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Abstract. In this paper we extend the design of a class of composite–step trust–region SQP methods and their global

convergence analysis to allow inexact problem information. The inexact problem information can result from iterativelinear
systems solves within the trust–region SQP method or from approximations of first–order derivatives. Accuracy requirements
in our trust–region SQP methods are adjusted based on feasibility and optimality of the iterates. Our accuracy requirements
are stated in general terms, but we show how they can be enforced using information that is already available in matrix–free
implementations of SQP methods. In the absence of inexactness our global convergence theory is equal to that of Dennis,
El–Alem, Maciel (SIAM J. Optim., 7 (1997), pp. 177–207). If all iterates are feasible, i.e., if all iterates satisfy the equality
constraints, then our results are related to the known convergence analyses for trust–region methods with inexact gradient
information for unconstrained optimization.
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1. Introduction. In this paper we study a class of trust–region sequential quadratic program-
ming (SQP) algorithms for the solution of minimization problems with nonlinear equality con-
straints. Our aim is to extend the design of these algorithmsand their convergence theory to allow
the use of inexact problem information that originates frominexact first–order derivative information
or from the use of inexact linearized constraint equation oradjoint equation solves.

The problems we are interested in are of the formmin f(y; u);
s.t. C(y; u) = 0;(1.1)

wherey 2 IRm, u 2 IRn�m, f : IRn �! IR, C : IRn �! IRm, m < n. Our theory assumes
that f andC are at least twice continuously differentiable. Variants of the algorithms, however,
require only first–order derivative information. Our research is motivated by discretized optimal
control problems [16, 18, 21], parameter identification problems and inverse problems [28, 31], and
design optimization [4, 24]. In these applicationsy represents the discretized state variables andu
represents the discretized controls, parameters, or design variables, respectively, and the nonlinear
constraintC(y; u) = 0 is the discretized state equation. For many of the above mentioned applica-
tions the solution of linear equations of the typeCy(y; u)z = d or Cy(y; u)T z = d;(1.2)

wherey; u andd are given and whereCy(y; u) andCu(y; u) are the partial Jacobians with respect
to y andu, respectively, is costly and has to be accomplished by iterative methods. In optimal
control, parameter identification, or optimal design problems the equations (1.2) are related to the
linearized state equations and the adjoint equations, respectively, and it is often desirable to solve
such equations using application specific methods such as Krylov–subspace, multigrid, or domain
decomposition methods. Hence exact solutions of linear systems (1.2) are not available; only ap-
proximate solutions with a specified residual tolerance canbe obtained.�Department of Computational and Applied Mathematics Rice University, Houston, TX 77005–1892, USA. E-Mail:
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Composite step trust–region SQP methods are used successfully to solve large scale optimiza-
tion problems. However, existing convergence theories, which are nicely reviewed in [5], rely on
the exact solution of linear systems of the form (1.2). Most existing implementations of SQP meth-
ods, use dense or sparse linear algebra methods to accomplish the linear system solves. As we have
mentioned before this is not feasible for several of the applications we have in mind. Our main
motivation of this paper is the control of inexactness arising from iterative system solves (1.2) in
composite–step trust–region SQP methods. However, our assumptions on the inexactness are more
general and cover inexact first–order derivative information. The novel aspect of our work is the
ability to deal with inexact first–order derivative information or inexact linearized constraint equa-
tion solves. Of course, we also allow the inexact solution oftrust–region subproblems, which is a
standard ingredient of trust–region convergence theoriesand implementations.

In the context of Newton methods for nonlinear equations andunconstrained optimization, the
control of inexactness is relatively well understood. See,e.g., [2, 7, 12, 13, 14, 25]. Generalizations
of the inexact Newton method concepts to the local convergence analysis of inexact SQP methods
can be found, e.g., in [8, 9, 15, 22, 26]. In [23] global convergence of line-search reduced SQP
methods is studied. The influence of inexact problem information on the global convergence of
trust–region SQP methods, however, is to our knowledge not yet studied. Our analysis and our
assumptions on inexactness are different from [23]. In particular, our bounds on the inexactness do
not rely on Lipschitz constants, derivative bounds, and other quantities that are difficult to obtain
in practice. Our bounds on the inexactness depend on quantities that are readily available in our
algorithms.

We give a global convergence analysis of a class of composite–step trust–region SQP algorithms
for (1.1), which are reviewed in [5,x 15.4] and [10,x 4]. In the absence of inexactness our global
convergence theory is that of [10]. If all iterates are feasible, i.e., if all iterates satisfyC(yk; uk) = 0,
then our results are related to the convergenceanalyses in [3, 5] for trust–region methods with inexact
function and gradient information for unconstrained optimization.

This paper is organized as follows. In section 2 we will consider the reduced problemmin f(y(u); u) obtained from (1.1) by eliminating the variablesy. We will briefly discuss the con-
vergence analyses in [3] and [5,xx 8.4,10.6] for trust–region methods with inexact function or gra-
dient information for the reduced problem. This will revealsome useful problem information and it
will later motivate our assumptions on the inexactness for problem (1.1). Section 3 contains a brief
review of the composite–step trust–region SQP algorithms and of their global convergence analyses
given in [10]. Our inexact trust–region SQP algorithms and their global convergence analyses will
be described in section 4. Assumptions on the inexactness insection 4 are stated in a general way.
In section 5 we will discuss how they could be satisfied in an implementation. In the conclusions,
section 6, we point to some possible extensions.

We use the following notation. We often setx = (y; u) and usezy andzu to represent the
subvectors ofz 2 IRn corresponding to they andu components, respectively. The SQP iterates
are indexed byk and the symbol of a function with subscriptk is used to represent the value of that
function atxk and, possibly,�k. For instance,fk = f(xk) = f(yk; uk). The vector and matrix
norms used are thè2 norms, i.e.,k � k = k � k2. Thel � l identity matrix is denoted byIl.

2. Trust–region methods for the black–box formulation with inexactness.Under the as-
sumptions of the implicit function theorem, the problem (1.1) can be locally reduced to an uncon-
strained problem in the variableu. Since the type of inaccuracies we are interested in for (1.1) relate
to function and gradient inaccuracies for the reduced problem, it is worthwhile to review existing
results on trust–region methods with inexact function and gradient evaluations for unconstrained
problems. To simplify this presentation, we impose conditions that ensure that (1.1) is equivalent to
an unconstrained problem. We suppose that for allu 2 IRn�m the constraint equationC(y; u) = 0
has a unique solutiony and thatCy(y; u) is invertible for all(y; u) with C(y; u) = 0. In this case
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the implicit function theorem guarantees the existence of atwice continuously differentiable func-
tion u 7! y(u) defined through the solution ofC(y; u) = 0. Instead of (1.1) we can consider the
equivalent reduced problem min bf(u) = f(y(u); u):(2.1)

