The (black) vertical
line signals the moment of the switch. Note that in the x-axis we count iterations, not function
evaluations, and that all indicator values above 100 were plotted using this value for better
visualization.

14



#∇f GM #∇f SM #f GM #f SM f GM f SM

arglina 14 0 59 81 0.0000 0.0000

arglinb 25 15 456 226 4.6341 4.6341

arglinc 23 10 332 271 6.1351 6.1351

arwhead 14 0 157 39 0.0000 0.0000

bdqrtic 68 10 426 111 35.4101 35.4091

broydn3d 35 39 370 461 0.0000 0.0000

dqrtic 50 19 59 481 0.0000 0.0000

engval1 37 13 438 160 20.2787 20.2787

freuroth 87 0 409 500 2696.7893 2706.5165

integreq 8 0 66 500 0.0000 0.0001

nondia 29 0 459 37 1.9242 1.0000

nondquar 77 118 419 382 0.0092 0.0152

penalty1 96 852 1941 2148 0.0002 0.0002

penalty2 46 129 447 335 0.0090 0.0088

sinquad 69 0 424 500 0.1892 0.2890

sparsine 65 133 434 367 0.0002 1.1003

sparsqur 7 1 25 81 0.0000 0.0000

tquartic 7 0 66 83 0.6338 0.6328

vardim 23 103 474 397 0.0000 7.7142

powellsg 105 87 393 269 0.6369 0.0581

Table 4: Detailed results of Figure 3 for the Gradient Method (GM) and the Switched Method
(SM) in the pure I1 case. Columns 2–3: number of gradient evaluations. Columns 4–5: number
of function evaluations. Columns 6–7: final value of f obtained.

+5 GM +5 SM +20 GM +20 SM f GM f SM

arglinb 581 301 956 526 4.634146 4.634146

arglinc 447 321 792 471 6.135135 6.135135

bdqrtic 766 161 1786 311 35.410112 35.409468

broydn3d 545 656 1070 1241 0.000000 0.000000

engval1 623 225 1178 420 20.278662 20.278662

freuroth 844 500 2149 500 2696.789277 2706.516502

nondquar 804 972 1959 2742 0.009174 0.015228

sinquad 769 500 1804 500 0.189190 0.288975

sparsqur 60 86 165 101 0.000000 0.000000

powellsg 918 704 2493 2009 0.636923 0.633652

Table 5: It is reported the effort of the Gradient Method (GM) and the Switched Method (SM)
in the pure I1 case for the problems for which the curve corresponding to the SM passes the GM
one in the plots of Figure 3. Columns 2–3: sum of the number of function evaluations with the
number of gradient evaluations multiplied by 5. Columns 4–5: sum of the number of function
evaluations with the number of gradient evaluations multiplied by n = 20. Columns 6–7: value
of f at the pass or right after it.
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+5 GM +5 SM +20 GM +20 SM f GM f SM

dqrtic 309 576 1059 861 0.000000 0.000000

penalty1 2421 6408 3861 19188 0.000163 0.000231

penalty2 677 980 1367 2915 0.008987 0.008928

sparsine 759 1032 1734 3027 0.000227 1.100321

vardim 589 912 934 2457 0.000000 7.714170

Table 6: It is given more information about the Gradient Method (GM) and the Switched
Method (SM) in the pure I1 case for the remaining problems (those not listed in Table 5 and for
which there was a switch). Columns 2–3: sum of the number of function evaluations with the
number of gradient evaluations multiplied by 5. Columns 4–5: sum of the number of function
evaluations with the number of gradient evaluations multiplied by n = 20. Columns 6–7: final
value of f obtained.

been used. Note also that the indicators here depend on very few parameters, essentially on
Cthreshold, E, and Ethreshold. Our experiments have shown us that the results presented here
are relatively robust with respect to changes in these parameters, especially in E and Ethreshold.
The choice of Cthreshold is understandably more critical and problem dependant but it also gives
a user a tool for adjustment.

Our approach covers a common situation where the step size decreases in successful iterations
in the usage of the derivative-free method, as long as (i) by successful here we mean that the
trial point is accepted as the new iterate and (ii) a certain condition is explicitly or implicitly
satisfied implying that the gradient at the current point is of the order of the step size. Then
such successful iterations will no longer be considered successful in the language of our proposed
approach and will be part of those where the step size is reduced.

In particular, the indicators proposed in this paper for the switch from a derivative-free
method to a derivative-based one can also be used if the former is a trust-region method. One
would not count in Ck iterations where the point and the trust-region radius do not change,
like in a model-improvement iteration or in a critical iteration of that type. On the other hand,
rk may correspond to an unsuccessful iteration, an acceptable iteration (where the ratio between
actual and predicted reductions is positive but too small), or a critical iteration of the other
type, where in all cases the trust-region radius is reduced (see the details in [3]).

As for the derivative-based method, one can use any gradient-based algorithm, of first or
second order type, for which the decrease in functions values can be estimated as a function of
the size of the gradient. The derivation of complexity bounds for derivative-based trust-region
methods (as done in [5]) is also based on a condition like (5).

References

[1] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization. MPS-
SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[2] M. Dodangeh and L. N. Vicente. Worst case complexity of direct search under convexity. Math.
Program., 155:307–332, 2016.
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