
Lo
al Analysis of a New Multipliers MethodLu��s N. Vi
ente �Abstra
tIn this paper we introdu
e a penalty fun
tion and a 
orresponding multipliers method for the solutionof a 
lass of nonlinear programming problems where the equality 
onstraints have a parti
ular stru
ture.The 
lass models optimal 
ontrol and engineering design problems with bounds on the state and 
ontrolvariables and has wide appli
ability.The multipliers method updates multipliers 
orresponding to inequality 
onstraints (maintaining theirnonnegativity) instead of dealing with multipliers asso
iated with equality 
onstraints. The basi
 lo
al
onvergen
e properties of the method are proved and a dual framework is introdu
ed. We also analyzethe properties of the penalized problem related with the penalty fun
tion.Keywords. Nonlinear programming, optimal 
ontrol, state 
onstraints, penalty fun
tion, multipliersmethod, augmented Lagrangian.AMS subje
t 
lassi�
ations. 49M37, 90C06, 90C301 Introdu
tionConsider the following nonlinear optimization problem:minimize f(y; u)subje
t to 
(y; u) = 0 ;(y; u) � 0 ; (1)in the variables x = � yu � ;where the stru
ture of the equality 
onstraints 
(y; u) = 0 arises from optimal 
ontrol and design engineeringproblems. So, we assume that the state variables y are in IRny and the 
ontrol or design variables u lie inIRnu , where ny and nu are positive integers. The fun
tions f and 
 are 
onsidered smooth and de�ned asf : 
 �! IR and 
 : 
 �! IRny , where 
 is an open set of IRny+nu . The nonlinear system 
(y; u) = 0 withny equalities is the state equation. Due to the partition of x in y and u, we 
an write the Ja
obian matrixof 
 as: r
(y; u)> = � 
y(y; u) 
u(y; u) � ;where the partial Ja
obian 
y(y; u) is a square matrix of order ny. We assume that 
y(y; u) is nonsingular in
. In the Appendix, the optimality 
onditions for this problem are des
ribed, assuming that the fun
tionsf and 
 are twi
e 
ontinuously di�erentiable in 
.This problem setting formulates a broad 
lass of optimal 
ontrol and design engineering problems. Forinstan
e, any problem of the form minimize f(w; u)subje
t to d(w; u) = 0 ;g(w; u) � 0 ;(w; u) � 0 ;�Departamento de Matem�ati
a, Universidade de Coimbra, 3001-454 Coimbra, Portugal. Support for this work was providedby Centro de Matem�ati
a da Universidade de Coimbra, by FCT under grant POCTI/35059/MAT/2000, and by the EuropeanUnion under grant IST-2000-26063. 1



2 L. N. VICENTEwhere the partial Ja
obian dw(w; u) is nonsingular, 
an be reformulated as problem (1) by settingy = � ws � and 
(y; u) = 
(w; s; u) = � d(w; u)g(w; u)� s � :In this situation, as it 
an be easily 
he
ked, 
y(y; u) would still be nonsingular.Sin
e we are assuming that 
y(y; u) is nonsingular, the impli
it fun
tion theorem guarantees the lo
alexisten
e of a smooth ve
tor fun
tion y(u) from IRnu to IRny de�ned by 
(y(u); u) = 0. This allows us toredu
e the minimization problem (1) to the spa
e of the 
ontrol variables u:minimize f(y(u); u)subje