This problem is also called the black–box formulation of theoptimization problem (1.1) because the
solution ofC(y; u) = 0 is treated as a black–box in the optimization algorithms for(2.1). It can be
shown thatr bf(u) =W (y; u)Trf(y; u)jy=y(u) =W (y; u)Tr`(y; u; �)jy=y(u);�=�(u);(2.2)

where W (y; u) = � �Cy(y; u)�1Cu(y; u)In�m � ;(2.3)

and�(u) solvesCy(y(u); u)T� = �ryf(y(u); u). For details see, e.g., [11, 19].
Now, suppose that the nonlinear equationsC(y; uk) = 0 can not be solved exactly foryk = y(uk), but that an approximationey(uk) of yk = y(uk) is computed by applying an it-

erative method toC(y; uk) = 0. In this case the functionbf and its gradient can not be eval-
uated exactly. Gradient computation also requires the solution of a linear system of the formCy(yk; uk)T z = �ryf(yk; uk); if such systems are solved iteratively, this will introduce another
source of inexactness in the gradient. How does one need to control the inexactness in function val-
ues and gradients in trust–region methods for (2.1)? The influence of inexact gradient information is
analyzed in [3], [5,x 8.4], [35] (for a detailed literature review see [5, p. 296])and the influence of
inexact function evaluations is studied in [5,x 10.6]. We want to ensure that our inexactness assump-
tions for the trust–region method for (1.1) are compatible with the existing inexactness assumptions
for trust–region methods for (2.1) in the case that the SQP iterate(yk; uk) satisfiesC(yk; uk) = 0.
Therefore we briefly review the theory in [5,xx 8.4,10.6].

In a trust–region method for the solution of (2.1) one computes an approximate solution ofminksuk��k bmk(su) def= bfk + bgTk su + 12sTu bHksu;
wherebgk is an approximation ofr bf(uk) and bHk replacesr2 bf(uk). The decision about the ac-
ceptance ofuk + (su)k as the next iterate and about how to update the trust–region radius is
based on the ratio of actual decreasedaredk = bf(uk) � bf(uk + (su)k) and predicted decreasedpredk = bmk(0) � bmk((su)k). Let �2 2 (0; 1) be the constant so that the trust–region radius is
reduced if and only ifdaredk=dpredk < �2 and let�1 2 (0; �2℄ be the constant so that the step is
rejected if and only ifdaredk=dpredk < �1.

In [5, x 8.4] it is shown that if the relative gradient error satisfieskbgk �r bf(uk)k=kbgkk � � < (1� �2)=2;(2.4)

then global convergence of the trust–region algorithm to stationary points can be guaranteed. This
accuracy requirement for the gradient approximation is rather weak.

Inexact evaluation ofbf influences the computation ofdaredk. The influence of inexact function
evaluations is analyzed in [5,x 10.6]. It is sufficient thatjf(ey(uk); uk)� f(y(uk); uk)j � �0dpredk;jf(ey(uk + (su)k); uk + (su)k)� f(y(uk + (su)k); uk + (su)k)j � �0dpredk;(2.5)
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where�0 < 12�1. In particular, these accuracy requirements guarantee that if the ratio of actual

and predicted decreases indicates acceptance of the step, i.e., if daredk=dpredk � �1, wheredaredk is
computed with the inexact function values, then one still obtains a sufficient decreasebf(uk)� bf(uk+(su)k) � (�1 � 2�0)dpredk in the exact function values. Note also that the accuracy requirement
for f(ey(uk); uk) depends on the trust-region step(su)k, which is not known whenf(ey(uk); uk) is
computed the first time. Therefore,f(ey(uk); uk) might have to be recomputed ifdpredk becomes
too small to meet the required accuracy requirement. For more details see [5,x 10.6].

3. Trust–Region SQP Methods.In this section we describe the class of composite–step trust–
region algorithms assuming exactf andC derivative information and assuming exact solutions of
linear systems of the form (1.2). Our representation follows [10, 11]. This section is needed to
introduce some basic terminology and notation, as well as todescribe later on what can go wrong iff orC derivative information, or linear system (1.2) solutions are inexact.

3.1. The main components of our composite–step trust–region algorithms. Given a local
minimizer x� = (y�; u�) for problem (1.1), there exists a Lagrange multiplier�� such that the
gradientr`(x�; ��) of the Lagrangian function`(y; u; �) = f(y; u) + �TC(y; u)
is zero. IfCy(x�) is assumed to be nonsingular, then the Lagrange multiplier�� is determined byry`(x�; ��) = ryf(x�) + Cy(x�)T�� = 0, and the first–order necessary optimality conditions
can be written as ru`(x�; �(x�)) = W (x�)Trf(x�) = 0;r�`(x�; �(x�)) = C(x�) = 0;(3.1)

whereW (x�) is given by (2.3).
Given approximationsxk = (yk; uk) and�k for the solution(y�; u�) and the corresponding

Lagrange multiplier�� of (1.1), SQP algorithms compute an (approximate) solutionof the quadratic
programming (QP) problemmin qk(s) def= `(xk ; �k) +rx`(xk; �k)T s+ 12sTHks;

s.t. Cy(xk)sy + Cu(xk)su + C(xk) = 0;(3.2)

whereHk is a symmetric approximation to the Hessianr2xx`(xk; �k) of the Lagrangian at(yk; uk; �k) or the Hessian itself, and then generate a new iterate(yk+1; uk+1) from this QP so-
lution and, possibly, the corresponding Lagrange multiplier�k+1. To ensure global convergence, a
trust–region condition of the formksk � �k is imposed. However, the linear constraints in (3.2)
and this trust-region constraint can be incompatible. To deal with the possibility of incompatible
constraints, composite–step trust–region algorithms, many of which are reviewed in [5,x 15.4], [10,x 4], split the steps as a sum of two stepssn andst. We assume thatCy(xk) is invertible. In this
case the step decomposition takes the forms =  sysu ! = sn + st =  sny0 !+ stysu ! :

3.1.1. The quasi–normal step towards feasibility.First, composite–step trust–region algo-
rithms compute a so–called quasi–normal stepsnk, which is responsible to move towards feasibility.
Since we assume thatCy(xk) is invertible, they–component ofsnk is an approximate solution ofmin kCy(xk)sny + C(xk)k;

s.t. ksnyk � �k(3.3)
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and theu–component ofsnk is given by(snu)k = 0. Subproblem (3.3) is not solved exactly. A rather
coarse solution is sufficient to guarantee basic global convergence. The quasi–normal componentsnk
is required to satisfykCkk2 � kCy(xk)(sny)k + Ckk2 � �1kCkkminf�2kCkk;�kg;(3.4)

where�1 and�2 are positive constants independent ofk.

