
A GLOBALLY CONVERGENT PRIMAL-DUAL INTERIOR-POINT FILTER
METHOD FOR NONLINEAR PROGRAMMING: NEW FILTER OPTIMALITY

MEASURES AND COMPUTATIONAL RESULTS

RENATA SILVA∗, MICHAEL ULBRICH†, STEFAN ULBRICH‡, AND LUı́S N. VICENTE§

Abstract. In this paper we modify the original primal-dual interior-point filter method proposed in [18] for the
solution of nonlinear programming problems. We introduce two new optimality filter entries based on the objective
function, and thus better suited for the purposes of minimization, and propose conditions for using inexact Hessians.
We show that the global convergence properties of the method remain true under such modifications.

We also introduce a new optimization solver for the solution of nonlinear programming problems, called
ipfilter, based on our primal-dual interior-point filter approach. The numerical results reported show that
ipfilter is competitive both in efficiency and robustness and can handle large instances.

Key words. interior-point methods, primal-dual, filter, global convergence, large-scale NLP

1. Introduction. Interior-point methods for nonlinear programming have received re-
cently much attention [13, 15]. A number of papers have been published studying the global
convergence properties of interior-point methods for nonlinear programming [1, 2, 4, 8, 17,
20, 23]. Various codes for large-scale nonlinear programming are based on interior-point al-
gorithms [3, 19, 20]. Filter methods, in turn, are now well understood and used for several
classes of optimization problems and within different solvers [9, 10, 11, 12]. In this paper we
continue the development of our primal-dual interior-point filter approach proposed in [18].
Our motivation is both theoretical and practical. We introduce new optimality filter entries
better suited for minimization purposes and analyze its impact on the global convergence
theory. We show how to use our approach to handle approximations to the Hessian of the
Lagrangian. We are encouraged by the numerical results obtained so far for dense and sparse
nonlinear programs of different types and scales.

The method in [18] belongs to the class of the so-called Newton primal-dual interior-
point algorithms. It incorporates a filter technique and a line search for the purposes of
globalization. It relies on a novel decomposition of the primal-dual step, obtained from the
perturbed first-order necessary conditions, into a normal component and a tangential compo-
nent. The normal component can be seen as a step towards the quasi-central path, i.e., the set
of central strictly feasible points, whereas the tangential component aims at reducing duality,
i.e., the size of the gradient of the Lagrangian, and complementarity. The line search acts on
both components. All new iterates generated by the method must be acceptable to the filter
and lie in a neighborhood of the quasi-central path, which is used frequently in infeasible
primal-dual methods for linear and quadratic programming. Each entry in the filter is a pair
of coordinates: one resulting from feasibility and centrality and associated with the normal
step; the other resulting from optimality, i.e., complementarity and duality, and related to the
tangential step. It has been proved that the method is globally convergent to first-order criti-
cal points. The method incorporates the possibility of entering a restoration phase, where the

∗CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
(renata@mat.uc.pt).

†Chair of Mathematical Optimization, Fakultät für Mathematik, Technische Universität München, Boltzmannstr.
3, D-85747 Garching b. München, Germany (mulbrich@ma.tum.de).

‡TU Darmstadt, Fachbereich Mathematik, AG10: Nonlinear Optimization and Optimal Control, Schlossgarten-
str. 7, D-64289 Darmstadt, Germany (ulbrich@mathematik.tu-darmstadt.de). This author was in part
supported by Sonderforschungsbereich 666 funded by Deutsche Forschungsgemeinschaft.

§CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
(lnv@mat.uc.pt). Support for this author was provided by FCT under grants POCI/MAT/59442/2004
and PTDC/MAT/64838/2006 and by ESA contract AS-2007-09-003.

1

goal is the computation of a point in the central neighborhood that is acceptable to the filter
and that is not too infeasible. This interior-point methodology is based on a dynamic update
of the barrier parameter.

In this paper we explore the proposed framework further, introducing new optimality
filter entries better tailored to the purposes of minimization. In fact, the optimality filter entry
in [18] mentioned above is based on first-order principles and thus might have weaknesses
in distinguishing well between minimization and maximization. The new optimality filter
entries are obtained by adding to the objective function or the Lagrangian function a constant
multiple of complementarity. These optimality filter entries are closer to the ones used in
SLP/SQP filter methods where the optimality filter entry is given by the objective function.
We show in this paper that the method retains its global convergence properties when using
the new optimality filter entries, under a uniform condition on the positive semi-definiteness
of the Hessian of the Lagrangian on the appropriate null space of the constraints.

Another aspect in [18] that we improve here is the dependence of the algorithm and con-
vergence theory on the use of exact Hessians of the Lagrangian. We study how the framework
in [18] can be adapted to the absence of second-order derivatives. The only component of the
algorithm, when using the new optimality filter entries, which becomes critical without using
exact Hessians of the Lagrangian is the need to keep the iterates in the central neighborhood.
We have thus explored this fact to our advantage and formulate practical inexact conditions, to
use when second-order derivatives are unavailable, based on the action of the inexact Hessian
along an appropriate vector.

Finally, in this paper we also report numerical results of ipfilter, the Fortran 90
implementation of our primal-dual interior-point filter approach. We tested ipfilter on
a set of constrained nonlinear programs from CUTEr [14], including large instances. The
results are compared against those obtained by ipopt, the barrier interior-point filter code
developed by Wächter and Biegler [21]. The results show that the current initial version of
ipfilter is already competitive in terms of robustness and number of primal-dual iter-
ations. The ipfilter solver is freely available for academic and research purposes and
has been selected as one of the solvers of a recent European Space Agency project which
aims to produce a general purpose robust NLP solver especially tailored for space trajectory
optimization. The ipfilter web site is located at:

http://www.mat.uc.pt/ipfilter (1.1)

The paper begins with a description of the interior-point filter framework in Section 2
where we also introduce the new optimality filter entries and address the use of second-order
derivatives. We prove in Section 2, under appropriate assumptions, that the primal-dual step
is a descent direction for these new filter entries for points in the central neighborhood which
are not too infeasible. We also prove in this section that the adjustments in the definition of
the central neighborhood required to handle approximations to second-order derivatives still
allow large enough step lengths. The (modified) method is then described in detail in Sec-
tion 3. The analysis of global convergence for the primal-dual interior-point method, modified
to handle the new optimality filter entries and the relaxation of the Hessian requirement, is
given in Section 4. The last two sections of the paper concern the development and testing of
the ipfilter solver.

2. Interior-point framework. For the purpose of describing our algorithm and deriving
the corresponding analysis of global convergence, we write a general nonlinear programming
problem in the form

min f(x) s.t. h(x) = 0, x ≥ 0, (2.1)
2

http://www.mat.uc.pt/ipfilter

where f : Rn −→ R and h : Rn −→ Rm are twice continuously differentiable functions on
an open set Ω ⊂ Rn. The implementation of our algorithm in the ipfilter code converts
first any nonlinear programming problem where the feasible region involves inequalities not
of the simple bound type in a problem with equalities and simple bounds (of the form l ≤
x ≤ u) by means of slack variables. For simplicity, in the presentation of the algorithm and
of the analysis of global convergence we deal only with simple bounds of the form x ≥ 0.

2.1. Step computation. Primal-dual interior-point methods are derived by applying
Newton’s method to an appropriate perturbation of the first-order Karush-Kuhn-Tucker or
KKT conditions (which under appropriate constraint qualifications are known to be neces-
sary for local minimizers). Let us write the KKT conditions of problem (2.1) in the form

∇x`(x, y, z) = 0, (2.2)
h(x) = 0, (2.3)
Xz = 0, (2.4)

x ≥ 0, z ≥ 0, (2.5)

where X = diag(x), y ∈ Rm and z ∈ Rn are the Lagrange multipliers, and ` denotes the
Lagrangian function

`(x, y, z) = f(x) + h(x)T y − xT z.

The above mentioned perturbation is made in the complementarity conditions (block
(2.4) of the KKT system (2.2)-(2.4)):

Fσµ(x, y, z) def=

 ∇x`(x, y, z)
h(x)

Xz − σµe

 = 0,

where, as in [18], σ ∈ (0, 1) plays the role of a centering parameter and µ is a measure of
complementarity

µ =
xT z

n
. (2.6)

We also use the notation

w = (x, y, z) and ∆w = (∆x,∆y,∆z).

In this paper the primal-dual step ∆w is computed by solving an approximated linearized
perturbed KKT system, of the form H ∇h(x) −I

∇h(x)T 0 0
Z 0 X

 ∆x
∆y
∆z

 = −

 ∇x`(x, y, z)
h(x)

Xz − σµe

 ,

where H is an approximation to ∇2
xx`(x, y, z) which will be required to satisfy certain con-

ditions. We denote the matrix of this system by KKT(w). When H = ∇2
xx`(w), we have

that KKT(w) = F ′σµ(w). As discussed in [18], the choice of complementarity measure µ
according to (2.6) ensures that the primal-dual step ∆w is a descent direction for xT z/n,
allowing a dynamic reduction of µ (see also [8]).

The approach introduced in [18] to adapt the methodology of a filter to the interior-point
context specified two quantities for the filter entries, the first component corresponding to

3

quasi-centrality (feasibility and centrality) and the second corresponding to optimality (com-
plementarity and criticality). This choice of filter components was then associated with a
decomposition of the trial step into a normal step and a tangential step that yielded a decrease
on the respective filter components. In fact, the perturbed KKT-conditions can be rewritten
as

Fσµ(x, y, z) =

 0
h(x)

Xz − µe

 +

 ∇x`(x, y, z)
0

(1− σ)µe

 = 0. (2.7)

This splitting motivated the step decomposition ∆w = sn + st, where the normal step sn =
(∆xn,∆yn,∆zn) is the solution of

KKT(w)sn = −

 0
h(x)

Xz − µe

 , (2.8)

and the tangential step st = (∆xt,∆yt,∆zt) is given by

KKT(w)st = −

 ∇x`(w)
0

(1− σ)µe

 . (2.9)

2.2. New filter entries. The first term in the middle expression of (2.7) measures the
proximity to the quasi-central path [8] and led to the choice of the following filter component

θ(w) = ‖h(x)‖+ ‖Xz − (xT z)/ne‖.

The second term in the middle expression of (2.7) measures complementarity and criticality.
Thus, we chose in [18], for the second filter component, the optimality measure

xT z/n+ ‖∇x`(w)‖2. (2.10)

The choice (2.10) arose naturally given the decomposition of the step into its normal
and tangential components. However, since it is based on first-order principles, it might
not distinguish sufficiently well between local minimization and local maximization. One
alternative we analyze in this paper is given by

θg(w) = f(x) + h(x)T y + cµ = `(x, y, z) + (c+ n)µ, (2.11)

where c > 0 is a given constant to be specified later. Another alternative is simply

θg(w) = f(x) + cµ. (2.12)

These alternatives are closer to the original choice of θg(w) = f(x) used in SLP/SQP filter
methods. In fact, note that when µ is small in (2.12) (or when µ and ‖h(x)‖ are small in
(2.11) and the size of y is moderate), then θg(w) ' f(x).

2.3. Step length. The flexibility of the step splitting was used in [18] to introduce dif-
ferent step sizes for sn and st in the trial step computation. Let ∆ be the positive scalar that
controls the length of the step taken along ∆w, forcing the damped components αn(∆)sn

and αt(∆)st, to satisfy

‖αn(∆)sn‖ ≤ ∆, ‖αt(∆)st‖ ≤ ∆.
4

Having these bounds in mind, and requiring explicitly αt(∆) ≤ αn(∆), the step sizes taken
along the normal and tangential directions respectively are defined as

αn(∆) = min
{

1,
∆
‖sn‖

}
, (2.13)

αt(∆) = min
{
αn(∆),

∆
‖st‖

}
= min

{
1,

∆
‖sn‖

,
∆
‖st‖

}
. (2.14)

Here, we use for ∆ > 0 the natural definition αn(∆) = 1 for ‖sn‖ = 0, by using the
convention min{1,∞} = 1. We also say that αt(∆) = αn(∆) if ‖st‖ = 0, although
our algorithm cannot generate tangential steps for which ‖st‖ = 0 since the right-hand-side
in (2.9) will never be zero if the iterates x and z are kept positive throughout. The requirement
αt(∆) ≤ αn(∆) is mainly necessary to enforce the iterates to stay in the neighborhood
N (γ,M, p) defined in (2.18) below, see Lemma 2.7.