t to y(u) � 0 ; u � 0 : (2)The formulation (1) is 
alled \all-at-on
e" whereas the formulation (2) is referred to as \bla
k-box". Notethat bounds on states in the all-at-on
e formulation 
orrespond to nonlinear inequality 
onstraints on the
ontrols in the \bla
k-box" formulation. Further, if the optimal 
ontrol problem is given in the form (2) it
an be easily reformulated in the form (1):minimize f(y(u); u)subje
t to y(u)� s = 0 ;(s; u) � 0 :The multipliers method was proposed by Hestenes [18℄ and Powell [26℄ for nonlinear optimization problemswith equality 
onstraints. The book by Bertsekas [1℄ gives a 
omprehensive treatment of this topi
 with
onne
tions to other approa
hes. Extensions of the multipliers method for inequality 
onstraints have beenproposed using sla
k and square sla
k variables and nondi�erentiable penalty fun
tions (see the books byBertsekas [1, Se
tions 3.1-3.2℄ and Flet
her [10, Se
tion 12.2℄, the papers by Ro
kafellar [27, 28℄, and thereferen
es therein). A 
ommon feature in these approa
hes is that the nonnegativity of the multipliers
orresponding to inequality 
onstraints has to be expli
itly imposed. Another approa
h was introdu
ed laterby Conn, Gould, and Toint [5℄. Their algorithm, implemented in the optimization solver LANCELOT[6℄, �rst 
onverts the nonlinear programming problem into a problem with equality 
onstraints and simplebounds. The obje
tive fun
tion and the equality 
onstraints then de�ne the augmented Lagrangian fun
tionthat does not take into a

ount the simple bounds. Their method then 
onsists of minimizing a sequen
e ofaugmented Lagrangian fun
tions within the bounds.A (smooth) penalty fun
tion P for the solution of problem (1) is introdu
ed in Se
tion 2 and its derivatives
omputed in Se
tion 3. The penalty fun
tion is based on Flet
her's augmented Lagrangian penalty fun
tion[9℄. In fa
t, the penalty fun
tion is derived by eliminating from the �rst-order ne
essary 
onditions for (1) themultipliers � 
orresponding to the state equation 
(y; u) = 0. This derivation also means that the penaltyfun
tion P depends on the values of the multipliers zy 
orresponding to the bounds y � 0. Be
ause of thedependen
e on the multipliers zy, this penalty fun
tion is not exa
t in the traditional sense [24, 25℄. Howeverit does share some exa
tness properties as it is shown in Se
tion 4.The multipliers method we propose in this paper is based on the penalty fun
tion P . Its novelty 
omesfrom the fa
t that the multipliers that are expli
itly updated are the multipliers zy 
orresponding to thebounds on the state variables y. The update formula maintains these multipliers zy nonnegative withoutany arti�
ial use of the max(0; �) operator. The multipliers � (that depend in turn on zy) 
orrespondingto the state equation 
(y; u) = 0 are then impli
itly updated within the formula for P . The traditionalmultipliers method for problems with equality 
onstraints requires at ea
h major iteration the solution of anun