3.1.2. The tangential step towards optimality.In a second step, composite–step trust–region
algorithms compute a so–called tangential stepstk, which is responsible to move towards optimality
but has to maintain linearized feasibility, i.e., has to be in the null-space of the linearized constraints.
The tangential step is an approximate solution ofmin qk(snk + st)

s.t. Cy(xk)sty + Cu(xk)su = 0;ksuk � �k:(3.5)

From the constraints in (3.5) we see thatst = Wksu, whereWk is defined in (2.3). Therefore we
can write qk(snk + st) = qk(snk) + �W Tk (Hksnk +rx`k)�T su + 12sTuW Tk HkWksu(3.6)

and pose the problem (3.5) entirely insu:min bqk(su) def= qk(snk) + �W Tk (Hksnk +rx`k)�T su + 12 (su)TW Tk HkWk(su)
s.t. ksuk � �k:(3.7)

Reduced SQP algorithms do not approximate the Hessianr2xx`(xk; �k) but the reduced Hes-
sianW Tk r2xx`(xk; �k)Wk . In this caseW Tk HkWk in (3.7) is replaced by the reduced Hessian
approximationbHk and the termHksnk is approximated. The details of the latter approximation are
not important in our global analysis and we refer to, e.g., [1] for more details.

The tangential step does not need to solve (3.5) or (3.7) exactly. It is sufficient that the tangential
component(su)k satisfies a fraction of Cauchy decrease condition associated with the trust–region
subproblem (3.7). In other words,(su)k has to provide as much decrease in the quadraticbqk(su) as
the decrease achieved in the direction�rbqk(0) = �W Tk (Hksnk +rx`k) inside the trust region. It
can be proved that such a condition impliesbqk(0)� bqk((su)k) � �4kW Tk (Hksnk +rx`k)kminn�5kW Tk (Hksnk +rx`k)k; �6�ko;(3.8)

where�4, �5, and�6 are positive constants independent ofk.

3.1.3. Measuring progress and evaluating the trial step.To decide about acceptance of the
stepsk = snk + stk we follow [10] and use the augmented Lagrangian merit functionL(x; �; �) = f(x) + �TC(x) + �C(x)TC(x) = `(x; �) + �C(x)TC(x):
The decision about acceptance of the step and update of the trust–region radius�k is based on the
ratio of actual decreaseared(sk; �k), given byared(sk; �k) def= L(xk; �k ; �k)� L(xk + sk; �k+1; �k);(3.9)

and predicted decreasepred(sk ; �k), given bypred(sk ; �k) def= L(xk; �k; �k)� �qk(sk) + ��Tk (Jksk + Ck) + �kkJksk + Ckk2� ;(3.10)
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whereqk is defined in (3.2), whereJ(y; u) = (Cy(y; u) j Cu(y; u)) is the Jacobian ofC, and
where��k = �k+1 � �k. Since the tangential step lies in the null space ofJk, we haveJkstk =Cy(xk)(sty)k + Cu(xk)(su)k = 0, and it can be easily seen thatpred(sk; �k) = bqk(0)� bqk((su)k)+ qk(0)� qk(snk)� (��k)T (Cy(xk)(sny)k + Ck)+ �k �kCkk2 � kCy(xk)(sny)k + Ckk2� :(3.11)

Recall thatbqk((su)k) = qk(snk +Wk(su)k) (see (3.7)).
Because of the requirements (3.4), (3.8) on the quasi–normal step and tangential step, respec-

tively, we have thatbqk(0) � bqk((su)k) + �k �kCkk2 � kCy(xk)(sny)k + Ckk2� > 0, providedxk
does not satisfy the first–order necessary optimality conditions (3.1). To ensure thatpred(sk; �k) is
sufficiently positive the penalty parameter�k is increased if necessary. In fact, the penalty parameter�k will be chosen so thatpred(sk; �k) � �k2 �kCkk2 � kCy(xk)(sny)k + Ckk2�
(see step 2.6 in algorithm 3.1 below).

3.2. Statement of the algorithm.This leads to the following class of trust-region SQP algo-
rithms. They are the same as the trust-region SQP algorithmsin [10], but are adapted to our problem
context and to our notation.

ALGORITHM 3.1 (Trust-Region SQP Algorithms).
1 Choosex0 and�0 > 0, and calculate�0. Set��1 � 1 and�tol > 0. Choose�1, �1,�min,�max, and�� such that0 < �1; �1 < 1, 0 < �min � �max, and�� > 0.
2 Fork = 0; 1; 2; : : : do

2.1 Computesnk satisfying (3.13) and (3.4).
2.2 ComputeW Tk rqk(snk).
2.3 If kCkk+ kW Tk rqk(snk)k � �tol, stop and returnxk as an approximate solution for

problem (1.1).
2.4 Compute(su)k satisfying (3.8).
2.5 Compute�k+1 and set��k = �k+1 � �k.
2.6 Update the penalty parameter.

If pred(sk; �k�1) � �k�12 �kCkk2 � kCy(xk)(sny)k + Ckk2�, then set�k = �k�1.
Otherwise set�k = 2 ��bqk(0) + bqk((su)k)� qk(0) + qk(snk) + ��Tk (Cy(xk)(sny)k + Ck)�kCkk2 � kCy(xk)(sny)k + Ckk2 + ��:

2.7 Compute(sty)k = �Cy(xk)�1Cu(xk)(su)k (if not already done in step 2.4).
2.8 If ared(sk; �k)=pred(snk; (su)k ; �k) < �1, set�k+1 = �1max fksnkk; k(su)kkg

and rejectsk.
Otherwise acceptsk and choose�k+1 such thatmaxf�min;�kg � �k+1 � �max:



ANALYSIS OF INEXACT TRUST–REGION SQP ALGORITHMS 7

2.9 If sk was rejected setxk+1 = xk and�k+1 = �k . Otherwise setxk+1 = xk + sk and
let �k+1 be the vector computed in step 2.5.

REMARK 3.2. In reduced SQP methods one usesHk = � 0 00 bHk � :
In this caseHksnk = 0 and steps 2.1 and 2.7 can be merged into a step 2.4a. Instead ofexecuting
steps 2.1 and 2.7, one computes in step 2.4a an approximate solution (sy)k ofmin kCy(xk)sy + C(xk)k;

s.t. ksyk � �k(3.12)

which satisfies(3.13)and(3.4). In this case(sny)k in steps 2.6 and 2.8 is replaced by(sy)k.

3.3. First–order global convergence of the algorithm.Dennis, El–Alem, and Maciel [10]
have proved that the class of trust-region SQP algorithms 3.1 is globally convergent. Their con-
vergence theory requires the set of assumptions given below. For all iterationsk we assume thatxk; xk + sk 2 
, where
 is an open subset ofIRn.

A.1 The functionsf , i, i = 1; : : : ;m are twice continuously differentiable functions in
.
Herei(x) represents thei–th component ofC(x).

A.2 The partial JacobianCy(x) is nonsingular for allx 2 
.
A.3 The functionsf , rf , r2f , C, J , r2i, i = 1; : : : ;m, are bounded in
. The matrixCy(x)�1 is uniformly bounded in
.
A.4 The sequencesfHkg, fWkg, andf�kg are bounded.