Let also

w(∆) = (x(∆), y(∆), z(∆)) = w + αn(∆)sn + αt(∆)st, (2.15)

s(∆) =
(
sx(∆), sy(∆), sz(∆)

)
= w(∆)− w = αn(∆)sn + αt(∆)st. (2.16)

Thus, ‖s(∆)‖ ≤ 2∆ (and one can see that ∆ plays a role comparable to a trust-region radius).
The scalars αn(∆) and αt(∆) will be such that positivity and some measure of centrality

of the new iterate w(∆) are maintained. However, both αn(∆) and αt(∆) depend on ∆, that
in turn will be adjusted, not only to meet the purpose of positivity and centrality, but also to
enforce global convergence.

We introduce the notation

θh(w) = ‖h(x)‖, θc(w) =
∥∥∥∥Xz − xT z

n
e

∥∥∥∥ , θ`(w) = ‖∇x`(w)‖,

which allows us to write the first filter component as

θ(w) = θc(w) + θh(w),

Note that a point w satisfying θ(w) = θ`(w) = 0, µ = 0, and (x, z) ≥ 0, is a KKT point.
With the purpose of achieving a reduction on the function θg , we introduce, at a given

point w, the linear model

m(w(∆)) = θg(w) +∇θg(w)T (w(∆)− w).

To simplify the notation we also define

µ(∆) =
x(∆)T z(∆)

n
.

2.4. Central neighborhood. One possibility to prevent (x(∆), z(∆)) from approach-
ing the boundary of the positive orthant too rapidly is to keep the iterates in some form of
central neighborhood. In [18], we have used the neighborhood

N (γ,M) =
{
w : (x, z) > 0, Xz ≥ γ

xT z

n
, θh(w) + θ`(w) ≤M

xT z

n

}
, (2.17)

with fixed γ ∈ (0, 1) and M > 0 (see also the references [8, 22]). To keep the iterates in this
neighborhood we need the primal-dual step to yield some form of sufficient decrease on θ`.
In particular, we were able to prove in [18] for steps using exact second-order derivatives that

θ`(w(∆)) ≤ (1− αt(∆))θ`(w) +M`∆2,

5

for some constant M` depending on the Lipschitz constants of the second-order derivatives
of the functions defining the problem.

In this paper we will consider a more general scenario which will allow us to work with
different types of approximations H to the Hessian of the Lagrangian. For this purpose, we
consider a family of neighborhoods parameterized by p ∈ [1, 2]:

N (γ,M, p) =
{
w : (x, z) > 0, Xz ≥ γ

xT z

n
, θh(w) + θ`(w)p ≤M

xT z

n

}
. (2.18)

When p = 1 we recover (2.17), i.e., we have that N (γ,M, 1) = N (γ,M).
We then ask H to satisfy a sufficient decrease condition on θp

` of the following type

θ`(w(∆))p ≤ (1− pαt(∆))θ`(w)p +M` max{∆q,∆2}, (2.19)

where q ∈ (1, 2]. When p = 1 and q = 2, we recover the case treated in [18].
Similarly to what has been showed in [18] for the neighborhood (2.17), we will see in

the next subsection that w ∈ N (γ,M, p) implies w(∆) ∈ N (γ,M, p) whenever ∆ > 0 is
sufficiently small.

2.5. Use of second-order derivatives. It was proved in [18, Lemma 1] that (2.19) is true
for all ∆ > 0 when p = 1, q = 2, and H = ∇2

xx`(w). The constant M` in (2.19) depends
on the Lipschitz constant of the Hessian of the Lagrangian. It is easy to see that (2.19) is also
true, when p = 1, for all values of ∆ > 0 such that

‖H −∇2
xx`(w)‖ ≤ N∆q−1, (2.20)

where N is any fixed positive constant and q ∈ (1, 2]. In this case, M` also depends on N .
Moreover, (2.19) is also true, when p = 2, for all values of ∆ > 0 such that

‖[H −∇2
xx`(w)]∇x`(w)‖ ≤ N‖∇x`(w)‖∆q−1, (2.21)

where N is any fixed positive constant and q ∈ (1, 2]. More generally, we have the following
result.

LEMMA 2.1. Let p, q ∈ [1, 2] and let H satisfy (2.21). Then the following results hold.
i) There exists a constant M` > 0, that only depends on N , on bounds for θ` and
‖∇2

xw`‖, and on a Lipschitz constant for ∇2
xw`, such that

θp
` (w(∆)) ≤ (1− pαt(∆))θp

` (w) +M` max{∆p,∆q,∆2}. (2.22)

ii) If in addition θ`(w) ≥ ε > 0 then there exists a constantM ′
`,p > 0 that only depends

on p and ε, on N , on bounds for θ` and ‖∇2
xw`‖, and on a Lipschitz constant for

∇2
xw`, such that

θp
` (w(∆)) ≤ (1− pαt(∆))θp

` (w) +M ′
`,p max{∆q,∆2}. (2.23)

For the proof we need the following auxiliary result.
LEMMA 2.2. Let p ∈ [1, 2] and g(x) = ‖x‖p. Then g is infinitely differentiable on

Rn \ {0} with

∇g(x) = p‖x‖p−2x, ∇2g(x) = p‖x‖p−2I + p(p− 2)‖x‖p−4xxT . (2.24)

If p > 1 then g is also continuously differentiable at x = 0 with ∇g(0) = 0, and if p = 2, g
is infinitely differentiable at x = 0 with ∇2g(0) = 2I .

6

Now let x, y be given (x, y 6= 0 if p = 1). Then

‖∇g(y)−∇g(x)‖ ≤ 23−pp‖y − x‖p−1. (2.25)

Furthermore, if ρ def= min0≤t≤1 ‖(1− t)x+ ty‖ > 0, there also holds

‖∇g(y)−∇g(x)‖ ≤ pρp−2‖y − x‖. (2.26)

The proof of this auxiliary lemma is given in the appendix.
Proof. (of Lemma 2.1) Let B` and B`′ be bounds for θ` and ‖∇2

xw`‖, respectively. Then
B`′ is also a Lipschitz constant for ∇x`. Denote by C`′ a Lipschitz constant for ∇2

xw`.
We prove the result first for p > 1. Limit transition p ↓ 1 yields then the case p = 1. We

will apply Lemma 2.2 with g(x) = ‖x‖p.
We first prove the estimate

∇g(∇x`(w))T∇2
xw`(w)s(∆) ≤ −pαt(∆)θp

` (w) +R1(∆)

with R1(∆) = 2pNθp−1
` (w)∆q ≤ 2pNBp−1

` ∆q.
(2.27)

Consider first the case ∇x`(w) = 0. Then (2.27) holds true, since the left-hand side is zero
and the right-hand side reduces to R1(∆), which is zero, too.

In the case ∇x`(w) 6= 0 there holds

∇g(∇x`(w))T∇2
xw`(w)s(∆) = p‖∇x`(w)‖p−2∇x`(w)T∇2

xw`(w)s(∆)

≤ p‖∇x`(w)‖p−2∇x`(w)T (−αt(∆)∇x`(w)) + pN‖∇x`(w)‖p−1∆q−1‖s(∆)‖.

From this (2.27) follows immediately.
Next, we use (2.27) to derive the estimate

θp
` (w(∆)) = θp

` (w) +
∫ 1

0

∇g(∇x`(w + ts(∆)))T∇2
xw`(w + ts(∆))s(∆) dt

= θp
` (w) +∇g(∇x`(w))T∇2

xw`(w)s(∆) +R2(∆)

≤ (1− pαt(∆))θp
` (w) +R1(∆) +R2(∆),

where

|R2(∆)| ≤
∫ 1

0

|[∇g(∇x`(w + ts(∆)))T∇2
xw`(w + ts(∆))

−∇g(∇x`(w))T∇2
xw`(w)]s(∆)| dt

≤
∫ 1

0

|[∇g(∇x`(w + ts(∆)))−∇g(∇x`(w))]T∇2
xw`(w + ts(∆))s(∆)| dt

+
∫ 1

0

|∇g(∇x`(w)))T (∇2
xw`(w + ts(∆))−∇2

xw`(w))s(∆)| dt

def= R3(∆) +R4(∆).

Now with (2.25) and (2.24)

R3(∆) ≤ 1
p
B`′23−ppBp−1

`′ ‖s(∆)‖p−1‖s(∆)‖ ≤ 8Bp
`′∆

p,

R4(∆) ≤ 1
2
p‖∇x`(w)‖p−1C`′‖s(∆)‖2 ≤ 2pBp−1

` C`′∆2.

7

This shows the first assertion.
2. To prove the second assertion we estimate, for all t ∈ [0, 1],

‖∇x`(w + ts(∆))−∇x`(w)‖ ≤
∫ t

0

‖∇2
xw`(w + τs(∆))s(∆)‖ dτ ≤ 2tB`′∆.

Hence, if we choose ∆ ≤ ∆`
def= ε/(4B`′), we have

‖∇x`(w + ts(∆))−∇x`(w)‖ ≤ ε/2 ∀ t ∈ [0, 1].

Therefore, for all τ, t ∈ [0, 1],

‖(1− τ)∇x`(w) + τ∇x`(w + ts(∆))‖
≥ ‖∇x`(w)‖ − τ‖∇x`(w + ts(∆))−∇x`(w)‖ ≥ ε− τε/2 ≥ ε/2.

By using (2.26), we then obtain, for all ∆ ≤ ∆`,

R3(∆) ≤ 1
2
B`′p

(ε
2

)p−2

B`′‖s(∆)‖2 ≤ 2B2
`′p

(ε
2

)p−2

∆2.

This concludes the proof of the second assertion.
Let us now discuss the context of condition (2.21). The use of exact Hessians H =

∇2
xx`(w) or of Hessian approximations H such that (2.20) holds are certainly two ways to

satisfy (2.21). However, this condition can be imposed without requiring the Hessian of the
Lagrangian or an entire approximation thereof. In fact, we can first calculate the matrix-vector
product

r(w) = ∇2
xx`(w)∇x`(w)

using finite difference approximations with an error of the order of ∆q−1:

‖r̃(w)− r(w)‖ = O(∆q−1).

Then, we require H to satisfy

Hr̃(w) = ∇x`(w), (2.28)

and there are several ways to achieve this last goal. For instance, one can compute H from
a quasi-Newton update where this condition is additionally imposed. The numerical experi-
ments reported in this paper were performed on the CUTEr collection test where second-order
derivatives are available. A numerical study on the imposition of (2.21) without second-order
derivatives is out of the scope of this paper. Condition (2.21) seems to be the strongest relax-
ation of our algorithmic framework to the case where only first-order derivatives are available
for which one can prove global convergence to first-order stationary points.

2.6. Step estimates. We start by recalling the result in [18, Lemma 13] which estimates
the variation on the complementarity measure µ along the primal-dual step.

LEMMA 2.3. For all ∆ > 0 it holds

X(∆)z(∆) ≤
(
γ + (1− γ)αn(∆)− αt(∆)(1− σ)

)
µe+ 4∆2e,

X(∆)z(∆) ≥
(
γ + (1− γ)αn(∆)− αt(∆)(1− σ)

)
µe− 4∆2e,

µ(∆) ≤
(
1− αt(∆)(1− σ)

)
µ+ 4∆2,

µ(∆) ≥
(
1− αt(∆)(1− σ)

)
µ− 4∆2. (2.29)

8

The following lemma estimates the variation in θh and θc along the primal-dual step —
the proofs are exactly as the corresponding ones in [18, Lemma 1].

LEMMA 2.4. There exist positive constants Mh (depending on the Lipschitz constant of
∇h) and Mc such that, for all ∆ > 0,

θh(w(∆)) ≤ (1− αn(∆))θh(w) +Mh∆2, (2.30)

θc(w(∆)) ≤ (1− αn(∆))θc(w) +Mc∆2. (2.31)

The next lemma is crucial in the analysis of global convergence of our primal-dual
interior-point filter method when using the new optimality filter entries (2.11) and (2.12)
since it analysis the behavior of these quantities along the primal-dual step. It gives an upper
bound for these two filter entries θg at the new point w(∆), in terms of ∆ and of the cor-
responding values at the previous point w. It also provides a lower bound for the decrease
produced on the linear model m by the step w(∆)− w.