onstrained minimization problem; the method proposed here (like the one in [5℄) requires the solution ofa minimization problem with simple bounds.The des
ription of the multipliers method and the proof of its basi
 lo
al 
onvergen
e properties are givenin Se
tion 5. In Se
tion 6 we introdu
e the dual interpretation of this multipliers method. In Se
tion 7 westate some 
on
lusions and point out dire
tions for future work.



LOCAL ANALYSIS OF A NEW MULTIPLIERS METHOD 32 The penalty fun
tionThe penalty fun
tion we propose in this paper is based on the Lagrangian of f with respe
t to the 
onstraints
(y; u) = 0: `(y; u; �) = f(y; u) + 
(y; u)>�and on the 
orresponding augmented Lagrangian fun
tion:L(y; u; �;�) = f(y; u) + 
(y; u)>�+ 12�
(y; u)>
(y; u) ;where � 2 IRny are multipliers 
orresponding to the state equation and � is a positive penalty parameter.We would like to 
ome up with an expression for � in terms of (y; u), hoping that that would lead us to apenalty fun
tion with some interesting exa
tness properties. To do so, we take a 
lose look to the stru
ture ofour problem. A point (y; u) satis�es the �rst-order ne
essary 
onditions for problem (1) (see the Appendix)if there exist � 2 IRny and (zy; zu) 2 IRny+nu su
h thatryf(y; u) + 
y(y; u)>�� zy = 0 ;ruf(y; u) + 
u(y; u)>�� zu = 0 ;
(y; u) = 0 ; (y; u) � 0 ;y>zy = u>zu = 0 ; (zy; zu) � 0 :Given y, u, and zy, the �rst-order ne
essary 
onditions indi
ate a formula for �:�(y; u; zy) = �
y(y; u)�>(ryf(y; u)� zy) : (3)Given the parameters zy � 0 and � > 0, we introdu
e the penalty fun
tionP (y; u; zy; �) = f(y; u) + 
(y; u)>�(y; u; zy) + 12�
(y; u)>
(y; u)and the 
orresponding penalized problem:minimize P (y; u; zy; �)subje
t to (y; u) � 0 ; (4)in the optimization variables y and u. The parameter zy is updated expli
itly rather than in
orporated in theoptimization variables. The penalty fun
tion P shares some exa
tness properties as it is shown in Se
tion 4.Throughout this paper we will make the following assumptions.Assumptions 2.1 The fun
tions f and 
 are three times 
ontinuously di�erentiable in an open set 
 �IRny+nu . The partial Ja
obian 
y(y; u) is nonsingular in 
.To alleviate the notation we will omit the arguments x = (y; u) and x� = (y�; u�) when it is 
lear fromthe 
ontext where the fun
tions are evaluated. For instan
e, 
u = 
u(y; u) and ryf� = ryf(y�; u�). Thesymbol e represents a ve
tor of ones with appropriate size. Also, for any ve
tor v, V is the diagonal matrixfor whi
h the diagonal elements are the elements of v. We use the notation kvk = O(Æ; �) or v = O(Æ; �) (andsay that v is of size Æ and �) to denote kvk � �(Æ + �), where � is a positive 
onstant.3 Derivatives of the penalty fun
tionWe 
al
ulate now the gradient and the Hessian of P (y; u; zy; �) with respe
t to y and u.To obtain the �rst-order partial derivatives of P (y; u; zy; �), we �rst 
al
ulatery�(y; u; zy) = �
y(y; u)�>r2yy`(y; u; �(y; u; zy)) ;ru�(y; u; zy) = �
y(y; u)�>r2yu`(y; u; �(y; u; zy)) ;



4 L. N. VICENTEby di�erentiating 