Dennis, El–Alem, and Maciel [10] show that for a subsequenceof the iterates the first–order
necessary optimality conditions (3.1) of problem (1.1) aresatisfied in the limit.

THEOREM 3.3. Let assumptions A.1-A.4 hold. The sequences of iterates generated by the
trust-region SQP algorithms 3.1 satisfylim infk!1 �kW Tk rfkk+ kCkk� = 0:

We remark that inequality (3.4) and A.3 imply the existence of �3 > 0, independent ofk, such
that ksnkk � �3kCkk:(3.13)

In fact, usingkCy(xk)(snk)y + Ckk � kCkk and the boundedness offCy(xk)�1g we find thatksnkk � kCy(xk)�1k �kCy(xk)(snk)y + Ckk+ kCkk� � 2kCy(xk)�1k kCkk :
In [10] the condition (3.13) is imposed as an additional condition on the quasi-normal step, because
more general quasi–normal steps are allowed.

4. Trust–region SQP methods with inexactness.Now we allowf andC derivative informa-
tion, as well as linear system (1.2) solutions to be inexact.We assume, however, that the user is
able to adjust the level of inexactness. We will investigatehow algorithm 3.1 has to be modified to
cope with this inexactness. Our aim is to devise conditions on the allowable level of inexactness that
meet three criteria. First, we want our conditions to be as weak as possible to admit inexpensive
problem information when the iterates(yk; uk) are far away from the solution. Secondly, we want
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our conditions to be comparable with the conditions on inexact function and gradient information
for unconstrained trust-region methods applied to the black–box formulation (2.1), which have been
reviewed in section 2. Thirdly, while our conditions on the allowable level of inexactness will be
general, we want them to be implementable. In particular, the conditions on the allowable level of
inexactness should not depend on derivative bounds, Lipschitz constants, and other quantities that
can not be computed in practice.

4.1. The main components of our composite–step trust–region algorithms with inexact
problem information.

4.1.1. The quasi–normal step.The assumption (3.4) on the quasi–normal step turns out to be
rather weak and can be satisfied using several algorithms that fit into our inexactness framework.
This issue will be discussed in section 5.1. Notice also thatassumption (3.4) is already expressed in
terms of the right hand sideCk and the residualCy(xk)sny + Ck of the linear systemCy(xk)sny =�Ck.

4.1.2. Theu–component of the tangential step.The computation of the tangential stepstk
allowing inexact information is more complicated. Among other things, we can not assume thatstk is in the null-space of the linearized constraints. This condition, expressed asst = Wksu was
used repeatedly in sections 3.1.2 and 3.1.3. It will be very useful to discuss the computation of theu–component and the computation of they–component of the tangential step separately.

If exact derivative information and exact linearized system solves are available, then theu–
component of the tangential step is the approximate solution of (3.7). Now, only approximations
of W Tk (Hksnk + rx`k) andW Tk HkWk will be available and we computesu as the approximate
solution of min bmk(su) def= qk(snk) + bgTk su + 12sTu gW Tk HkWksu

s.t. ksuk2 � �k:(4.1)

In (4.1) the symbole overW Tk HkWk indicates that the reduced Hessian approximation may be

inexact. What are the accuracy requirements onbgk and on gW Tk HkWk?
If (yk; uk) were feasible, i.e., ifC(yk; uk) = 0, thensnk = 0 (see (3.4)) andr bf(uk) =W Tk (Hksnk +rx`k) (see (2.2)). In this case the theory of [5,x 8.4] for the reduced problem (2.1),

which was reviewed in section 2, suggests an accuracy requirement of the formkbgk �W Tk (Hksnk +rx`k)k � �1kbgkk(4.2)

with some�1 2 (0; 1) which is related to the parameters in the trust–region algorithm (c.f., (2.4)).
We need a slightly stronger condition, namelykbgk �W Tk (Hksnk +rx`k)k � �1min fkbgkk;�kg ;(4.3)

where�1 > 0. In (4.3) the constant�1 is not tied to the parameters in the trust–region algorithm,in
particular we do not need�1 < 1, but the absolute error in the reduced gradient approximation must
be less thankbgkk and�k.

In section 5.2 we show how (4.3) can be enforced in practice, if errors in the reduced gradient
are due to inexact linear system solves. There we will see that while (4.3) is slightly stronger than
(4.2), the fact that we can give up the restriction�1 < 1 makes it preferable from an implementation
point of view.

REMARK 4.1. Imposing the inexactness conditionkbgk �r bf(uk)k � �1min fkbgkk;�kg ;(4.4)
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where�1 > 0, instead of(2.4) also gives the standardlim inf global convergence result for the
unconstrained problem(2.1). This may be seen using the proof in [27, Th. 4.10] and applying (4.4)
in the estimate forj k(sk)�rf(xk)T skj on page 278 of [27].

The approximate reduced Hessian has to satisfy(su)Tk gW Tk HkWk(su)k � �2k(su)kk2(4.5)

for some�2 > 0 independent ofk. If W Tk HkWk is evaluated exactly, then (4.5) is implied by
assumption A.4.

The approximate solution(su)k of (4.1) computed in step 2.4 of algorithm 3.1 must provide a
fraction of Cauchy decrease on this approximate modelbmk, i.e.,bmk(0)� bmk((su)k) � �4kbgkkminn�5kbgkk; �6�ko;(4.6)

where, as in (3.8),�4, �5, and�6 are positive constants independent ofk. One method to actually
computesu satisfying (4.6) will be discussed in section 5.3.

4.1.3. Measuring progress, updating the penalty parameter, and evaluating the trial step.
The reformulation (3.11) of the predicted decreasepred(sk; �k) defined in (3.10) is only valid ifstk
is in the null-space of the linearized constraints. If this is not the case, thenpred(sk; �k) = bqk(0)� bqk((su)k)+ qk(0)� qk(snk)� (��k)T (Cy(xk)(sny)k + Ck)+ �k �kCkk2 � kCy(xk)(sny)k + Ckk2��(��k)T (rtk)� �kkrtkk2 � 2�k(rtk)T �Cy(xk)(sny)k + Ck� ;
where rtk = Cy(xk)(sty)k + Cu(xk)(su)k :(4.7)

Moreover, the reduced quadratic modelbqk defined in (3.2) is now replaced bybmk defined in (4.1).
We definepred(snk; (su)k; �k) = bmk(0)� bmk((su)k) + qk(0)� qk(snk)�(��k)T (Cy(xk)(sny)k + Ck) + �k �kCkk2 � kCy(xk)(sny)k + Ckk2�
(4.8)
and rpred(rtk ; �k) = �(��k)T (rtk)� �kkrtkk2 � 2�k(rtk)T �Cy(xk)(sny)k + Ck� :(4.9)

We now view pred(snk; (su)k; �k) + rpred(rtk; �k)
as the quadratic model of the Lagrangian.