LEMMA 2.5. Let KKT(w) be invertible and assume that Xz ≥ γµe. Let also H +
1
2X

−1Z be positive semidefinite on the null space of ∇h(x)T . Then, for ∆ > 0, it holds

θg(w(∆))− θg(w) ≤ −Mµα
t(∆)µ+Mθθ(w) +Mg∆2, (2.32)

for some positive constants Mµ, Mθ, and Mg and for all

c ≥ 3n2

1− σ

(
max

{
1,

1− σ

γ

})2

. (2.33)

For any ∆ > 0, we also have

m(w)−m(w(∆)) ≥Mµα
t(∆)µ−Mθθ(w). (2.34)

The constant Mθ depends on upper bounds for ‖KKT(w)−1‖ and ‖H‖.
Proof. We prove the result for the measure θg(w) given by (2.11). The proof for (2.12)

is essentially the same and differs only on the contribution of the terms to Mθθ(w).
To prove (2.32) we start by applying a Taylor expansion

θg(w)− θg(w(∆)) = −∇θg(w)T (w(∆)− w)−O(∆2). (2.35)

Using the first block of equations of the system (2.9) and summing and subtracting an appro-
priate term at the end, we have

−∇θg(w)T (w(∆)− w)

= −sx(∆)T∇x`(w)− sy(∆)T∇y`(w)− sz(∆)T∇z`(w)

− c+ n

n
(sx(∆)T z + sz(∆)Tx)

= sx(∆)TH∆xt + sx(∆)T∇h(x)∆yt − sx(∆)T ∆zt

− sy(∆)Th(x) + sz(∆)Tx− c+ n

n
(sx(∆)T z + sz(∆)Tx)

= sx(∆)TH∆xt + sx(∆)T∇h(x)∆yt − sx(∆)T ∆zt

− sx(∆)T z − c

n
sx(∆)T z − sy(∆)Th(x)− c

n
sz(∆)Tx

+
1
2
αt(∆)(∆xt)T (X−1Z)∆xt − 1

2
αt(∆)(∆xt)T (X−1Z)∆xt. (2.36)

9

We can decompose the term involving the Hessian of the Lagrangian in (2.36)
using (2.16) as follows

sx(∆)TH∆xt = αn(∆)(∆xn)TH∆xt + αt(∆)(∆xt)TH∆xt.

From the definition of the normal component of the step, we have

αn(∆)(∆xn)TH∆xt ≥ −‖∆xt‖ ‖H‖ ‖∆xn‖ ≥ −C1θ(w), (2.37)

where C1 > 0 is an upper bound for ‖KKT(w)−1‖‖H‖‖∆xt‖. Thus, from the assumption
of the lemma,

sx(∆)TH∆xt +
αt(∆)

2
(∆xt)T (X−1Z)∆xt ≥ −C1θ(w). (2.38)

Using the second block equations in (2.8) and (2.9) we have, for the second and sixth term of
the last expression in (2.36) that

sx(∆)T∇h(x)∆yt = −αn(∆)h(x)T ∆yt ≥ −C2‖h(x)‖ ≥ −C2θ(w), (2.39)
−sy(∆)Th(x) ≥ −C3‖h(x)‖ ≥ −C3θ(w), (2.40)

with C2 and C3 positive constants representing upper bounds for the norms of ∆yt and
sy(∆), respectively.

By the third block of equations in (2.8) and (2.9) we have

− c

n
sx(∆)T z − c

n
sz(∆)Tx =

= − c

n
αn(∆)(∆xn)T z − c

n
αt(∆)(∆xt)T z

− c

n
αn(∆)(∆zn)Tx− c

n
αt(∆)(∆zt)Tx

= − c

n
αn(∆)

(
(∆xn)T z + (∆zn)Tx

)
− c

n
αt(∆)

(
(∆xt)T z + (∆zt)Tx

)
= − c

n
αn(∆)

(
(∆xn)T z + (∆zn)Tx

)
− c

n
αt(∆)(−n(1− σ)µ)

≥ −C4θ(w) + [c (1− σ)]αt(∆)µ, (2.41)

where C4 > 0 depends on c and on upper bounds for the norms of KKT(w)−1, x, and z.
10

Using again the third block of equations in (2.9), we obtain

− sx(∆)T (∆zt + z)− 1
2
αt(∆)(∆xt)T (X−1Z)∆xt =

= −(αn(∆)∆xn + αt(∆)∆xt)T (∆zt + z)− 1
2
αt(∆)(∆xt)T (X−1Z)∆xt

= −αn(∆)(∆xn)T (∆zt + z)− αt(∆)(∆xt)T (∆zt + z)

− 1
2
αt(∆)(∆xt)T (X−1Z)∆xt

≥ −C5θ(w)− αt(∆)(∆xt)T (−X−1Z∆xt − (1− σ)X−1µe+ z)

− 1
2
αt(∆)(∆xt)T (X−1Z)∆xt

= −C5θ(w) +
1
2
αt(∆)(∆xt)TX−1Z∆xt − αt(∆)(∆xt)T (z − (1− σ)X−1µe)

= −C5θ(w) +
1
2
αt(∆)(Z∆xt)T (X−1Z−1)(Z∆xt)

− αt(∆)(Z∆xt)T (e−X−1Z−1(1− σ)µe)

≥ −C5θ(w) +
1
2
αt(∆)

1
‖XZ‖

‖Z∆xt‖2

− αt(∆)‖Z∆xt‖‖e−X−1Z−1(1− σ)µe‖

≥ −C5θ(w) + αt(∆)
1

2nµ
‖Z∆xt‖2 − αt(∆)‖Z∆xt‖‖e−X−1Z−1(1− σ)µe‖

= −C5θ(w) +
1
µ
αt(∆)‖Z∆xt‖

(
1
2n
‖Z∆xt‖ − µ‖e−X−1Z−1(1− σ)µe‖

)
,

(2.42)

with C5 > 0 an upper bound for ‖KKT(w)−1‖‖z + ∆zt‖.
Now, we consider two cases.
Case 1:

1
2n
‖Z∆xt‖ ≥ µ‖e−X−1Z−1(1− σ)µe‖.

Then, from (2.42), we have

−sx(∆)T (∆zt + z)− 1
2
αt(∆)(∆xt)T (X−1Z)∆xt ≥ −C5θ(w). (2.43)

Case 2:

1
2n
‖Z∆xt‖ < µ‖e−X−1Z−1(1− σ)µe‖. (2.44)

Then, from Xz ≥ γµe, we get

1
xizi

≤ 1
γµ
, i = 1, . . . , n,

11

and, using (2.44),

− αt(∆)‖Z∆xt‖‖e−X−1Z−1(1− σ)µe‖
≥ −αt(∆)2nµ‖e−X−1Z−1(1− σ)µe‖2

≥ −αt(∆)2nµ
(√

nmax
{

1,
1− σ

γ

})2

= −αt(∆)2n2µ

(
max

{
1,

1− σ

γ

})2

.

Thus, from (2.42),

−sx(∆)T (∆zt + z)− 1
2
αt(∆)(∆xt)T (X−1Z)∆xt (2.45)

≥ −C5θ(w)− αt(∆)‖Z∆xt‖‖e−X−1Z−1(1− σ)µe‖

≥ −C5θ(w)− 2n2

(
max

{
1,

1− σ

γ

})2

αt(∆)µ. (2.46)

Now, from (2.33), (2.35), (2.36), (2.37), (2.38), (2.39), (2.40), (2.41), (2.43), and (2.46),
and by defining Mg > 0 (depending on a bound for the second derivatives of θg(w)) and
Mθ = C1 + C2 + C3 + C4 + C5 > 0, we obtain

θg(w)− θg(w(∆)) ≥Mµα
t(∆)µ−Mg∆2 −Mθθ(w),

where

Mµ = n2

(
max

{
1,

1− σ

γ

})2

.

We have thus proved (2.32).
We can now easily show (2.34). In fact, from m(w(∆)) = m(w) + θg(w)T s(∆), we

have that

m(w)−m(w(∆)) ≥Mµα
t(∆)µ−Mθθ(w).

We show next that for any ε > 0 and all p ∈ [1, 2], q ∈ (1, 2] there exists a ∆min(ε) > 0
such that for any pointw ∈ N (γ,M, p) with θ`(w)+µ ≥ εwe have alsow(∆) ∈ N (γ,M, p)
for all 0 < ∆ ≤ ∆min(ε).

We need the following auxiliary result, which will be used several times in the conver-
gence theory.

LEMMA 2.6. If w ∈ N (γ,M, p) and θ`(w) + µ ≥ ε for some ε > 0 then

µ ≥ min
{
ε

2
,
(ε/2)p

M

}
def= a(ε).

Proof. Since θ`(w)+µ ≥ ε, we have either µ ≥ ε/2 or θ`(w) ≥ ε/2. In the second case,
using the fact that w ∈ N (γ,M, p), we obtain, from θh(w) + θ`(w)p ≤Mµ, that

µ ≥ θ`(w)p

M
≥ (ε/2)p

M
.

12

So, combining both cases, we have

µ ≥ min
{
ε

2
,
(ε/2)p

M

}
.

LEMMA 2.7. Let γ ∈ (0, 1), M > 0, p, q ∈ (1, 2] and let (2.21) hold. Moreover, assume
that w ∈ N (γ,M, p), KKT(w) is invertible, and θ`(w)+µ ≥ ε. Then there exists a constant
∆min(ε) dependent on an upper bound on ‖KKT(w)−1‖ such that, if 0 < ∆ ≤ ∆min(ε),
then w(∆) ∈ N (γ,M, p).

REMARK 2.1.
1. If the exact Hessian H = ∇2

xx`(w) is used then Lemma 2.7 holds with some
∆min > 0 not dependent on ε when p = 1 (see [18]). This behavior indicates
that the neighborhood does not prevent fast local convergence.

2. By using Lemma 2.1.ii) it is possible to extend Lemma 2.7 to the case p = 1
if the condition θh(w) + θ`(w)p ≤ M xT z

n in the definition of the neighborhood
N (γ,M, p) is replaced by θh(w) ≤M xT z

n , θ`(w)p ≤M xT z
n . This modification in

the definition of the central neighborhood would still retain the main global conver-
gence properties.

Proof. By Lemma 2.6 we have

µ ≥ min
{
ε

2
,
(ε/2)p

M

}
def= a(ε).

The result will be proved for

∆min(ε) = min

{
1,

√
σ(1− γ)a(ε)

4(1 + γ)
,

σ(1− γ)
4(1 + γ)C(M + n)

,

(
σMa(ε)

Mh +M` + 4M

) 1
min{p,q}

,

(
σMb(ε)

Mh +M` + 4M

) 1
min{p,q}−1

}
,

(2.47)

where C is an upper bound for ‖KKT(w)−1‖ and

b(ε) def=
1

C(max{M,M
1
p a(ε)

1
p−1}+ n)

.

1. We first show that X(∆)z(∆) ≥ γµ(∆)e holds for all 0 < ∆ ≤ ∆min(ε) with
∆min(ε) given in (2.47).

Following exactly the same steps as in the first part of the proof of [18, Lemma 2], we
can claim that X(∆)z(∆) ≥ γµ(∆)e holds provided

∆ ≤ min

{√
σ(1− γ)µ
4(1 + γ)

,
σ(1− γ)

4(1 + γ)C(M + n)

}
. (2.48)

The bound (2.48) holds since µ ≥ a(ε) and ∆ ≤ ∆min(ε). This part of the proof is exactly
the same as in [18, Lemma 2], since it involves blocks of the primal-dual system unaffected
by the possibility of having H 6= ∇2

xx`(w).
2. We prove now that also the condition

θh(w(∆)) + θ`(w(∆))p ≤Mµ(∆) for all 0 < ∆ ≤ ∆min(ε) (2.49)
13

holds with ∆min(ε) defined in (2.47).
We first note that ‖sn‖ ≤ C(M + n)µ as in [18], but the upper bound on the norm of st

is now — due to the changes in the definition of the central neighborhood — of the form

‖st‖ ≤ C((Mµ)
1
p + (1− σ)n

1
2µ) ≤ C(Mµ)

1
p + nµ.

We obtain

δ
def= max{‖sn‖, ‖st‖} ≤ C(max{Mµ, (Mµ)

1
p }+ nµ). (2.50)

From (2.22), (2.30), and αt(∆) ≤ αn(∆), we know that

θ`(w(∆))p ≤ (1− αt(∆))θ`(w)p +M` max{∆p,∆q,∆2},
θh(w(∆)) ≤ (1− αt(∆))θh(w) +Mh∆2.

Using θh(w) + θ`(w)p ≤Mµ we get

θh(w(∆)) + θ`(w(∆))p ≤ (1− αt(∆))Mµ+ (Mh +M`) max{∆2,∆q,∆p}.

On the other hand, by (2.29),

Mµ(∆) ≥ (1− αt(∆))Mµ+ σαt(∆)Mµ− 4M∆2.