y(y; u)>�(y; u; zy) = �ryf(y; u) + zy with respe
t to y and u, respe
tively. Thus thegradient of P (y; u; zy; �) is given byrP (y; u; zy; �) = G1(y; u; zy; �) +G2(y; u; zy; �) +G3(y; u; zy; �) ;where G1(y; u; zy; �) =  zyruf(y; u)� 
u(y; u)>
y(y; u)�>(ryf(y; u)� zy) ! ;G2(y; u; zy; �) =  �r2yy`(y; u; �(y; u; zy))
y(y; u)�1
(y; u)�r2uy`(y; u; �(y; u; zy))
y(y; u)�1
(y; u) ! ;and G3(y; u; zy; �) =  1� 
y(y; u)>
(y; u)1� 
u(y; u)>
(y; u) ! :If 
(y; u) = 0, the gradient rP (y; u; zy; �) is just:rP (y; u; zy; �) = G1(y; u; zy; �) = 0B� zyw(y; u)>� ryf(y; u)� zyruf(y; u) � 1CA ;where w(y; u) = � �
y(y; u)�1
u(y; u)I � : (5)To 
ompute the gradient one has to solve one linearized state equation 
y(y; u)�1
(y; u) and one adjointequation 
y(y; u)�>(ryf(y; u)� zy).We 
al
ulate now the Hessian of P (y; u; zy; �). The pro
edures are similar as before. For instan
e, weneed to obtain the partial derivatives of 
y(y; u)�1
(y; u) with respe
t to y and u and we a

omplish thistask by noti
ing that s(y; u) = 
y(y; u)�1
(y; u) and by di�erentiating 
y(y; u)s(y; u) = 
(y; u):rys(y; u) = I � 
y(y; u)�1 nyXi=1 �
y(y; u)�1
(y; u)�ir2yy
i(y; u) ;rus(y; u) = 
y(y; u)�1
u(y; u)� 
y(y; u)�1 nyXi=1 �
y(y; u)�1
(y; u)�ir2yu
i(y; u) :Moreover, we need to di�erentiate the u 
omponent of G1(y; u; zy; �) with respe
t to y and u. This 
omponentis nothing else than ru`(y; u; zy) = ruf(y; u) + 
u(y; u)>�(y; u; zy), where `(y; u; zy) = `(y; u; �(y; u; zy)).So, its derivatives are given byry (ru`(y; u; zy)) = r2uyf(y; u) +Pnyi=1 �(y; u; zy)ir2uy
i(y; u)�
u(y; u)>
y(y; u)�>r2yy`(y; u; �(y; u; zy)) ;ru (ru`(y; u; zy)) = r2uuf(y; u) +Pnyi=1 �(y; u; zy)ir2uu
i(y; u)�
u(y; u)>
y(y; u)�>r2yu`(y; u; �(y; u; zy)) :Hen
e, the Hessian of P (y; u; zy; �) is expressed asr2P (y; u; zy; �) = H1(y; u; zy; �) +H2(y; u; zy; �) +H3(y; u; zy; �) ;where H1(y; u; zy; �) =  0 0�
>u 
�>y r2yy`+r2uy` �
>u 
�>y r2yu`+r2uu` ! ;
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H2(y; u; zy; �) =  �r2yy` �r2yy` 
�1y 
u�r2uy` �r2uy` 
�1y 
u !+ r2yy`(I �rys) r2yy`(
�1y 
u �rus)r2uy`(I �rys) r2uy`(
�1y 
u �rus) !+ 0� �Pnyj=1(
�1y 
)jry �r2yy`�j �Pnyj=1(
�1y 
)jru �r2yy`�j�Pnyj=1(
�1y 
)jry �r2uy`�j �Pnyj=1(
�1y 
)jru �r2uy`�j 1A ;and H3(y; u; zy; �) = 0� 1�
>y 
y + 1�Pnyi=1 
ir2yy
i 1�
>y 
u + 1�Pnyi=1 
ir2yu
i1� 
>u 
y + 1�Pnyi=1 
ir2uy
i 1�
>u 
u + 1�Pnyi=1 
ir2uu
i 1A :If 
(y; u) = 0, the Hessian of P (y; u; zy; �) redu
es to0B� �r2yy` �r2yy` 
�1y 
u�
>u 
�>y r2yy` �
>u 
�>y r2yu`+r2uu`�r2uy`
�1y 
u 1CA+0� 1�
>y 
y 1�
>y 
u1�
>u 
y 1�
>u 
u 1A :4 Properties of the penalty fun
tionIn this se
tion we analyze the relationships between problem (1) and the penalized problem (4). We startwith a result that is analogous to [1, Proposition 2.3℄. We appeal to the �rst-order ne
essary 
onditions forproblem (4): zy �r2yy` 
�1y 
+ 1�
>y 
� �zy = 0 ; (6)ruf � 
>u 
�>y (ryf � zy)�r2uy` 
�1y 
+ 1�
>u 
� �zu = 0 ; (7)(y; u) � 0 ; (8)y>�zy = u>�zu = 0 ; (�zy; �zu) � 0 : (9)Theorem 4.1 Let Assumptions 2.1 hold. If (xk; (�zy)k; (�zu)k) satis�es the �rst-order ne