This predicted reductionpred(snk; (su)k; �k) depends only onsnk and(su)k and can be readily
computed. In fact, the quantitiesbmk(0), bmk((su)k) andCy(xk)(sny)k + Ck are typically already
computed during the computation of theu–component of the tangential step and the computation of
the quasi–normal step, respectively.

Because of the requirements (3.4) and (4.6) onsnk and(su)k , respectively, we have thatbmk(0)�bmk((su)k)+�k �kCkk2 � kCy(xk)(sny)k + Ckk2� > 0, provided(yk; uk) does not satisfy the first–
order necessary optimality conditions (3.1). We update thepenalty parameter�k, if necessary, to
ensure sufficient positivity ofpred(snk; (su)k; �k). See step i2.6 in algorithm 4.3 below.

The evaluation of the stepsk = snk+stk (we will discuss the computation of(sty)k in a moment)
will be based on the ratioared(sk; �k)=pred(snk; (su)k; �k).
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4.1.4. They–component of the tangential step.As we have noted in the previous section, the
quadratic model of the Lagrangian ispred(snk; (su)k; �k)+rpred(rtk; �k). However, step evaluations
are performed based onpred(snk ; (su)k; �k) only. To ensure that the inexactness in the tangential
step(sty)k does not dominate this quadratic model, we require that��rpred(rtk ; �k)�� � �0pred(snk; (su)k; �k);(4.10)

where�0 2 (0; 1 � �1) is a given constant and�1 is the parameter in step 2.8 of the trust–region
algorithm, and that krtkk � �3�kk(su)kk(4.11)

for some constant�3 > 0 independent ofk. If we estimatejrpred(rtk ; �k)j � �kkrtkk2 + (k��kk+2�kkCy(xk)(sny)k +Ckk)krtkk and insert this upper bound into (4.10), we see that inequality (4.10)
is implied by krtkk � �� +q�2 + �0pred(snk; (su)k; �k)=�k;(4.12)

where� = kCy(xk)(sny)k + Ckk + k��kk=(2�k). Inequalities (4.10) and (4.11) are satisfied for
the exact solution ofCy(xk)(sty)k = �Cu(xk)(su)k. The quantitykrtkk is the residual accuracy of
an inexact solutionsty of Cy(xk)sty = �Cu(xk)(su)k. Sincesnk; (su)k andpred(snk; (su)k; �k) are
known, a step(sty)k with (4.10) and (4.11) can be computed.

REMARK 4.2. i. Condition(4.10) is motivated by(2.5). We need to control the accuracy ofpred(snk; (su)k; �k) + rpred(rtk ; �k), whereas(2.5) controls the accuracy of the actual reduction.
However, the effects of both conditions on the ratio of actual and predicted reduction are similar.

ii. Notice that(sty)k = �Cy(xk)�1Cu(xk)(su)k + Cy(xk)�1rtk and that(4.11)implieskCy(xk)�1rtkk � �4�k(4.13)

for some�4 > 0. In other words, it implies that the norm of the residual (tangential) stepCy(xk)�1rtk is bounded by a constant time the trust–region radius. If we viewCy(xk)�1rtk as a
second (tangential) step, or as a spacer (tangential) step,we then identify(4.13)as a condition that
has already been imposed on steps of such types in the contextof global convergence of trust–region
algorithms for unconstrained optimization [5,x 10.4], [6].

We note that the amount of positivity inpred(snk; (su)k; �k) is determined by the reductionsbmk(0)� bmk((su)k) andkCkk2�kCy(xk)(sny)k+Ckk2. Thus we can allow the more inaccuracy in
the(sty)k computation, which typically translates into less expensive (sty)k computation, the larger
the linearized feasibility gainkCkk2�kCy(xk)(sny)k+Ckk2 achieved by the quasi–normal stepand
the larger the optimality gainbmk(0) � bmk((su)k) achieved by theu–component of the tangential
step. In particular, even ifkCkk2 � kCy(xk)(sny)k + Ckk2 is small, butbmk(0) � bmk((su)k) is
large (which is likely the case at a pointxk = (yk; uk) that is almost feasible, but away from
being optimal) the accuracy requirement on(sty)k is rather weak. Our criterion also seems to be
closely aligned with the SQP philosophy which allows to trade gains in feasibility for gains in
optimality. Another important point worth noting is that inaccuracy in(sty)k does not enter the
penalty parameter update. If it would, the penalty parameter might increase faster. Since too large
penalty parameters�k can slow down the convergence of SQP methods this is another benefit of our
accuracy requirement.

Our initial and somewhat straight forward approach [20, 36]to deal with inaccuracy did not
use the splitpred(snk; (su)k; �k) + rpred(rtk ; �k). Rather, the predicted decrease was defined by
(3.10). After determination ofsnk satisfying (3.4) we computed a tangential step that, among other
conditions, satisfiedkCkk2 � kJk(snk + stk) + Ckk2 � �5 �kCkk2 � kCy(xk)(sny)k + Ckk2�(4.14)
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with �5 2 (0; 1). Thus accuracy of(sty)k depended only on the linearized feasibility gainkCkk2 �kCy(xk)(sny)k + Ckk2 achieved by the quasi–normal step. Moreover, whenpred(sk; �k�1) < �k�12 �kCkk2 � kJk(snk + stk) + Ckk2�;
wherepred(sk; �k) is given by (3.10), we used the update�k = 2 ��qk(0) + qk(sk) + ��Tk (Jksk + Ck)�kCkk2 � kJk(snk + stk) + Ckk2 + ��:(4.15)

The condition (4.14) often lead to very stringent accuracy requirements for(sty)k and the update
(4.15) often lead to large increases in the penalty parameter, especially when the current iter-
ate(yk; uk) happened to be almost feasible. The approach presented in this paper represents the
quadratic model of the Lagrangian aspred(snk; (su)k; �k) + rpred(rtk; �k), separates the computa-
tion of theu– and they–component of the tangential step, bases the accuracy requirement on(sty)k
on feasibilityandoptimality gains, and bases the penalty parameter update onquantities that are not
contaminated by inaccuracies in(sty)k.

4.1.5. Computation of the Lagrange multiplier estimate.Finally, the computation of�k+1
in step 2.5 of the exact trust-region SQP algorithms 3.1 is likely to involve inexact calculations.
However, as we have seen in theorem 3.3, global convergence to a stationary point requires only
boundedness from the sequence of Lagrange multipliersf�kg. This requirement is not only fairly
mild from a theoretical point of view, but under assumptionsA1–A4 also easy to impose computa-
tionally even when inexactness is present.

4.2. Statement of the algorithm. The inexact trust-region SQP algorithms are defined simi-
larly as their exact counter-part, algorithm 3.1, but with steps 2.1 to 2.8 modified to accommodate
the inexact calculations discussed above.