Therefore, (2.49) holds whenever

(Mh +M` + 4M) max{∆2,∆q,∆p} ≤ σαt(∆)Mµ.

Now we have ∆min(ε) ≤ 1 and thus, from p, q ∈ (1, 2], (2.49) is true when

(Mh +M` + 4M)∆min{p,q} ≤ σαt(∆)Mµ,

which by (2.14) is implied by

∆ ≤ min

{(
σMµ

Mh +M` + 4M

) 1
min{p,q}

,

(
σMµ

(Mh +M` + 4M)δ

) 1
min{p,q}−1

}
. (2.51)

By using (2.50) we have

µ

δ
≥ 1

C(max{M,M
1
pµ

1
p−1}+ n)

≥ 1

C(max{M,M
1
p a(ε)

1
p−1}+ n)

def= b(ε).

Therefore, (2.51) is implied by ∆ ≤ ∆min(ε) with ∆min(ε) defined in (2.47).
3. The proof that X(∆)z(∆) > 0 holds for all ∆ such that (2.47) is satisfied is exactly

as in [18, Lemma 2].

3. The interior-point filter method. The filter entries in [18] were designed to meet
the goal of reducing feasibility and centrality, combined by θ(w) = θc(w) + θh(w), and
simultaneously complementarity and criticality, measured by µ + θ`(w). This approach dif-
fered from the traditional choices of the filter entries in filter methods in two respects: by
adding centrality to feasibility in the first filter entry, and by replacing the objective function
in the second filter entry by the optimality measure µ+ θ`(w). In this paper, we use a similar
approach, choosing θ(w) and θg(w) to form each filter entry, but where now θg(w) is given
either by (2.11) or by (2.12). The difference thus consists in the second filter entry which now

14

has a direct contribution of the objective function. The other important modification to the
algorithm introduced in [18] is the possibility of using approximations H to the Hessian of
the Lagrangian, provided they satisfy (2.21), and the appropriate adjustment in the definition
of the central neighborhood in (2.18).

Before we describe the algorithm in detail we need to discuss and motivate a number of
its components. We state first the definitions of dominance and filter used by the algorithm.
A point w, or the corresponding pair (θ(w), θg(w)), is said to dominate a point w′, or the
corresponding pair (θ(w′), θg(w′)), if

θ(w) ≤ θ(w′) and θg(w) ≤ θg(w′),

or, equivalently, if the following inequality is violated:

max{θ(w)− θ(w′), θg(w)− θg(w′)} > 0.

A filter is a finite subset F ⊂ R2 consisting of pairs (θf , θf
g), with θf def= θf

h + θf
c , such that

no pair dominates any of the others.
As it is well known in filter methods, the requirement that a new iterate is not dominated

by any of the filter entries is not enough, and some form of sufficient acceptance is necessary.
We choose to work with an envelope type filter. Let γF ∈ (0, 1/2) be fixed. The point w is
acceptable to the filter F if, for all (θf , θf

g) ∈ F , it holds

max{θf − θ(w), θf
g − θg(w)} > γFθ

f .

The procedure to add entries to the filter is summarized below. Note that if w is added to
the filter, all previous entries that are dominated by the new entry are removed. By adding w
to the filter F we mean the following operation:

F 7→ F ={(θ(w), θg(w))}∪{
(θf , θf

g) ∈ F : min{θf − θ(w), θf
g − θg(w)} < 0

}
.

Our primal-dual interior-point filter method generates iterates wk+1 = wk(∆k) 6= wk

acceptable to the filter. Not all new iterates wk+1 are, however, added to the filter.
In general, the primal-dual interior-point filter method imposes a sufficient reduction

criterion relating the actual reduction in θg with the reduction predicted by its model mk, of
the form ρk ≥ η where

ρk
def=

θg(wk)− θg(wk(∆k))
mk(wk)−mk(wk(∆k))

and η ∈ (0, 1) is a preset constant. However, the test of this condition is skipped if

mk(wk)−mk(wk(∆k)) < κθ(wk)2,

where κ ∈ (0, 1) is a preset constant. In other words, the sufficient reduction criterion ρk ≥ η
is only imposed when the reduction in the model mk is sufficiently good compared with
θ(wk)2. In the situation where ρk < η and mk(wk) − mk(wk(∆k)) < κθ(wk)2, the new
iterate wk+1 = wk(∆k) is accepted and the previous point wk is added to the filter (guaran-
teeing that this new filter entry satisfies θ(wk) > 0). This criterion for adding points wk to
the filter prevents us from building up a filter for which the computation of acceptable points
would require too small trust-region radii.

15

If ρk ≥ η and mk(wk) −mk(wk(∆k)) ≥ κθ(wk)2, the iterate wk is not added to the
filter. This situation is the only one where a new iterate wk+1 = wk(∆k) is computed and
the previous one, wk, is not added to the filter.

If θ(wk) is too large compared to ∆k (or an appropriate power of ∆k), the algorithm
enters a restoration phase with the purpose of reducing θ. More precisely, a restoration algo-
rithm is called if

θ(wk) > ∆k min{γ1, γ2∆
β
k},

where γ1, γ2, and β are preset positive constants. The restoration algorithm must produce a
new iterate wk+1 that is not only acceptable to the filter but also satisfies
θ(wk+1) ≤ ∆k min{γ1, γ2∆

β
k}. In this situation, the previous iterate wk is added to the

filter (guaranteeing also that this new filter entry also satisfies θ(wk) > 0).
The new primal-dual interior-point filter method satisfying the above features can now be

presented (see Algorithm 3.1 and Figure 3.1). Note that step 5 guarantees that the potentially
new iterate wk(∆k) is always acceptable to the filter. In the following algorithm, the current
iterate in iteration k is denoted by wk and the normal and tangential trial steps are denoted
by st

k and sn
k , respectively. Further, the step sizes αn

k (∆) and αt
k(∆) are defined according

to (2.13) and (2.14), respectively, with sn = sn
k and st = st

k. Similarly, wk(∆) and sk(∆)
are defined by (2.15) and (2.16), respectively, with w = wk, sn/t = s

n/t
k , and αn/t(∆) =

α
n/t
k (∆).

ALGORITHM 3.1 (Primal-dual interior-point filter method).
0. Choose σ ∈ (0, 1), ν ∈ (0, 1) γ1, γ2 > 0, 0 < β, η, κ < 1, γF ∈ (0, 1/2), and
p ∈ [1, 2]. Set F := ∅. Choose (x0, z0) > 0 and y0, and determine γ ∈ (0, 1)
such that X0z0 ≥ γµ0 with µ0 = xT

0 z0/n. Further, choose M > 0 such that
θh(w0) + θ`(w0)p ≤Mµ0. Choose ∆in

0 > 0 and set k := 0.
1. Set µk := xT

k zk/n and compute sn
k and st

k by solving the linear systems (2.8) and
(2.9), respectively, with (w, µ) = (wk, µk).

2. Compute ∆′
k ∈ [0,∆in

k] such that

xk(∆) > 0, zk(∆) > 0, Xk(∆)zk(∆) ≥ γµk(∆)e for all ∆ ∈ [0,∆′
k]

and such that ∆′
k is not smaller than the largest νr∆in

k , r = 0, 1, . . ., having this
property.

3. Compute the largest ∆′′
k = νj∆′

k, j = 0, 1, . . ., such that

θh(wk(∆′′
k)) + θ`(wk(∆′′

k))p ≤Mµk(∆′′
k).

Set ∆k := ∆′′
k .

4. If θ(wk) ≤ ∆k min{γ1, γ2∆
β
k} then continue in step 5. Otherwise add wk to the

filter and use a restoration algorithm to produce a point wk+1 such that:

wk+1 ∈ N (γ,M, p) with µk+1 = xT
k+1zk+1/n;

wk+1 is acceptable to the filter;
θ(wk+1) ≤ ∆in

k+1 min{γ1, γ2(∆in
k+1)

β} with ∆in
k+1 = ∆k.

Set ∆in
k+1 := ∆k, k := k + 1, and go to step 1.

5. Ifwk(∆k) is not acceptable to the filter (withwk considered in the filter ifmk(wk)−
mk(wk(∆k)) < κθ(wk)2), then go to step 11.

6. If mk(wk)−mk(wk(∆k)) = 0, then set ρk := 0. Otherwise, compute

ρk =
θg(wk)− θg(wk(∆k))
mk(wk)−mk(wk(∆k))

.

16

7. If ρk < η and mk(wk)−mk(wk(∆k)) ≥ κθ(wk)2 then go to step 11.
8. If mk(wk)−mk(wk(∆k)) < κθ(wk)2 then add wk to the filter.
9. Choose ∆in

k+1 ≥ ∆k.
10. Set wk+1 := wk(∆k), k := k + 1, and go to step 1.
11. Set wk+1 := wk, sn

k+1 := sn
k , st

k+1 := st
k, ∆′

k+1 := ∆k/2, and ∆in
k+1 := ∆′

k+1.
Set k := k + 1 and go to step 3.

In practice, step 2 would be implemented as ∆′
k = τk∆̂′

k, where ∆̂′
k is the largest value

of ∆ such that (xk(∆), zk(∆)) ≥ 0 and Xk(∆)zk(∆) ≥ γµk(∆)e and τk is a parameter in
(ν, 1) to enforce (xk(∆), zk(∆)) > 0. The adjustment of τk would be important to achieve
a rapid rate of local convergence. We point out that the calculation of ∆k is split in steps
2 and 3 for good reasons. In fact, in step 2 it is possible to determine explicitly ∆′

k (more
precisely ∆̂′

k). However, because of the nonlinearity of θh and θ`, that is not the case in
step 3, where we know from Lemma 2.7 that although there exists a sufficiently small ∆′′

k

satisfying θh(wk(∆′′
k)) + θ`(wk(∆′′

k))p ≤Mµk(∆′′
k), it cannot be determined explicitly.

In practice, step 1 of the algorithm would start by checking the satisfaction of a stopping
criterion of the form θ(wk) + θ`(wk) + µk ≤ ε, for small ε > 0. To be able to analyze the
asymptotic global convergence properties of the algorithm we did not include any stopping
criterion.

4. Global convergence to first-order critical points. We will assume that the functions
f and h defining problem (2.1) and the sequence of iterates {wk} generated by the primal-
dual interior-point filter method (Algorithm 3.1) satisfy the following set of assumptions.

ASSUMPTION 4.1.
(A1) The sequence {(xk, yk, zk)} is bounded.
(A2) The derivatives ∇h and ∇2

xw` exist and are Lipschitz continuous in an open set
containing all the iterates (xk, yk, zk) and the line segments [wk, wk + sk(∆k)].

(A3) The sequence {Hk} is bounded. The choice of the Hessian Hk must allow the
satisfaction of the sufficient decrease condition (2.22), e.g., should satisfy the con-
dition (2.21).

(A4) The matrix Hk + 1
2X

−1
k Zk is positive semidefinite on the null space of ∇h(xk)T

for all k.
(A5) There exists C > 0 such that for all k it holds ‖KKT(wk)−1‖ ≤ C.

Assumptions (A1)-(A3) are standard in the globalization of algorithms for nonlinear pro-
gramming. Assumption (A4) is satisfied, for instance, for all positive semidefinite choices of
Hk. Moreover, Assumption (A4) holds also in a neighborhood of a regular point w∗ sat-
isfying the second-order sufficient conditions and strict complementarity, for the particular
choice Hk = ∇2

xx`(wk). Therefore, Assumption (A4) can be ensured globally by choosing
Hk sufficiently positive definite and is implied locally by standard second-order sufficiency
conditions.

These assumptions will allow us to prove global convergence to KKT points, which,
of course, are feasible. Thus, this set of assumptions restrict in some form the analysis to
problems that are not infeasible. As pointed out in [18], it is the uniform boundedness of the
KKT(wk)−1 assumed in Assumption (A.5) that is responsible for ruling out infeasibility.

We will prove in this paper the following global convergence result.
THEOREM 4.1. Under Assumption 4.1, the sequence of iterates {wk} generated by the

primal-dual interior-point method (Algorithm 3.1) satisfies

lim inf
k→∞

θ(wk) + θ`(wk) + µk = 0.

17

The proof of Theorem 4.1 requires the adaption of the analysis of global convergence
of [18] to the new optimality filter entries (2.11) and (2.12) introduced in this paper.

The first result is a direct consequence of Assumptions 4.1 and of Lemmas 2.4, 2.5 and
2.7.