essary 
onditionsfor (4) with �k > 0 and (zy)k � 0, f(zy)kg is bounded, and limk!+1 �k = 0, then every limit point off(xk; (�zy)k; (�zu)k)g satis�es the �rst-order ne
essary 
onditions for the original problem (1).Proof: Let (x; �zy; �zu) be a limit point of f(xk; (�zy)k; (�zu)k)g. Sin
e f(zy)kg is bounded, there existsa subsequen
e f(xk; (�zy)k; (�zu)k)gK su
h that limk2K(xk; (�zy)k; (�zu)k) = (x; �zy; �zu) and limk2K(zy)k = zy.Now we set (~zy)k = ryP (xk ; (zy)k; �k) :It follows from the �rst-order ne
essary 
onditions for (4) thatlimk2K(~zy)k = limk2KryP (xk; (zy)k; �k) = �zy � 0 :Thus, limk2K 1�k 
y(xk)>
(xk) exists. Sin
e limk!+1 �k = 0, we have thatlimk2K 
(xk) = 0



6 L. N. VICENTEand 
(x) = 0. Then ~zy = limk2K(zy)k + 1�k 
y(xk)>
(xk) and0 = limk2K �ruf(xk)� 
u(xk)>
y(xk)�>(ryf(xk)� (zy)k)�r2uy`(xk; (zy)k)
y(xk)�1
(xk) + 1�
u(xk)>
(xk)� (�zu)k�= limk2K �ruf(xk)�
u(xk)>
y(xk)�>(ryf(xk)� (zy)k � 1�k 
y(xk)>
(xk))� (�zu)k�= ruf(x)� 
u(x)>
y(x)�>(ryf(x)� ~zy)� �zu :Sin
e y>~zy = u>�zu = 0 the proof is 
ompleted.The next two theorems relate problems (1) and (4).Theorem 4.2 Let Assumptions 2.1 hold. Also, let � > 0 and x be su
h that 
(x) = 0. The point x satis�esthe �rst-order ne
essary 
onditions for the original problem (1) with multipliers zy 
orresponding to y � 0 ifand only if x satis�es the �rst-order ne
essary 
onditions for the penalized problem (4) for some zy � 0.Proof: If 
(y; u) = 0, the �rst-order ne
essary 
onditions for the penalized problem (4) implyzy � �zy = 0 ;ruf(y; u)� 
u(y; u)>
y(y; u)�>(ryf(y; u)� zy)� �zu = 0 ;(y; u) � 0 ;y>�zy = u>�zu = 0 ; (�zy; �zu) � 0 :Sin
e zy = �zy, these 
onditions 
an be rewritten asruf(y; u)� 
u(y; u)>
y(y; u)�>(ryf(y; u)� zy)� �zu = 0 ;(y; u) � 0 ;y>zy = u>�zu = 0 ; (zy; �zu) � 0 ;whi
h are the �rst-order ne
essary 
onditions for the original problem (1) with zu = �zu.Also, if x satis�es the �rst-order ne
essary 
onditions for the penalized problem (4) for some zy � 0 andzy = �zy, then we get �r2yy`(x; �(x; zy))
y(x)�1
(x) + 1�
y(x)>
(x) = 0 :So, �
y(x)�1
(x)�>��r2yy`(x; �(x; zy)) + 1�
y(x)>
y(x)� �
y(x)�1
(x)� = 0and there exists �� > 0 su
h that for all 0 < � � ��, 
y(x)�1
(x) = 0, i.e., 
(x) = 0.Theorem 4.3 Let Assumptions 2.1 hold. Also, let � > 0 and (y; u) be su
h that 
(y; u) = 0. If (y; u)satis�es the se
ond-order ne
essary (suÆ
ient) 
onditions for the penalized problem (4) for some zy � 0,then (y; u) satis�es the se
ond-order ne
essary (suÆ
ient) 
onditions for the original problem (1).Proof: The �rst-order part of this result follows from the previous theorem. To establish the se
ond-orderassertions we need to 
al
ulate � �y�u �>r2P (y; u; zy; �)� �y�u � (10)



LOCAL ANALYSIS OF A NEW MULTIPLIERS METHOD 7in the situation where (�y;�u) satis�es:(�y)i = 0 if yi = 0 and (�zy)i > 0 ; (11)(�y)i � 0 if yi = 0 and (�zy)i = 0 ; (12)(�u)i = 0 if ui = 0 and (�zu)i > 0 ; (13)(�u)i � 0 if ui = 0 and (�zu)i = 0 : (14)We will also assume that (�y;�u) lies in the null-spa
e of the Ja