ALGORITHM 4.3 (Inexact Trust-Region SQP Algorithms).
1 The same initializations as in step 1 of algorithm 3.1.
2 Fork = 0; 1; 2; : : : do

i2.1 Computesnk satisfying (3.13) and (3.4).
i2.2 Compute an approximationbgk toW Tk rqk(snk) satisfying (4.3).
i2.3 If kCkk+ kbgkk � �tol, stop and returnxk = (yk; uk) as an approximate solution for

problem (1.1).
i2.4 Compute(su)k satisfying (4.6).
i2.5 Compute�k+1 and set��k = �k+1 � �k.
i2.6 Update the penalty parameter.

If pred(snk; (su)k; �k�1) � �k�12 �kCkk2 � kCy(xk)(sny)k + Ckk2�, then set�k = �k�1.
Otherwise set�k = 2 ��bmk(0) + bmk((su)k)� qk(0) + qk(snk) + ��Tk (Cy(xk)(sny)k + Ck)�kCkk2 � kCy(xk)(sny)k + Ckk2 +��:

i2.7 Compute(sty)k so that the residual vectorrtk satisfies (4.10) and (4.11).
i2.8 Computepred(snk; (su)k; �k) using (4.8).

If ared(sk; �k)=pred(snk; (su)k ; �k) < �1, set�k+1 = �1max fksnkk; k(su)kkg
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and rejectsk.
Otherwise acceptsk and choose�k+1 such thatmaxf�min;�kg � �k+1 � �max:

i2.9 The same step and multiplier updates as in step 2.9 of algorithm 3.1.
REMARK 4.4. In reduced SQP methods whereHksnk = 0 the algorithm can be slightly reor-

ganized to save one linear system solve with system matrix(Cy)k. See also Remark3.2. Steps 2.1
and 2.7 can be merged into a step 2.4a. Instead of executing steps 2.1 and 2.7, one computes in step
2.4a an approximate solution(sy)k of (3.12)which satisfies(3.13)and (3.4). In this case(sny)k is
replaced by(sy)k in the remaining steps of the algorithm and(sty)k = 0.

4.3. First–order global convergence of the algorithm.The global convergence property of
the inexact trust-region SQP algorithms 3.1 is stated in thefollowing theorem.

THEOREM 4.5. Let assumptions A.1-A.4 hold. The sequences of iterates generated by the
inexact trust-region SQP algorithms4.3satisfylim infk!1 �kbgkk+ kCkk� = 0:(4.16)

Furthermore, we have lim infk!1 �kW Tk rfkk+ kCkk� = 0:(4.17)

Proof. The proof of (4.16) follows the convergence analysis givenin [10] with the predicted
decrease used there always replaced bypred(snk; (su)k; �k) as defined in (4.8). Only a very few
steps in the convergence analysis change and we will review them in detail.

The first modification concerns the relationship between thesize of the stepsk and the trust–
region radius�k. The convergence analysis requires thatkskk � �7�k
and, ifsk is rejected, that �k+1 � �8kskk:
In our inexact trust–region SQP algorithms the first inequality follows from the trust–region con-
straints in (3.3), (4.1), and from (4.11) and assumption A.3. The second inequality is a consequence
of the update of the trust–region radius in i2.8.

The second modification is in the estimates of the differencebetween actual decrease and pre-
dicted decrease. Sincerpred(rtk; �k) is different from zero, the upper bounds on the difference
between actual and predicted decreases given in [10, L. 7.4,7.5] are now different. We will be able
to show jared(sk; �k)� pred(snk; (su)k; �k)� rpred(rtk; �k)j� �9�kkskk+ �10�kkskk3 + �11�kkskk2kCkk(4.18)

instead of [10, L. 7.4], and��ared(sk; �k)� pred(snk; (su)k; �k)� rpred(rtk; �k)�� � �12�k�kkskk(4.19)

instead of [10, L. 7.5].
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The estimates (4.18) and (4.19) can be verified as follows. Using the definitions (4.8) and (4.9)
we can see thatpred(snk; (su)k; �k) + rpred(rtk; �k)= �bgTk (su)k � 12(su)Tk gW Tk HkWk(su)k �rx`Tk snk � 12snkTHksnk���Tk (Jksk + Ck) + �k �kCkk2 � kJksk + Ckk2� :
With the definition (3.9) of the actual decrease, the previous identity, andW Tk (Hksnk + rx`k) =W Tk rqk(snk) we obtainared(sk; �k)� �pred(snk; (su)k; �k) + rpred(rtk ; �k)�= `(xk; �k) + �kkCkk2 � `(xk+1; �k+1)� �kkCk+1k2�pred(snk; (su)k; �k)� rpred(rtk; �k)= `(xk; �k)� `(xk+1; �k) + `(xk+1; �k)� `(xk+1; �k+1)+(Hksnk +rx`k)TWk(su)k + 12 (su)TkW Tk HkWk(su)k +rx`Tk snk + 12snkTHksnk+(bgk �W Tk rqk(snk))T (su)k + 12 (su)Tk gW Tk HkWk(su)k � 12 (su)TkW Tk HkWk(su)k+��Tk (Jksk + Ck)� �k(kCk+1k2 � kJksk + Ckk2)= �`(xk+1; �k) + qk(sk)� qk(sk) + bqk((su)k)+(bgk �W Tk rqk(snk))T (su)k + 12 (su)Tk gW Tk HkWk(su)k � 12 (su)TkW Tk HkWk(su)k+��Tk (�Ck+1 + Jksk + Ck)� �k �kCk+1k2 � kJksk + Ckk2� :(4.20)

Using Taylor expansion and the definition (3.2) ofqk givesj � `(xk+1; �k) + qk(sk)j � 12kHk �r2xx`(xk + t1ksk; �k)k kskk2(4.21)

with somet1k 2 (0; 1). Using the definitions (3.2) and (3.7) ofqk andbqk, respectively, (3.6), and
(4.7) we find thatj � qk(sk) + bqk((su)k)j� kHksnk �rx`(xk ; �k)k kstk �Wk(su)kk+ 12kHkk kstkk2 + 12kW Tk HkWkk k(su)kk2� kHksnk �rx`(xk ; �k)k kCy(xk)�1k krtkk+ 12kHkk kstkk2 + 12kW Tk HkWkk k(su)kk2:(4.22)

With kstkk � kstk �Wk(su)kk+ kWk(su)kk � kCy(xk)�1k krtkk+ kWkk k(su)kk
and (4.11), equation (4.22) impliesj � qk(sk) + bqk((su)k)j� �3kHksnk �rx`(xk; �k)k kCy(xk)�1k �kk(su)kk+ 12kHkk ��23kCy(xk)�1k2�2k + 2�3kWkk kCy(xk)�1k�k + kWkk2� k(su)kk2+ 12kW Tk HkWkk k(su)kk2:(4.23)
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The inequalities (4.3) and (4.5) give(bgk �W Tk rqk(snk))T (su)k + 12 (su)Tk gW Tk HkWk(su)k � 12 (su)TkW Tk HkWk(su)k� �1�kk(su)kk+ 12(�2 + kW Tk HkWkk)k(su)kk2:(4.24)