LEMMA 4.2. The following hold:
i) The sequences {θh(wk)}, {θc(wk)}, {θ`(wk)}, {µk}, and {θg(wk)} are bounded.

ii) The constantsMh,Mc,Mµ,Mg , andMθ in Lemma 2.4 and Lemma 2.5 are bounded
for all k.

iii) For all ε > 0, there exists a positive constant ∆min(ε) such that, for all k for which
θ`(wk) + µk ≥ ε, the conditions in steps 2 and 3 are satisfied for all ∆′

k,∆
′′
k ∈

[0,∆min(ε)]. Thus, steps 2 and 3 leave ∆in
k unchanged for 0 ≤ ∆in

k ≤ ∆min(ε) and
we have ∆k = ∆in

k .
iv) It holds that ‖sn

k‖ ≤ C(M + (n2 − n)1/2)µk and ‖st
k‖ ≤ C((Mµk)

1
p + (1 −

σ)n1/2µk) for all k.
As in [18], note that the result iv) follows from ‖Xz − µe‖ ≤ (n2 − n)1/2µ and ‖(1 −

σ)µe‖ ≤ (1− σ)n1/2µ. Given the fact that {(xk, yk, zk)} is bounded and αn
k and αt

k do not
exceed one, one concludes from Lemma 4.2.iv that the sequence {s(∆k)} is also bounded.

We show in the next lemma, as a direct consequence of the mechanisms of the algorithm,
that the first components of all filter entries are positive.

LEMMA 4.3. If wk is added to the filter, then θ(wk) > 0.
Proof. An iterate wk is added to the filter either in step 4 or in step 8. In the first case

(step 4), we see that θ(wk) > ∆k min{γ1, γ2∆
β
k} > 0. In the second case (step 8), we see

from Lemma 2.5, (2.34) that

θ(wk)2 >
1
κ

(mk(wk)−mk(wk(∆k)) ≥ 1
κ

(Mµα
t
kµk −Mθθ(wk)).

So, by contradiction, if we assume θ(wk) = 0, we would get

0 = θ(wk)2 >
1
κ

(mk(wk)−mk(wk(∆k)) ≥ 1
κ
Mµα

tµk ≥ 0.

Thus, in both cases, θ(wk) > 0.
It also requires no analysis and follows directly from the structure of the algorithm that

new iterates are always acceptable to the filter.
LEMMA 4.4. In all iterations k ≥ 0, the current iterate wk is acceptable to the filter.
Proof. See [18, Lemma 5].
The next four lemmas provide some technical results needed to establish global conver-

gence to first-order critical points. The first of these lemmas establishes a crucial inequality
showing that feasibility and centrality at wk(∆k) are of the order of ∆2

k.
LEMMA 4.5. There exists a ∆r > 0 such that, if ∆k ≤ ∆r in step 5, it holds that

θ(wk(∆k)) ≤ (Mh +Mc)∆2
k.

Proof. See [18, Lemma 6].
It is important to note that Lemma 4.5 (and the next two Lemmas 4.6 and 4.7) deal with

the situation in step 5 of the algorithm. Step 5 is preceded by step 4, and thus, in step 5 it
always holds that

θ(wk) ≤ ∆k min{γ1, γ2∆
β
k}, (4.1)

18

since otherwise step 4 calls restoration instead of step 5. We point out that it is (4.1) that
enables to show θ(wk(∆k)) = O(∆2

k) for sufficiently small values of ∆k in Lemma 4.5.
The next two lemmas establish that wk(∆k) is acceptable to the filter in step 5 for suf-

ficiently small values of ∆k. The results are similar to those proved in [18]. In both lem-
mas we analyze the acceptability of wk(∆k) to the filter with wk considered in the filter if
mk(wk) − mk(wk(∆k)) < κθ(wk)2. The latter is needed since, in this situation, wk will
possibly be added to the filter in step 8. First, we derive a result that depends on the current
filter entries.

LEMMA 4.6. Suppose that θ(wk) + θ`(wk) + µk ≥ ε > 0. Then there exists ∆a(ε) > 0
depending on ε and on the values of the filter entries, such that, if

0 < ∆k ≤ ∆a(ε),

then wk(∆k) is acceptable to the filter in step 5 (with wk considered in the filter when
mk(wk)−mk(wk(∆k)) < κθ(wk)2).

Proof. Since 0 < γF < 1/2 < 1, we have from Lemma 4.3 that

θF
def= min

(θf ,thetaf
g)∈F

(1− γF)θf > 0.

Consider first the case where θ(wk) ≥ ε/2. Then wk(∆k) is acceptable to the filter (with
wk considered in the filter when mk(wk)−mk(wk(∆k)) < κθ(wk)2) if

θ(wk(∆k)) ≤ 1
2

min{θF , (1− γF)ε/2} < min{θF , (1− γF)ε/2}. (4.2)

We also know from Lemma 4.5 that

θ(wk(∆k)) ≤ (Mh +Mc)∆2
k

holds for ∆k ≤ ∆r. Thus, (4.2) is satisfied for ∆k ≤ ∆(1)
a (ε) with ∆(1)

a (ε) > 0 depending
only on θF , ε, Mh, Mc, γF , and ∆r.

Otherwise we have θ`(wk) + µk ≥ ε/2. Thus, Lemma 2.6 yields

µk ≥ a(ε/2).

If wk is not considered in the filter in step 5, then a similar argument, with θ(wk(∆k))
≤ 1

2θF instead of (4.2), shows that if ∆k ≤ ∆(1)
a (ε) then wk(∆k) is acceptable to the fil-

ter. Moreover wk(∆k) is also acceptable, with wk considered in the filter when mk(wk) −
mk(wk(∆k)) < κθ(wk)2, if, in addition,

θg(wk(∆k))− θg(wk) < −γFθ(wk). (4.3)

In the rest of the proof we show how this bound can be achieved for sufficiently small ∆k.
Since step 5 is reached, we know that

θ(wk) ≤ γ2∆
1+β
k .

On the other hand, we obtain from µk ≥ a(ε/2) and Lemma 2.5 that

θg(wk(∆k))− θg(wk) ≤ −Mµα
t
ka(ε/2) +Mθθ(wk) +Mg∆2

k

≤ −Mµα
t
ka(ε/2) +Mθγ2∆

1+β
k +Mg∆2

k.

19

Hence it is sufficient to show that

−Mµα
t
ka(ε/2) +Mg∆2

k < −(γF +Mθ)γ2∆
1+β
k .

Since ‖sn
k‖ and ‖st

k‖ are bounded by a constant Ms and αt
k = min{1, ∆k

‖sn
k‖
, ∆k

‖st
k‖
}, we have

for all ∆k ≤Ms, that αt
k ≥ ∆k/Ms. Thus (4.3) holds if

Mg∆k + (γF +Mθ)γ2∆
β
k ≤

Mµa(ε/2)
2Ms

<
Mµa(ε/2)

Ms
,

which in turn holds for all ∆k ≤ ∆(2)
a (ε) with ∆(2)

a (ε) > 0 depending only on ε, Mg , Mθ,
γF , γ2, β, Mµ, a(ε/2), and Ms. Taking ∆a(ε) = min{∆(1)

a (ε),∆(2)
a (ε)} concludes the

proof.
Now we derive a similar result that does not depend on the values of the filter entries, but

where we impose a condition relating θ(wk) and ∆k.
LEMMA 4.7. Suppose that for given ε > 0

θ`(wk) + µk ≥ ε and θ(wk) >
∆k

2
min{γ1, γ2(∆k/2)β}. (4.4)

Then there exists ∆f (ε) > 0 depending on ε, but not on the filter entries, such that, if

0 < ∆k ≤ ∆f (ε),

then wk(∆k) is acceptable to the filter in step 5 (with wk considered in the filter when
mk(wk)−mk(wk(∆k)) < κθ(wk)2).

Proof. Since, by Lemma 4.4, wk is acceptable to the filter, then wk(∆k) is acceptable to
the filter (with wk considered in the filter when mk(wk)−mk(wk(∆k)) < κθ(wk)2) if

θ(wk(∆k)) ≤ θ(wk)

and

θg(wk(∆k)) < θg(wk)− γFθ(wk). (4.5)

We know from Lemma 4.5 that, if ∆k ≤ ∆r then

θ(wk(∆k)) ≤ (Mh +Mc)∆2
k.

Hence, θ(wk(∆k)) ≤ θ(wk) is ensured by the second inequality in (4.4) if in addition

(Mh +Mc)∆k ≤
1
2

min{γ1, γ2(∆k/2)β}. (4.6)

Moreover, the first inequality in (4.4) and Lemma 2.6 yield

µk ≥ a(ε).

Therefore, we have by Lemma 2.5

θg(wk(∆k))− θg(wk) ≤ −Mµα
t
ka(ε) +Mθθ(wk) +Mg∆2

k.

We have pointed out before that αt
k ≥ ∆k/Ms for all ∆k ≤ Ms, see the end of the proof of

Lemma 4.6. So,

θg(wk(∆k))− θg(wk) ≤ ∆k

(
−Mµa(ε)

Ms
+Mg∆k

)
+Mθθ(wk).

20

Since we are concerned with step 5 of the algorithm, we know that θ(wk) ≤ γ2∆
1+β
k ,

see (4.1). Hence, we obtain (4.5) whenever

Mg∆k + (γF +Mθ)γ2∆
β
k ≤

Mµa(ε)
2Ms

<
Mµa(ε)
Ms

. (4.7)

The requirements 0 < ∆k ≤ ∆r, (4.6) and (4.7) on ∆k are obviously satisfied if 0 < ∆k ≤
∆f (ε) with some constant ∆f (ε) > 0.

Now we are ready to derive asymptotic results. We appeal first to a commonly used
argument in filter convergence proofs to show that lim infk→∞ θ(wk) = 0 when infinitely
many iterates are added to the filter.

LEMMA 4.8. From the moment that wk is added to the filter, the filter always contains
an entry that dominates wk.

Proof. See [18, Lemma 9].
LEMMA 4.9. Suppose there are infinitely many points added to the filter. Then there

exists a subsequence {ki} such that wki is added to the filter and

lim
i→∞

θ(wki) = 0. (4.8)

Proof. See [18, Lemma 10].
As we pointed out in [18], Lemma 4.9 asserts (4.8) only for some particular subsequence

{wki} of iterates added to the filter and not for any such subsequence. The reason is that
acceptability to a pair does not imply acceptability to a dominated pair. If required, this effect
can be circumvented in several ways. The easiest approach is to never remove dominated
entries from the filter. Then the above proof can be easily modified to establish that (4.8) holds
for any infinite subsequence of iterates that are added to the filter. An alternative to derive
this stronger result, if one wishes to remove dominated filter entries, can also be obtained by
slightly modifying the filter acceptance test, see [5] and [6, §15.5]. In fact, if we require

either θf − θ(w) > γFθ
f or θf

g − θg(w) > γFθ(w),

then acceptability to a pair implies acceptability to all dominated pairs and it is straightfor-
ward to prove that (4.8) holds for any infinite subsequence of iterates added to the filter, see
[6, Lem. 15.5.2].

We now proceed with the analysis. The next step is to show that when there are in-
finitely many iterates added to the filter, then the sequence {ki} of Lemma 4.9 must contain
a subsequence converging to a first-order KKT point. Note that the subsequence {ki} must
contain either a subsequence where restoration is invoked, or a subsequence where the iter-
ates are added to the filter in step 8. We consider the two cases separately in the Lemmas 4.10
and 4.11. We start by considering an infinite number of iterations in {ki} at which restoration
is invoked.

LEMMA 4.10. Suppose that there exists an infinite sequence {ki} of iterations at which
restoration is invoked and for which holds that

lim
i→∞

θ(wki) = 0.

Then {ki} contains a subsequence {k′j} with

lim
j→∞

θ(wk′j
) = 0, lim

j→∞
θ`(wk′j

) + µk′j
= 0.

21

Proof. Let ki be a subsequence where restoration is invoked for every ki (and thus wki
is

added to the filter) such that limi→∞ θ(wki) = 0. For deriving a contradiction, assume that
there exists ε > 0 with

θ`(wki) + µki ≥ ε ∀ i.

By Lemma 2.6 this implies that

µki ≥ a(ε) def= ε∗ > 0 ∀ i.