obian of 
(y; u), i.e., that �y = �
y(y; u)�1
u(y; u)�u. Sin
e 
(y; u) = 0, the value of (10) is given by:��y>r2yy`�y ��y>r2yy` 
�1y 
u�u��u>
>u 
�>y r2yy`�y+�u>r2uu`�u��u>
>u 
�>y r2yu`�u��u>r2uy` 
�1y 
u�u+ 1��y>
>y 
y�y + 1��y>
>y 
u�u+ 1��u>
>u 
y�y + 1��u>
>u 
u�u :Thus, from �y = �
�1y 
u�u, a number of terms 
an
el out and we obtain:� �y�u �>r2xx`(y; u; zy)� �y�u � = � �y�u �>r2P (y; u; zy; �)� �y�u � :Sin
e (�y;�u) satis�es (11)-(14) and 
y(y; u)�y + 
u(y; u)�u = 0 the proof is 
ompleted.Finally, we establish the exa
tness property of the penalty fun
tion P (a result that 
an be seen as there
ipro
al of Theorem 4.3).Theorem 4.4 Let Assumptions 2.1 hold. Also, let x be su
h that 
(x) = 0. If (x; zy) satis�es the se
ond-order ne
essary (suÆ
ient) 
onditions for the original problem (1) with multipliers zy 
orresponding to y � 0,then there exists a �� > 0 su
h that (y; u) satis�es the se
ond-order ne
essary (suÆ
ient) 
onditions for thepenalized problem (4) for this zy and any 0 < � � ��.Proof: We prove the result only for the suÆ
ient 
onditions. Let �y and �u satisfy (11)-(14). The proofis based on the fa
t that� �y�u �>r2P (y; u; zy; �)� �y�u �= � �
y(y; u)�1
u(y; u)�u�u �>r2xx`(y; u; zy)� �
y(y; u)�1
u(y; u)�u�u �+ � �e0 �> �r2yy`(y; u; zy) + 1�
y(y; u)>
y(y; u) 00 0 !� �e0 �= � �y�u �>� I 0
>u 
�>y I �� �r2yy`+ 1�
>y 
y 00 w>r2xx`w �� I 
�1y 
u0 I �� �y�u �where �e = �y � (�
y(y; u)�1
u(y; u)�u). Sin
e (13)-(14) hold, the se
ond-order suÆ
ient 
onditions forproblem (1) imply that �u>w(x)>r2xx`(x; zy)w(x)�u > 0 :The proof is 
ompleted by setting:�� = ( any positive real if r2yy`(x; zy) is negative semi-de�nite,�(x)�(x;zy) otherwise,where 
y(x)>
y(x) has eigenvalue de
omposition 
y(x)>
y(x) = Q(x)A(x)Q(x)> and smallest eigenvalue�(x), and �(x; zy) is the largest eigenvalue of Q(x)>r2yy`(x; zy)Q(x).



8 L. N. VICENTE5 The multipliers methodThe penalty fun
tion P together with the penalized problem (4) and the equation (6) motivate a newmultipliers method.Algorithm 5.1 (Multipliers method for (1))1. Choose initial values: �0 for the penalty parameter and z0y for the approximation of the multipliers.2. For k = 0; 1; 2; : : : do2.1 Solve problem (4) with zy = zky and � = �k.2.2 Update the multipliers approximation:zk+1y = zky �r2yy`(~x(zky ; �k); zky )
y(~x(zky ; �k))�1
(~x(zky ; �k))+ 1�k 
y(~x(zky ; �k))>
(~x(zky ; �k)) ; (15)where ~x(zky ; �k) is the solution obtained in Step 2.1.2.3 Update the penalty parameter �k+1.If r2yy`(~x(zky ; �k); zky )
y(~x(zky ; �k))�1
(~x(zky ; �k)) ' 0, then the update (15) is justzk+1y ' zky + 1�k 
y(~x(zky ; �k))>
(~x(zky ; �k)) ;whi
h di�ers from the 
lassi
al update of the multipliers methods for equality 
onstrained optimization onlybe
ause 
y(~x(zky ; �k))> is multiplying 
(~x(zky ; �k)) on the left.The basi
 lo
al 
onvergen
e properties of the multipliers method 5.1 are proved under the following setof assumptions.Assumptions 5.1 The point x� = (y�; u�) 2 
 with 