Using Taylor expansion we obtain��Tk (�Ck+1 + Jksk + Ck)� �k �kCk+1k2 � kJksk + Ckk2�= � 12 mXi=1(��k)isTkr2i(xk + t2ksk)sk��k� mXi=1 i(xk + t3ksk)(sk)Tr2i(xk + t3ksk)(sk)+(sk)TJ(xk + t3ksk)TJ(xk + t3ksk)(sk)� (sk)T J(xk)T J(xk)(sk)�;
wheret2k; t3k 2 (0; 1). Now we expandi(xk+t3ksk) aroundi(xk). This expansion and assumptions
A.1–A.4 give ��Tk (�Ck+1 + Jksk + Ck)� �k �kCk+1k2 � kJksk + Ckk2�� �10�kkskk3 + �11�kkskk2kCkk:(4.25)

If we insert (4.21)–(4.25) into (4.20) and use assumptions A.3, A.4 and (4.11), we arrive at the
desired estimate (4.18) for some positive constants�9, �10, and�11. Inequality (4.19) is then a
direct consequence of inequality (4.18) and the fact that�k � 1.

We can now bound the difference between the actual and predicted decreases in the inexact
context. Combining (4.18) with (4.10), yieldsjared(sk; �k)� pred(snk; (su)k ; �k)j� ��ared(sk; �k)� pred(snk; (su)k; �k)� rpred(rtk ; �k)��+ ��rpred(rtk ; �k)��� �9�kkskk+ �10�kkskk3 + �11�kkskk2kCkk+ �0 jpred(snk; (su)k; �k)j :(4.26)

Similarly, combining (4.19) with (4.10), givesjared(sk; �k)� pred(snk ; (su)k; �k)j � �12�k�kkskk+ �0 jpred(snk; (su)k; �k)j :(4.27)

The estimates (4.26) and (4.27) are used in the analysis onlywhen rejection occurs in step i2.8.
If sk is rejected, we know that0 < 1� �1 � ���� ared(sk; �k)pred(snk; (su)k; �k) � 1���� ;
which in our inexact context implies1� �1 � ����ared(sk; �k)� pred(snk; (su)k; �k)� rpred(rtk ; �k)pred(snk; (su)k; �k) ����+ �0:
Thus, when the estimate (4.19) is required, we obtain0 < 1� �0 � �1 � �12�k�kkskkpred(snk; (su)k; �k) ;
and the analysis in [10] remains unchanged except for the fact that a different lower bound1� �0��1 2 (0; 1) is used. A similar bound is obtained when the estimate is given by (4.18).

The proof of (4.17) follows from the conjunction of (4.16) with (4.3) and (3.13).
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5. Implementation in the presence of inexactness.In this section we discuss how the re-
quirements on the approximate reduced gradient and on the step components introduced in section
4 can be satisfied in practice. Our discussion leads to an implementable version of algorithm 4.3.
However, other implementations are possible. This sectionis not meant to be comprehensive. Rather
it is meant to support our claim made in the introduction and at the beginning of section 4 that our
conditions on the allowable level of inexactness are general but implementable.

5.1. Computation of the quasi–normal component.The quasi–normal componentsnk is an
approximate solution of the trust–region subproblem (3.3)and it is required to satisfy the condition
(3.4).

If k(sny)kk � �k satisfies the fraction of Cauchy decrease condition12kCy(xk)(snk)y + Ckk2� min� 12kCy(xk)s+ Ckk2 : s = �tCy(xk)TCk ; ksk � �k	 ;(5.1)

then a result due to Powell [29, Th. 4] (see also [5,x 6.3], [27, L. 4.8]) shows that (3.4) is satisfied.
The papers [17], [32] describe two iterative methods based on Krylov subspaces for the computation
of steps(sny)k satisfyingkCkk2 � kCy(xk)(snk)y + Ckk2 � ��kCkk2 � kCy(xk)(sny)� + Ckk2�;
where(sny)� is the solution of (3.3). In particular these steps also satisfy (3.4). The iterative method
in [32] uses a restart technique that allows specification ofstorage limitations by the user, which is
important for large scale problems. The iterative methods in [17] and in [32] require the evaluation
of Cy(xk)v andCy(xk)Tu for givenv andu.

For some applications, the evaluation of matrix–vector productsCy(xk)T v is more expensive
than the evaluation ofCy(xk)v, and therefore it may be more efficient to use methods that avoid
the use ofCy(xk)T v. In this case one can apply nonsymmetric Krylov subspace methods based
on minimum residual approximations, such as GMRES(l) [30]. In the context of nonlinear system
solving the use of such methods is described e.g. in [2]. In that context, trust–region subproblems
of the type (3.3) also have to be solved and the solvers in [2] can be applied in our situation as well.
If GMRES(l) is used to project the quasi-normal step problem(3.3) onto thel–dimensional Krylov
subspace and if 12CTk �Cy(xk)T + Cy(xk)�Ck � �kCkk2(5.2)

holds with� > 0, then (3.4) is satisfied. The condition (5.2) is implied by the positive definiteness
of the symmetric part ofCy(xk), a condition also important for the convergence of nonsymmetric
Krylov subspace methods. A proof of this result and more details concerning the use of these
methods can be found in [36].

Finally, we can also use the following simple procedure. Computeesnk such thatkCy(xk)esnk +Ckk � �kCkk, where� < 1, and then scale this step back into the trust region, i.e., setsnk = � �kesnk0 � ; where �k = ( 1 if kesnkk � �k;�k=kesnkk otherwise.

The stepsnk also satisfies (3.4) (see [36]).
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5.2. Computation of an approximate reduced gradient.We show how (4.3) can be en-
forced, if errors in the reduced gradient are due to inexact linear system solves.

If we setd = Hksnk+rx`k and denote they– andu–component ofd bydy anddu, respectively,
thenW Tk (Hksnk + rx`k) = �(Cu)Tk (Cy)�Tk dy + du. We suppose that the inexactness in the
computation ofW Tk (Hksnk + rx`k) is due to the use of an iterative solver for the linear system(Cy)Tk z = �dy. More precisely, we assume thatbgk = (Cu)Tk bz + du;(5.3)

wherebz satisfies (Cy)Tk bz = �dy � e(5.4)

with a residual errore. The following result is easy to prove.
LEMMA 5.1. If bgk is given by(5.3), (5.4)and ifkek � minf1k(Cu)Tk bz + duk; 2�kg;(5.5)

where1; 2 > 0 are given, then(4.3) is satisfied with�1 = maxf1; 2gk(Cu)Tk (Cy)�Tk k.
Proof. Equations (5.3), (5.4) implybgk = �(Cu)Tk (Cy)�Tk (dy + e) + du andkbgk �W Tk (Hksnk +rx`k)k = k(Cu)Tk (Cy)�Tk ek � k(Cu)Tk (Cy)�Tk k kek:

Hence, using (5.3), (5.5),kbgk �W Tk (Hksnk +rx`k)k � k(Cu)Tk (Cy)�Tk k minf1kbgkk; 2�kg
which yields the desired estimate.