Since the restoration is invoked it must hold that

θki > ∆ki min{γ1, γ2∆
β
ki
}. (4.9)

Therefore, we have

0 = lim
i→∞

θki = lim
i→∞

∆ki

and thus we can find K0 > 0 such that ∆ki
< ν∆min(ε∗) for all ki ≥ K0 with ∆min(ε∗)

(depending on ε∗) from Lemma 4.2, iii), with ν ∈ (0, 1). We show next that

∆ki−1 ≤ 2∆ki
, ∆ki

= ∆in
ki

for all ki ≥ K0, (4.10)

which then yields

0 = lim
i→∞

θki = lim
i→∞

∆ki = lim
i→∞

∆ki−1. (4.11)

In fact, ∆ki
< ν∆min(ε∗) for ki ≥ K0 shows that ∆ki

= ∆in
ki

for ki ≥ K0, since, by Lemma
4.2, iii), step 2 and step 3 yield only ∆ki

6= ∆in
ki

if ∆in
ki
> ∆min(ε∗). But then the result of

step 2 and step 3 would be a radius ∆ki > ν∆min(ε∗), which is not the case for ki ≥ K0.
Thus, we have ∆ki = ∆in

ki
for ki ≥ K0 and conclude that ∆ki ≥ ∆ki−1/2 for all ki ≥ K0.

Thus, (4.10) and (4.11) holds.
We show next that there exists K1 ≥ K0 − 1 such that

µki−1 ≥ ε∗/2 for all ki − 1 ≥ K1. (4.12)

In fact, we have either wki = wki−1 or wki = wki−1(∆ki−1). In the first case (4.12) is
obvious since then µki−1 = µki ≥ ε∗, for all ki ≥ K0 with wki = wki−1. In the case
wki = wki−1(∆ki−1) it follows from Lemma 2.4 that

µki
= µki−1(∆ki−1) ≤ (1− αt

ki−1(1− σ))µki−1 + 4∆2
ki−1,

and thus

ε∗ ≤ µki ≤ µki−1 + 4∆2
ki−1.

We can therefore conclude from (4.11) that (4.12) holds forK1 ≥ K0−1 large enough. Using
(4.12) and applying Lemma 4.2, iii) with ε = ε∗/2, we can apply the same argument as for
deriving (4.10) to show that there exists K2 ≥ K1 with ∆ki−1 = ∆in

ki−1 for all ki− 1 ≥ K2.
Hence, together with (4.10), this yields

∆ki−1 = ∆in
ki−1, ∆ki = ∆in

ki
for all ki − 1 ≥ K2. (4.13)

22

We show next that step 5 is reached in all iterations ki − 1 ≥ K2. In fact, otherwise
the restoration procedure is called in iteration ki − 1. Thus, we have ∆in

ki
= ∆ki−1 and

consequently ∆ki = ∆ki−1 by (4.13). Since by our assumption the restoration is invoked in
iteration ki − 1, by using ∆ki = ∆ki−1 the outcome of the restoration is an iterate wki with

θki ≤ ∆ki−1 min{γ1, γ2∆
β
ki−1} = ∆ki min{γ1, γ2∆

β
ki
},

which contradicts (4.9). Hence, step 5 is reached for all iterations ki − 1 ≥ K2 and thus in
particular

θki−1 ≤ ∆ki−1 min{γ1, γ2∆
β
ki−1}. (4.14)

Next, we show that step 7 must be reached for all iterations ki− 1 with ki− 1 ≥ K3 and
K3 ≥ K2 large enough. In fact, let ∆f (ε∗/2) be the bound of Lemma 4.7 corresponding to
ε = ε∗/2 instead of ε. By (4.11) we can findK3 ≥ K2 such that ∆ki−1 ≤ ∆f (ε∗/2) holds for
all ki−1 ≥ K3. Now assume that step 7 is not reached in iteration ki−1 ≥ K3−1. Then step
5 is followed by step 11 and thus θki = θki−1, and, using (4.13), ∆ki = ∆in

ki
= ∆ki−1/2.

Therefore, by (4.9),

θki−1 >
∆ki−1

2
min{γ1, γ2(∆ki−1/2)β}.

Hence, we obtain from Lemma 4.7 and (4.12) that wki−1(∆ki−1) was acceptable to the filter
in step 5, since ki − 1 ≥ K3 ensures ∆ki−1 ≤ ∆f (ε∗/2). Therefore, step 5 would not have
branched to step 11 as assumed. Hence, step 7 is always reached in all iterations ki−1 ≥ K3.

We conclude the proof by showing the existence of K4 ≥ K3 such that step 9 is reached
for all iterations ki−1 with ki−1 ≥ K4. This will provide the desired contradiction: In fact,
by (4.13) and steps 9, 10 we have ∆ki = ∆in

ki
≥ ∆ki−1, wki = wki−1(∆ki−1). Thus, since

step 9 is reached via step 5, we can apply Lemma 4.5 to obtain for all ∆ki−1 ≤ ∆r (which
holds by (4.11) for all i large enough)

θki = θ(wki−1(∆ki−1)) ≤ (Mh +Mc)∆2
ki−1 ≤ (Mh +Mc)∆2

ki
.

This contradicts (4.9) and (4.11).
Hence, it remains to show that step 9 is eventually reached in all iterations ki − 1 with

ki − 1 ≥ K4, K4 ≥ K3 large enough. We recall that by (4.12) we have µki−1 ≥ ε∗/2. Now,
from Lemma 2.5, (4.11), and (4.14), we obtain, for all ki ≥ K4

mki−1(wki−1)−mki−1(wki−1(∆ki−1)) ≥

≥Mµα
t
ki−1

ε∗
2
−Mθθ(wki−1)

≥ ∆ki−1Mµ
ε∗

2Ms
−Mθγ2∆

1+β
ki−1

≥ ∆ki−1Mµ
ε∗

4Ms
,

for all ki − 1 ≥ K4 ≥ K3 with some K4 ≥ K3. As before, Ms denotes an upper bound
for ‖sn

k‖ and ‖st
k‖. Also, we used again the fact that αt

ki−1 ≥ ∆ki−1/Ms if ∆ki−1 ≤ Ms,
which holds by (4.11) possibly after increasing K4. On the other hand, we have

|mki−1(wki−1)−mki−1(wki−1(∆ki−1))− θg(wki−1) + θg(wki−1(∆ki−1))|
= O(∆2

ki−1).

23

The last two bounds show that ρki−1 → 1 and hence, possibly after increasing K4, that step
9 is reached in all iterations ki − 1 with ki − 1 ≥ K4.

As we have already seen, this leads to a contradiction. Hence, θ`(wki) + µki ≥ ε for all
i is not true. The proof is therefore completed since there exists a subsequence {k′j} ⊂ {ki}
for which limj→∞ θ(wk′j

) = limj→∞ θ`(wk′j
) + µk′j

= 0.
The other situation is when the sequence {ki} of Lemma 4.9 contains a subsequence,

where the iterates are added to the filter in step 8. As in the previous lemma we have the
following result.

LEMMA 4.11. Suppose that there exists an infinite sequence {ki} of iterations for which
wki is added to the filter in step 8 and, in addition, limi→∞ θ(wki) = 0. Then {ki} contains
a subsequence {k′j} such that

lim
j→∞

θ(wk′j
) = 0, lim

j→∞
θ`(wk′j

) + µk′j
= 0.

Proof. Let {ki} be a sequence of iterations such that wki is added to the filter in step 8
and limi→∞ θ(wki) = 0. Suppose now that θ`(wki) + µki ≥ ε > 0 for all ki ≥ K0 for some
K0 ≥ 0. Then we have, by Lemma 2.6, that µki ≥ a(ε). By Lemma 2.5 and since wki is
added to the filter in step 8 we have

Mµα
t
ki
a(ε) ≤ mki(wki)−mki(wki(∆ki)) +Mθθ(wki)

< κθ(wki)
2 +Mθθ(wki).

Thus, we obtain αt
ki
→ 0 and consequently ∆ki → 0. In particular, αt

ki
≥ ∆ki/Ms for large

enough i, and since the restoration procedure is not called, we have θ(wki) ≤ γ2∆
1+β
ki

and
conclude that

∆kiMµ
a(ε)
Ms

≤ mki
(wki

)−mki
(wki

(∆ki
)) +Mθθ(wki

)

< κ(γ2∆
1+β
ki

)2 +Mθγ2∆
1+β
ki

,

which is a contradiction to ∆ki → 0.
We put both situations together in the next lemma.
THEOREM 4.12. Suppose that infinitely many iterates are added to the filter. Then there

exists a subsequence {kj} such that

lim
j→∞

θ(wkj
) = 0, lim

j→∞
θ`(wkj

) + µkj
= 0.

Proof. By Lemma 4.9 there exists a sequence {ki} of iterates such that wki is added
to the filter and limi→∞ θ(wki) = 0. As we have already observed there exists either a
subsequence {k′j} of {ki} such that wk′j

are added to the filter before entering restoration or
a subsequence {k′j} of {ki} such that wk′j

are added to the filter in step 8. In the first case the
assertion follows from Lemma 4.10; in the second case from Lemma 4.11.

Finally, we analyze the case where the algorithm runs infinitely but only finitely many
iterates are added to the filter.

THEOREM 4.13. Suppose that the algorithm runs infinitely and only finitely many iter-
ates are added to the filter. Then

lim
k→∞

θ(wk) = 0, lim inf
k→∞

θ`(wk) + µk = 0.

24

Proof. The assumption says that for k ≥ K, with K large enough, no further filter entry
is added. Hence, the filter contains for all k ≥ K the same finitely many entries, and the
restoration is never invoked. Thus, all new iterates wk+1 6= wk are computed in step 10. We
now show that step 10 is reached infinitely many times.

In fact, step 5 is reached in each iteration, and, by Lemma 4.6, step 7 is reached after
finitely many reductions of ∆k in step 11 (note that µk > 0, since xk, zk > 0). Again, step 8
is reached after finitely many reductions of ∆k. In fact, if θ(wk) > 0 then clearly

mk(wk)−mk(wk(∆k)) < κθ(wk)2

for ∆k sufficiently small and step 8 is reached. Otherwise, θ(wk) = 0 and θ`(wk) + µk > 0
and therefore ρk ≥ η for all ∆k small enough (we may apply exactly the same arguments
as at the end of the proof of Lemma 4.10). So, step 10 is always reached after finitely many
reductions of ∆k, producing always new iterates.

Since no further entry is added to the filter we know, cf. step 8, that in step 10 it always
holds that

θg(wk)− θg(wk+1) ≥ η(mk(wk)−mk(wk(∆k))) ≥ ηκθ(wk)2.

Since this holds for all successful steps and {θg(wk)} is bounded, we conclude that

lim
k→∞

θ(wk) = 0. (4.15)

Now assume that θ`(wk) + µk ≥ ε > 0 for all k ≥ K and some ε > 0. Then Lemma 2.6
yields again µk ≥ a(ε). Since the filter entries do not change for k ≥ K, the test in step 5 is
passed whenever ∆k ≤ ∆a(ε) (cf. Lemma 4.6). Also, since θ`(wk)+µk ≥ ε > 0, we obtain
as before that ρk ≥ η whenever ∆k ≤ ∆′(a(ε)) for some ∆′(a(ε)) > 0. Finally, we know
by Lemma 4.2.iii that for ∆in

k ≤ ∆min(ε) steps 2 and 3 yield ∆k = ∆in
k . Hence, we see that

∆k ≥ δ(ε) def= min{∆a(ε)/2,∆′(a(ε))/2, ν∆min(ε),∆K} > 0 for k ≥ K. Thus, step 10 is
reached for all successful steps with ∆k ≥ δ(ε) > 0 and we have, as above (using (4.15)),
for k sufficiently large,

θg(wk)− θg(wk+1) ≥ η(mk(wk)−mk(wk(∆k)))

≥ ηMµa(ε)αt
k − ηMθθ(wk)

≥ ηMµa(ε) min
{

δ

Ms
, 1

}
− ηMθθ(wk)

≥ ηMµa(ε) min
{

δ

Ms
, 1

}
,

where Ms is as before a uniform upper bound on max{‖st
k‖, ‖sn

k‖}. This is a contradiction
to the boundedness of θg(wk) and the proof is complete.

Our global convergence result (Theorem 4.1) can be obtained by combining The-
orems 4.12 and 4.13.

5. The solver ipfilter for nonlinear programming. Our implementation of the
interior-point filter method (Algorithm 3.1) is called ipfilter. The code is written in
Fortran 90. In this section we review the main practical issues involved in ipfilter. For
more details see (1.1).