orresponding multipliers �z� = (�z�y ; �z�u) is a nondegen-erate point satisfying the se
ond-order suÆ
ient 
onditions and stri
t 
omplementarity for problem (1).The main result is proved in Theorem 5.1 and bounds the distan
e between a lo
al minimizer of (4) and(x�; �z�) by the penalty parameter � times the distan
e between the parameter zy and the 
orrespondingmultipliers �z�y . Although the stru
ture of the proof follows [1, Proposition 2.4℄, we have additional diÆ
ultieshere due to the presen
e of the bound 
onstraints on the variables. Another diÆ
ulty arises when dealingwith the 
ross term in the multipliers update. This term is not multiplied by 1=�k but involves zky . A
onsequen
e of having to handle this extra term is that the region D� in (17) be
omes smaller than the onein [1, Proposition 2.4℄ where instead of minfÆ; Æ=�g we only have Æ=�.Theorem 5.1 Let x� = (y�; u�) with 
orresponding multipliers �z� = (�z�y ; �z�u) satisfy Assumptions 2.1-5.1.There exist positive s
alars ��, Æ, �, �1, �2, �3, and �4 su
h that�r2yy`(y�; u�; �z�y) + 1��
y(y�; u�)>
y(y�; u�)is positive de�nite, the problem minimize P (y; u; zy; �)subje
t to (y; u) � 0 ;(y; u) 2 B(y�; u�; �) ; (16)has a unique solution ~x(zy; �) for all (zy; �) inD� = �(zy; �) : kzy � �z�yk < min�Æ; Æ�� ; 0 < � � ��� ; (17)
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tion ~x(zy; �) is 
ontinuously di�erentiable in D�, and for all (zy; �) 2 D� we havek~y(zy; �)� y�k � �1�kzy � �z�yk ; (18)k~u(zy; �)� u�k � �2�kzy � �z�yk ; (19)k~zy(zy; �)� �z�yk � �3�kzy � �z�yk ; (20)k~zu(zy; �)� �z�uk � �4�kzy � �z�yk ; (21)where ~zy(zy; �) and ~zu(zy; �) are the multipliers 
orresponding to ~y(zy; �) and ~u(zy; �), and ~zy(zy; �) is su
hthat: ~zy(zy; �) = zy �r2yy`(~x(zy; �); zy)
y(~x(zy; �))�1
(~x(zy; �))+ 1� 
y(~x(zy; �))>
(~x(zy; �)) : (22)Proof: Consider, for � > 0, the system of nonlinear equations that results from the �rst-order ne
essary
onditions (6)-(9) for problem (4). We repla
e zy in the se
ond equation (7) from its expression in the �rstequation (6) zy �r2yy`(x; zy)
�1y 
+ 1�
>y 
� �zy = 0 ; (23)ruf � 
>u 
�>y �ryf �r2yy`(x; zy)
�1y 
� �zy��r2uy`(x; zy)
�1y 
� �zu = 0 ; (24)y>�zy = u>�zu = 0 ; (25)
an
eling the term 1� 
>u 
. Now we multiply equation (23) by � and do the 
hanges of variablesr = �(zy � �z�y) ; (26)s = zy � �z�y ; (27)to obtain r � �r2yy`(x; �z�y + s)
�1y 
+ 
>y 
+ ��z�y � ��zy = 0 ; (28)ruf � 
>u 
�>y �ryf �r2yy`(x; �z�y + s)
�1y 
� �zy��r2uy`(x; �z�y + s)
�1y 
� �zu = 0 ; (29)Y �Zye = U �Zue = 0 : (30)We analyze this system for � 2 [0; ��℄, where �� is su
h that ��r2yy`� + 
�y>
�y is positive de�nite forall � 2 [0; ��℄. For r = s = 0 and � 2 [0; ��℄, it is easy to 
he
k that the system (28)-(30) has the solution(y�; u�; �z�y ; �z�u).For r = s = 0, the Ja
obian of (28)-(30) with respe
t to (y; u; �zy; �zu) at (y�; u�; �z�y ; �z�u) is given by
J�(0; 0; �) = 0BBBBBBBBBBB�

��r2yy`� + 
�y>
�y ��r2yy`�
�y�1
�u + 
�y>
�u ��I 0r2uu`� � 
�u>
�y�>r2yu`�0 +
�u>
�y�>r2yy`�
�y�1
�u 
�u>
�y�> �I�r2uy`�
�y�1