At first sight the inequality (5.5) seems impractical since both e and(Cu)Tk bz + du depend onbz. However, (5.5) can be enforced if an iterative method for the solution of(Cy)Tk z = �dy is used
and matrix–vector products of the form(Cu)Tk v for a givenv can be easily computed. The latter
is the case for many control problems. In fact, letz(j) be thejth iterate in the solution method for(Cy)Tk z = �dy and lete(j) = �dy � (Cy)Tk z(j) be the corresponding residual. If(Cu)Tk z(j) can
be easily computed, then we can monitork(Cu)Tk z(j) + duk and we can truncate the iterative linear
system solver when ke(j)k � minf1k(Cu)Tk z(j) + duk; 2�kg:

Note that the truncation criterion (5.5) for the iterative linear system solver is only applicable,
because�1 > 0 in (4.3) is not restricted. If it were required that�1 2 (0; 1), say, then we would
need an estimate fork(Cu)Tk (Cy)�Tk k. Thus, while (4.3) is slightly stronger than (4.2), the factthat
we can give up the restriction�1 < 1 makes it preferable from an implementation point of view.

5.3. Computation of theu–component of the tangential component.An approximate solu-
tion su of (4.1) that satisfies (4.6) can be computed, e.g., using theconjugate gradient (cg) method
with a modification as suggested by Steihaug [33] and Toint [34]. Here the cg method with starting
valuesu = 0 is applied to the minimization ofbmk. The conjugate gradient method is stopped if an
approximate minimum of the quadratic modelbmk is reached, if negative curvature is detected, or
if the iterates leave the trust–region bound. The first iterate in the Steihaug–Toint cg method is the
Cauchy–step for thebmk and therefore (4.6) is satisfied for the first iterate of the Steihaug–Toint cg
method. IfW Tk HkWk can be applied exactly, which is the case in a reduced SQP method whereW Tk HkWk = bHk, then the conjugate gradient method ensures thatbmk decreases monotonically
and (4.6) remains satisfied for all Steihaug–Toint cg iterates. IfW Tk HkWk is applied inexactly, then
one has to compare the function valuesbmk at the first Steihaug–Toint cg iterates1u and at the final
Steihaug–Toint cg iteratesfu. If bmk(sfu) � bmk(s1u), then(su)k = sfu; otherwise(su)k = s1u.
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5.4. Computation of they–component of the tangential component.In section 4.1.4 we
have already shown that (4.10), (4.11) are satisfied if(sty)k satisfiesCy(xk)sty = �Cu(xk)(su)k+rtk
with residualkrtkk � min��3�kk(su)kk;�� +q�2 + �0pred(snk; (su)k; �k)=�k� ;(5.6)

where� = kCy(xk)(sny)k +Ckk+ k��kk=(2�k). Note that all quantities on the right hand side of
(5.6) are known by the time(sty)k needs to be computed.

6. Conclusions. In this paper we have extended the design of a class of composite–step trust–
region SQP algorithms and their convergence theory to allowthe use of inexact first–order derivative
information or the use of inexact linearized constraint equation solves. The challenge was the for-
mulation of accuracy requirements that are sufficient to guarantee global convergence to a point
satisfying the first–order optimality conditions, but at the same time can be implemented in a practi-
cal algorithm and are not overly stringent. Our accuracy requirements are based on the structure of
the composite–step trust–region SQP algorithms and they follow the SQP philosophy which allows
to trade gains in feasibility for gains in optimality. The main motivation of this paper is the control
of inexactness arising from iterative system solves (1.2) in trust–region SQP methods. This is im-
portant, e.g., for the solution of discretized optimal control problems governed by partial differential
equations. However, our assumptions on the inexactness arenot based on this particular source of
inexactness and are applicable more broadly.

We focused on a specific class of problems (1.1) and on a limited class of algorithms to enhance
the clarity of our presentation. An extension of our analysis of the influence of inexact first–order
derivative information or the use of inexact linearized constraint equation solves to a broader range of
problems and global SQP algorithms is useful. Some extensions are rather straight forward, although
tedious. For example, we believe our analysis can be generalized to the affine–scaling interior–point
trust–region SQP algorithms in [11], which tackle problems(1.1) with additional simple bounds
on u. In fact, the predecessor [20] of this paper contains many ofthe technical details of such an
extension, although the assumptions on the inexactness made in [20] are stronger than those in this
paper.

Acknowledgments. The authors would like to thank the two anonymous referees and the asso-
ciate editor for their constructive comments on the first version of this paper, which lead to significant
improvements in the presentation.
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[27] J. J. MORÉ, Recent developments in algorithms and software for trust regions methods, in Mathematical programming.

The state of art, A. Bachem, M. Grotschel, and B. Korte, eds.,Springer Verlag, New York, 1983, pp. 258–287.
[28] S. OMATU AND J. H. SEINFELD, Distributed Parameter Systems. Theory and Applications, Oxford University Press,

Oxford, New-York, Toronto, 1989.
[29] M. J. D. POWELL, Convergence properties of a class of minimization algorithms, in Nonlinear Programming 2, O. L.

Mangasarian, R. R. Meyer, and S. M. Robinson, eds., AcademicPress, New York, 1975, pp. 1–27.
[30] Y. SAAD AND M. H. SCHULTZ, GMRES a generalized minimal residual algorithm for solvingnonsymmetric linear

systems, SIAM J. Sci. Comput., 7 (1986), pp. 856–869.
[31] V. SCHULZ AND G. WITTUM , Multigrid optimization methods for stationary parameter identification prob-

lems in groundwater flow, in Multigrid Methods V, Berlin, Heidelberg, New York, 1997, Springer Verlag.
http://dom.ica3.uni-stuttgart.de/�volker/papers.html.

[32] D. C. SORENSEN,Minimization of a large scale quadratic function subject toan spherical constraint, SIAM J. Optim.,
7 (1997), pp. 141–161.

[33] T. STEIHAUG, The conjugate gradient method and trust regions in large scale optimization, SIAM J. Numer. Anal.,
20 (1983), pp. 626–637.

[34] P. L. TOINT, Towards an efficient sparsity exploiting Newton method for minimization, in Sparse Matrices and Their
Uses, I. S. Duff, ed., Academic Press, New York, 1981, pp. 57–87.

[35] , Global convergence of a class of trust-region methods for nonconvex minimization in Hilbert space, IMA J.
Numer. Anal., 8 (1988), pp. 231–252.

[36] L. N. V ICENTE, Trust-Region Interior-Point Algorithms for a Class of Nonlinear Programming Problems, PhD thesis,
Department of Computational and Applied Mathematics, RiceUniversity, Houston, Texas 77251, USA, 1996.