25

5.1. Upper and lower bounds. The implemention of the primal-dual interior-point fil-
ter method (Algorithm 3.1) considered in ipfilter handles problems of the form

minf(x)
s.t. h(x) = 0,

l ≤ x ≤ u,

where l ∈ ({−∞}∪R)n and u ∈ (R∪{∞})n. Upper and lower bounds on the variables are
thus considered explicitly avoiding in this case the introduction of slack variables. In some
problems not all variables have upper and lower bounds, and ipfilter was adapted to take
care of such situations, including the case where all the variables are free. The current version
of the code also addresses unconstrained problems and problems with simple bounds but this
is not treated in this paper.

Under this new formulation, the Lagrangian function becomes

`(w) = f(x) + h(x)T y − (x− l)T zl − (u− x)T zu,

where w = (x, y, zl, zu) ∈ R3n+m and zl ∈ Rn and zu ∈ Rn are the Lagrange multipliers
associated with the lower and upper bounds, respectively. The quantity µ is now defined as

µ =
(x− l)T zl + (u− x)T zu

2n
,

and the centrality measure as

θc(w) =
∥∥∥∥(

(X − L)zl − µe
(U −X)zu − µe

)∥∥∥∥ ,
where L = diag(l) and U = diag(u). Finally, the neighborhood N (γ,M, p) is now defined
as

N (γ,M, p) =
{
w : l < x < u, (zl, zu) > 0, (X − L)zl ≥ γµe,

(U −X)zu ≥ γµe, θh(w) + θ`(w)p ≤Mµ} .

5.2. Linear systems. The systems of linear equations that define the normal and tan-
gential steps are redefined as

H A −I I
AT 0 0 0
Zl 0 X − L 0
−Zu 0 0 U −X

∆xn

∆yn

∆zl,n

∆zu,n

 = −

0

h(x)
(X − L)zl − µe
(U −X)zu − µe

 (5.1)

and
H A −I I
AT 0 0 0
Zl 0 X − L 0
−Zu 0 0 U −X

∆xt

∆yt

∆zl,t

∆zu,t

 = −

∇x`(w)

0
(1− σ)µe
(1− σ)µe

 , (5.2)

where H denotes ∇2
xx`(w) or an approximation thereof, A denotes ∇h(x), Zl = diag(zl),

and Zu = diag(zu). From now on, we will deal with both systems at the same time, consid-
ering a generic right-hand-side of the form (r1, r2, r3, r4).

26

Most of the computational effort of the algorithm is spent in solving these systems of
linear equations. Instead of solving the nonsymmetric linear systems (5.1) and (5.2), we
solve equivalent, smaller and symmetric systems, using some algebraic manipulations known
in interior-point methods. We start by eliminating the last two block rows

∆zl = (X − L)−1(r3 − Zl∆x),
∆zu = (U −X)−1(r4 + Zu∆x),

and writing (
H + (X − L)−1Zl + (U −X)−1Zu A

AT 0

) (
∆x
∆y

)
=

=
(
r1 + (X − L)−1r3 − (U −X)−1r4

r2

)
.

To avoid the inversion of X − L and U −X in the matrix systems, we rewrite them as:(
D1/2HD1/2 + (U −X)Zl + (X − L)Zu D1/2A

(D1/2A)T 0

) (
∆x
∆y

)
=

(
r̄1 + r̄3 − r̄4

r2

)
,

(5.3)
where

D = (X − L)(U −X),
r̄1 = D1/2r1,
r̄3 = (U −X)1/2(X − L)−1/2r3,
r̄4 = (U −X)−1/2(X − L)1/2r4,
∆x = D1/2∆x.

Our implementation in ipfilter uses the sparse routines MA27 from HSL [7] (the former
Harwell Subroutine Library) to solve these symmetric systems. MA27 computes a factoriza-
tion A = LDLT of a symmetric matrix A, where L is a lower triangular matrix with ones
in the diagonal and D is a block diagonal matrix formed by 1 × 1 or 2 × 2 diagonal blocks.
We changed the following MA27 parameters: as the threshold parameter for the numerical
pivoting we choose 10−6 and as the pivoting tolerance we use 10−12.

The parameter σ is chosen in the following way: If µ < 10−6 then σ = σint
f = 2.6 ×

10−3, otherwise σ = σmin = 10−5.
We must also mention that we compute a safe step if the tangential step length αt(∆)

is less than a positive quantity ψ (in our implementation ψ = 0.8). In that case, we use
σ = σmax

s = 0.1 (if αt(∆) < 10−3) or σ = σint
s = 10−3 (otherwise) and recompute the

tangential step st by resolving the system (5.2).

5.3. Control of inertia and conditioning. In ipfilter we introduce perturbations
in the (1, 1) and (2, 2) blocks of the symmetric matrix M of the systems (5.3),(

M11 + ε1I M12

MT
12 −ε2I

)
, (5.4)

where ε1 and ε2 are positive parameters. The (1, 1)-block perturbation is related to the regu-
larization often applied to make the approximation of the Hessian of the Lagrangian positive
definite on the null space of the constraints. The (2, 2)-block perturbation corresponds to the
regularization of the equality constraints given by h(x)− ε2y = 0.

27

The perturbations are chosen to force the inertia ofM to be equal to (n,m, 0) (n positive
eigenvalues, m negative eigenvalues, and 0 zero eigenvalues), which is known to be related to
a QP subproblem convexification. The inertia control scheme that we use (see Algorithm 5.1)
is based on the one suggested by Wächter and Biegler [21].

ALGORITHM 5.1 (Inertia Control). Start with εlast1 = 0 at the beginning of the opti-
mization.

In each iteration:
1. Attempt to factorize the system matrix (5.4), with ε1 = ε2 = 0. If the inertia

is (n,m, 0) or both θ`(w) and θh(w) are small (less than 10−5), solve the sys-
tems (5.3). Otherwise, go to step 2.

2. If the matrix is singular, set ε2 = 10−20, otherwise, set ε2 = 0. Set also ε1 =
0.5× 10−6 (if εlast1 = 0) or ε1 = max{10−20, εlast1 /3} (otherwise).

3. Attempt to factorize the perturbed matrix (5.4). If the inertia is now (n,m, 0) then
set εlast1 = ε1 and solve the systems (5.3). Otherwise, go to step 4.

4. If εlast1 = 0, set ε1 = 10× ε1, otherwise ε1 = 2× ε1.
5. If ε1 > 106, set εlast1 = ε1, ε1 = 0, and ε2 = 10−20 and solve the systems (5.3).

Otherwise, go back to step 3.
Note that an approximation to the inertia of a matrix is readily available from the appli-

cation of MA27 [7].

5.4. Initial point and warm start. Given the initial primal point xin associated with
each problem, ipfilter first projects this point onto the interior of the box defined by
the bound constraints and then, starting from this point, it applies a number (5 in the cur-
rent implementation) of iterations of Newton’s method (subject to the bound constraints) to
minimize the function

f(x) + ρ h(x)Th(x)− µin

n∑
i=1

log(xi − li)− µin

n∑
i=1

log(ui − xi),

with µin = 103 and ρ chosen in the following way: If ‖h(xin)‖1 > 50 then ρ = ρmax = 105;
otherwise if ‖h(xin)‖1 < 10−10 then ρ = ρmin = 1, otherwise ρ = ρint = 1.77× 103. The
resulting point is the initial iterate x0. The iterations taken in this initial procedure are counted
in the tables.

The initial multipliers with respect to the equality constraints are first set to:

y0 = argmin‖∇f(x0) +∇h(x0) y − zl
in + zu

in‖,

where, componentwise, we have zl
in = µin/(x0− l) and zu

in = µin/(u−x0). If y0 obtained
in this way is too large, i.e., if ‖y0‖∞ > ymax (with ymax = 2× 103 in our implementation),
then this initial value for y0 is discarded and the algorithm starts with y0 = 0. Then, the
initial multipliers with respect to the bounds are set to:

zl
0 = max{∇f(x0) +∇h(x0)y0 + zu

in , z
l
in},

zu
0 = max{−∇f(x0)−∇h(x0)y0 + zl

0, z
u
in}.

The linear systems resulting from the application of Newton’s method in the primal warm
start procedure and from the calculation of y0 are converted in a 2×2 symmetric block format
by introducing an auxiliar, later discarded vector of variables. The sparse routines MA27
from HSL [7] are also used to solve these symmetric systems. Our implementation uses the
routines aplb and amub from the SPARSKIT Library (Version 2) [16] to perform the matrix
multiplications needed in the primal warm start procedure.

28

5.5. Restoration. The purpose of a restoration algorithm in the context of Algorithm 3.1
is to find a point wk+1 ∈ N (γ,M, p) acceptable to the filter and such that the condition
θ(wk+1) ≤ ∆in

k+1 min{γ1, γ2(∆in
k+1)

β} is satisfied with ∆in
k+1 = ∆k. The implementation

chosen for ipfilter follows the restoration algorithm proposed in [18, Algorithm 2] where
essentially our primal-dual step computation is applied to minimize the value of

θ2(w) def=
1
2

(
θh(w)2 + θc(w)2

)
=

1
2

(
‖h(x)‖2 + ‖Xz − µe‖2

)
.

The iterates of this restoration algorithm are forced to stay in the central neighbor-
hoodN (γ,M, p) and to satisfy a sufficient decrease condition for θ2. We have tested also the
alternative restoration scheme suggested in [18] but its performance was not superior.

We have introduced some practical modifications to [18, Algorithm 2] to put emphasis on
the reduction of θ2 and therefore improve its efficiency. Thus, we replaced H by the identity
matrix in the primal-dual systems defining the normal and tangential components. Also, in
the right-hand-side vector of the linear system defining the tangential step we have replaced
the term −∇x`(w) by zero. In the restoration phase, we always introduce a perturbation in
the (2, 2) block of the system matrix, of the form −ε2I , where ε2 = min{µk, 10−8}.

5.6. Other parameters and stopping criterion. The γ and M parameters in
N (γ,M, p) are computed as follows:

γ = min
{

10−3,
1

2 µ0
min

i=1,...,n

{
min

{(
X0 − L)zl

0

)
i
,
(
U −X0)zu

0

)
i

}}}
and

M = max
{

103,
103

µ0

(
θh(w0) + θ`(w0)

)}
.

The current implementation sets p = 1 inN (γ,M, p) since it supports only the use of second-
order derivatives. The update of τk obeys to

τk = 1−min{10−2, 10−2µ2
k}.

For the initial step length parameter ∆in
0 we have chosen the value 105. The update of

∆in
k in step 9 took the form: ∆in

k+1 = 2∆k when ρk > η2 and ∆in
k+1 = ∆k otherwise. We

have picked η = η1 = 10−4, η2 = 0.8, and ν = 0.5. For the remaining parameters of the
main algorithm we have chosen:

γ1 = 0.5, γ2 = 1, β = 0.75, κ = 0.1, and γF = 10−3.

The parameters needed to update ∆k in the restoration procedure [18, Algorithm 2] were
set similarly as in the main algorithm. The value of ∆k in the restoration is kept constant
when the ratio of actual over predicted decreases for θ2 was between ξ1 and ξ2 and doubled
when this ratio is larger then ξ2. We chose ξ1 = 10−5 and ξ2 = 0.5. The parameter ν to
enforce the iterates to lie in the central neighborhood was set to 0.5. Finally we set σ = 1.

The stopping criterion used by ipfilter is as similar to the one of ipopt [21] as
possible. In fact, ipfilter is stopped if

max

‖h(xk)‖∞,

∥∥∥∥(
(Xk − L)zl

k

(U −Xk)zu
k

)∥∥∥∥
∞

sc
,
‖∇x`(wk)‖∞

s`

 < 10−8,

29

problems
dimensions an old CUTE set CUTEr (Sept. 2008)
n < 1000 388 (45) 390 (56)

1000 ≤ n < 10000 76 (1544) 182 (3194)
n ≥ 10000 5 (7979) 59 (6354)

total 469 631
TABLE 6.1

Dimensions of the test problems (n is the number of variables and in brackets it is indicated the average number
of equality constraints).

problems
problem class an old CUTE set CUTEr (Sept. 2008)
equality constrained 245 327
inequality constrained 177 226
mixed (equalities and inequalities) 47 78
linearly constrained 171 205
nonlinearly constrained 298 426
quadratic programming 91 103

TABLE 6.2
A summary of the test problems.

where sc and s` are scaling factors given by

sc = 10−2 max
{

100,
‖zl

k‖1 + ‖zu
k‖1

2n

}
,

s` = 10−2 max
{

100,
‖yk‖1 + ‖zl

k‖1 + ‖zu
k‖1

m+ 2n

}
,

or if

∆k < 10−10,

or if the number of iterations reaches 1000.

6. Numerical results. We report the results of ipfilter on a set of problems from the
CUTEr test set [14] with at least one constraint (not of the simple bound type) for which n ≥
m in our formulation. The problem dimensions are summarized in Table 6.1. In Table 6.2,
we give some information on the different types of problems of this test set1. Since we tested
ipfilter mostly on an old CUTE set (also reported in these tables), we also present the
results for this test set. The two lists of problems are given in (1.1).

We compared the performance of ipfilter (version 0.2) with the interior-point barrier
filter solver ipopt, version 3.5.1 in C++, developed by Wächter and Biegler [21]. The
tests were run on a Fujitsu-Siemens Celsius V810 workstation (4 GB RAM, 2 processors
AMD 2.2GHz). The results are summarized in Table 6.3. We declared failure for both codes
when the step size becomes too small (either in the main algorithm or in the restoration), the
maximum number of (primal-dual) iterations is reached or a budget of 500 minutes of CPU
time is spent, before the termination criterion is met for a stopping tolerance of 10−8.

1We excluded 91 problems which required an increase of the default size parameters of sifdec in CUTEr.

30

an old CUTE set CUTEr (Sept. 2008)
ipfilter ipopt ipfilter ipopt

problems solved 449 448 532 549
% robustness 95.74% 95.52% 84.34% 87.00%
average iterations 27.55 27.19 47.44 38.58
problems solved (< 500 iter.) 449 447 525 545
% robustness (< 500 iter.) 95.74% 95.31% 83.20% 86.37%
average iterations (< 500 iter.) 27.55 25.78 37.51 34.14

TABLE 6.3
Robustness and average number of iterations.

an old CUTE set CUTEr (Sept. 2008)
ipfilter ipopt ipfilter ipopt

problems solved 91 88 97 93
% robustness 100.00% 96.70% 94.17% 90.29%
average iterations 26.74 36.45 42.35 47.09
problems solved (< 500 iter.) 91 88 96 92
% robustness (< 500 iter.) 100.00% 96.70% 93.20% 89.32%
average iterations (< 500 iter.) 26.74 36.45 33.90 40.96

TABLE 6.4
Robustness and average number of iterations (quadratic programming problems).

We made several other tests which are not reported in detail in this paper. For instance,
we tested the impact on the performance of ipfilter, of the new optimality filter en-
tries, (2.11) and (2.12), compared to the one suggested in [18] and given in (2.10). Regardless
of the measure chosen (robustness, number of iterations, or final objective function value),
the optimality filter entry (2.12) seems to be the best among the three.

We also analyzed the performance of the two codes on the different problem classes of
Table 6.2. The relative performances for the different classes followed the general pattern,
except for quadratic programming where ipfilter seems to be currently slightly better
than ipopt (see Table 6.4).

REFERENCES

[1] M. ARGAEZ AND R. A. TAPIA, On the global convergence of a modified augmented Lagrangian linesearch
interior-point Newton method for nonlinear programming, J. Optim. Theory Appl., 114 (2002), pp. 1–25.

[2] R. H. BYRD, J. C. GILBERT, AND J. NOCEDAL, A trust region method based on interior point techniques
for nonlinear programming, Math. Program., 89 (2000), pp. 149–185.

[3] R. H. BYRD, M. E. HRIBAR, AND J. NOCEDAL, An interior point algorithm for large-scale nonlinear
programming, SIAM J. Optim., 9 (1999), pp. 877–900.

[4] L. CHEN AND D. GOLDFARB, Interior-point `2-penalty methods for nonlinear programming with strong
global convergence properties, Math. Program., (2008, to appear).

[5] C. M. CHIN AND R. FLETCHER, On the global convergence of an SLP-filter algorithm that takes EQP steps,
Math. Program., 96 (2001), pp. 161–177.

[6] A. R. CONN, N. I. M. GOULD, AND PH. L. TOINT, Trust-Region Methods, MPS-SIAM Series on Optimiza-
tion, SIAM, Philadelphia, 2000.

[7] I. S. DUFF AND J. K. REID, Some design features of a sparse matrix code, ACM Trans. Math. Software, 5
(1979), pp. 18–35.

[8] A. S. EL-BAKRY, R. A. TAPIA, T. TSUCHIYA, AND Y. ZHANG, On the formulation and theory of the Newton
interior–point method for nonlinear programming, J. Optim. Theory Appl., 89 (1996), pp. 507–541.

[9] R. FLETCHER, N. I. M. GOULD, S. LEYFFER, PH. L. TOINT, AND A. WÄCHTER, Global convergence

31

of trust-region SQP-filter algorithms for general nonlinear programming, SIAM J. Optim., 13 (2002),
pp. 635–659.

[10] R. FLETCHER AND S. LEYFFER, Nonlinear programming without a penalty function, Math. Program., 91
(2002), pp. 239–269.

[11] R. FLETCHER, S. LEYFFER, AND PH. L. TOINT, On the global convergence of an SLP-filter algorithm,
Tech. Report NA/183, University of Dundee, 1998.

[12] , On the global convergence of a filter–SQP algorithm, SIAM J. Optim., 13 (2002), pp. 44–59.
[13] A. FORSGREN, P. E. GILL, AND M. H. WRIGHT, Interior methods for nonlinear optimization, SIAM Rev.,

44 (2002), pp. 525–597.
[14] N. I. M. GOULD, D. ORBAN, AND P. L. TOINT, CUTEr, a Constrained and Unconstrained Testing Environ-

ment, revisited, ACM Trans. Math. Software, 29 (2003), pp. 373–394.
[15] N. I. M. GOULD, D. ORBAN, AND PH. L. TOINT, Numerical methods for large-scale nonlinear optimiza-

tion, Acta Numer., 14 (2005), pp. 299–361.
[16] Y. SAAD, SPARSKIT: A basic tool kit for sparse matrix computations., Tech. Report RIACS-90-20, Research

Institute for Advanced Computer Science, NASA Ames Research Center, Moffett Field, CA, 1990.
http://www-users.cs.umn.edu/˜saad/software/SPARSKIT/sparskit.html.

[17] A. L. TITS, A. WÄCHTER, S. BAKHTIARI, T. J. URBAN, AND C. T. LAWRENCE, A primal-dual interior-
point method for nonlinear programming with strong global and local convergence properties, SIAM J.
Optim., 14 (2003), pp. 173–199.

[18] M. ULBRICH, S. ULBRICH, AND L. N. VICENTE, A globally convergent primal-dual interior-point filter
method for nonlinear programming, Math. Program., 100 (2004), pp. 379–410.

[19] R. J. VANDERBEI AND D. F. SHANNO, An interior-point algorithm for nonconvex nonlinear programming,
Comput. Optim. and Appl., 13 (1999), pp. 231–252.

[20] A. WÄCHTER AND L. T. BIEGLER, Line search filter methods for nonlinear programming: Motivation and
global convergence, SIAM J. Optim., 16 (2005), pp. 1–32.

[21] A. WÄCHTER AND L. T. BIEGLER, On the implementation of a primal-dual interior point filter line search
algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), pp. 25–57.

[22] S. J. WRIGHT, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.
[23] H. YAMASHITA, H. YABE, AND T. TANABE, A globally and superlinearly convergent primal-dual interior

point trust region method for large scale constrained optimization, Math. Program., 102 (2005), pp. 111–
151.

Appendix: Proof of Lemma 2.2.

For the proof of Lemma 2.2 we use the following estimates.
LEMMA 6.1. The following estimates hold, using the conventions 00 = 1, 0α = 0,

α > 0.

∀ a, b ≥ 0, α ∈ [0, 1] : (a+ b)α ≤ aα + bα. (6.1)

∀ α, t ∈ [0, 1] : tα + (1− t)α ≤ 21−α. (6.2)

Proof. Proof of (6.1): The cases a = 0 or b = 0 or α = 0 are obvious. We thus can
assume a, α > 0 and bracket out a. Then we have to prove

f(t) def= 1 + tα − (1 + t)α ≥ 0 ∀ 0 ≤ t ≤ 1.

We have

f(0) = 0, f ′(t) = αtα−1 − α(1 + t)α−1 ≥ 0 (t > 0).

Proof of (6.2): Consider first the case α = 0. Then

t0 + (1− t)0 = 1 + 1 = 21−0.

32

http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html

For the case α ∈ (0, 1] and t ∈ {0, 1} we obtain

tα + (1− t)α = 0α + 1α = 1 ≤ 21−α.

Finally, let α ∈ (0, 1] and t ∈ (0, 1) and consider

f(t) def= tα + (1− t)α.

Then

f ′(t) = αtα−1 − α(1− t)α−1

≥ 0 0 < t < 1/2,
= 0 t = 1/2,
≤ 0 1/2 < t < 1.

Therefore,

f(t) ≤ f(1/2) = 2 · 2−α = 21−α.

We are now able to prove Lemma 2.2.
Proof. (of Lemma 2.2) We have

∇g(x) = p‖x‖p−2x (x 6= 0), ∇g(0) = 0 (p > 1).

Furthermore,

∇2g(x) = p‖x‖p−2I + p(p− 2)‖x‖p−4xxT (x 6= 0), ∇2g(0) = 2I (p = 2).

Let x, y ∈ Rn be arbitrary and let τ be the minimizer of t ∈ [0, 1] 7→ ‖(1− t)x+ ty‖. Setting
z = (1− τ)x+ τy we have z⊥(y − x).

We first consider the situation ρ def= ‖z‖ > 0 and prove the second part of the lemma.
The eigenvalues of ∇2g(x) are:

p‖x‖p−2 (multiplicity n− 1), p‖x‖p−2 + p(p− 2)‖x‖p−2 = p(p− 1)‖x‖p−2.

Hence, since p ≤ 2

‖∇2g(x)‖ = p‖x‖p−2.

Therefore, we can estimate

‖∇g(y)−∇g(x)‖ ≤
∫ 1

0

‖∇2g(x+ t(y − x))(y − x)‖ dt ≤ pρp−2‖y − x‖.

Now we turn to the first assertion of the lemma. We distinguish two cases.
If ρ def= ‖z‖ ≤ ‖y − x‖/2 we obtain by using (6.1) and (6.2)

‖∇g(y)−∇g(x)‖ ≤ ‖∇g(y)‖+ ‖∇g(x)‖ = p‖y‖p−1 + p‖x‖p−1

= p(‖z‖2 + (1− τ)2‖y − x‖2)
p−1
2 + p(‖z‖2 + τ2‖y − x‖2)

p−1
2

≤ 2p‖z‖p−1 + p(τp−1 + (1− τ)p−1)‖y − x‖p−1

≤ 2p‖z‖p−1 + 22−pp‖y − x‖p−1

≤ 2 · 21−pp‖y − x‖p−1 + 22−pp‖y − x‖p−1

= 23−pp‖y − x‖p−1.

If ρ def= ‖z‖ > ‖y − x‖/2 we can use the assertion already proved to arrive at

‖∇g(y)−∇g(x)‖ ≤ pρp−2‖y − x‖ ≤ 22−pp‖y − x‖p−1.

33

θ(wk) ≤ ∆k min{γ1, γ2∆
β
k} ?

�
�

�
�

�
�

��
true

H
H

H
H

H
H

Hj
false

wk(∆k) is acceptable in filter
(with wk considered in filter if

mk(wk)−mk(wk(∆k)) < κθ(wk)2)?

add wk to filter
enter restoration

compute wk+1 such that:
wk+1 is acceptable to filter,

wk+1 ∈ N (γ, M, p),
θ(wk+1) ≤ ∆in

k+1 min{γ1, γ2(∆
in
k+1)

β},
and return to step 1 with ∆in

k+1 = ∆k

?

true

H
HHHHH

Hj
false

∆in
k+1 := ∆′

k+1 := ∆k/2
return to step 3

ρk ≥ η
or

mk(wk)−mk(wk(∆k)) < κθ(wk)2?

�
�

�
��

false

?

true

add wk to filter if
mk(wk)−mk(wk(∆k)) < κθ(wk)2

∆in
k+1 ≥ ∆k

wk+1 = wk(∆k)
return to step 1

FIG. 3.1. Steps 4-11 of Algorithm 3.1.

34

	Introduction
	Interior-point framework
	Step computation
	New filter entries
	Step length
	Central neighborhood
	Use of second-order derivatives
	Step estimates

	The interior-point filter method
	Global convergence to first-order critical points
	The solver ipfilter for nonlinear programming
	Upper and lower bounds
	Linear systems
	Control of inertia and conditioning
	Initial point and warm start
	Restoration
	Other parameters and stopping criterion

	Numerical results