�u�Z�y 0 Y � 00 �Z�u 0 U�
1CCCCCCCCCCCAbe
ause the 
ross derivative with respe
t to y and u vanishes:r2uy`� � 
�u>
�y�>r2yy`� + 
�u>
�y�>r2yy`� �r2uy`� = 0 :



10 L. N. VICENTEWe mean J�(0; 0; �) � J(x�; �z�; 0; 0; �). When � = 0, J�(0; 0; �) is justJ�(0; 0; 0) = 0BBB� 
�y>
�y 
�y>
�u 00 w�>r2xx`�w� �w�>�Z�y0 0�Z�u X� 1CCCA :The nonsingularity of this matrix is a dire
t 
onsequen
e of the nonsingularity of the matrix0B� r
�> 0 0r2xx`� r
� �I�Z� 0 X� 1CA ;whi
h in turn results from the assumptions on (y�; u�; �z�y ; �z�u).The Ja
obian J�(0; 0; �) is also nonsingular for � 2 (0; ��℄. In fa
t, let (�y;�u;�zy;�zu) be a solutionof the homogeneous linear system with the matrix J�(0; 0; �):���r2yy`� + 
�y>
�y��y + ���r2yy`� + 
�y>
�y� 
�y�1
�u�u� ��zy = 0 ; (31)w�>r2xx`�w��u+ 
�u>
�y�>�zy ��zu = 0 ; (32)�Z�y�y + Y ��zy = 0 ; (33)�Z�u�u+ U��zu = 0 : (34)Equations (33)-(34) and stri
t 
omplementarity between x� and �z� imply �y>�zy = �u>�zu = 0. Multi-plying (32) on the left by �u> yields�u>w�>r2xx`�w��u+�u>
�u>
�y�>�zy = 0 :Using (31) to eliminate �u>
�u>
�y�>, this last equation is equivalent to�u>w�>r2xx`�w��u��y>�zy + ��z>y ���r2yy`� + 
�y>
�y��1�zy = 0 :From (33)-(34) and the assumptions on (x�; �z�), we know that w�>r2xx`�w� is positive de�nite for all �usu
h that (�u)i = 0 if u�i = 0. From the 
hoi
e of ��, ��r2yy`� + 
�y>
�y is also positive de�nite. Thus, we
on
lude that �u = 0 and �zy = 0. From (31) and the 
hoi
e of ��, �y = 0. Finally, from (32), �zu = 0.The 
on
lusion is that the Ja
obian J�(0; 0; �) is nonsingular for � 2 (0; ��℄.We now apply the impli
it fun
tion theorem [1, pp. 12℄ to the system (28)-(30). We identify the setK = f0g�f0g� [0; ��℄ with the 
ompa
t set �X of that theorem. The 
onsequen
e is that there exist positives
alars � and Æ and unique 
ontinuously di�erentiable fun
tions ŷ(r; s; �), û(r; s; �), ẑy(r; s; �), and ẑu(r; s; �)de�ned on a neighborhood B(K; Æ) = f(r; s; �) : k(r; s; �) � (0; 0; �0)k < Æ for some (0; 0; �0) 2 Kg of Ksatisfying r � �r2yy`(x̂(r; s; �); �z�y + s)
y(x̂(r; s; �))�1
(x̂(r; s; �))+ 
y(x̂(r; s; �))>
(x̂(r; s; �)) + ��z�y � �ẑy(r; s; �) = 0 ; (35)ruf(x̂(r; s; �))� 
u(x̂(r; s; �))>
�>y (x̂(r; s; �))�ryf(x̂(r; s; �))� r2yy`(x̂(r; s; �); �z�y + s)
y(x̂(r; s; �))�1
(x̂(r; s; �))� ẑy(r; s; �)�� r2uy`(x̂(r; s; �); �z�y + s)
y(x̂(r; s; �))�1
(x̂(r; s; �))� ẑu(r; s; �) = 0 ; (36)X̂(r; s; �)Ẑ(r; s; �)e = 0 ; (37)
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h that 






0B� x̂(r; s; �)� x�ẑy(r; s; �)� �z�yẑu(r; s; �)� �z�u 1CA






 � �for all (r; s; �) 2 B(K; Æ). Making use of (37) and stri
t 
omplementarity of the pair (x�; �z�), and redu
ing� and Æ if ne
essary, one 
an easily show that:(i) x̂(r; s; �) � 0, ẑ(r; s; �) � 0,(ii) the pair (x̂(r; s; �); ẑ(r; s; �)) also satis�es stri
t 
omplementarity,(iii) the gradients of the a
tive 
onstraints are linearly independent at x̂(r; s; �),for all (r; s; �) 2 B(K; Æ).To derive the bounds (18)-(21), we di�erentiate x̂(r; s; �) and ẑ(r; s; �) with respe
t to (r; s; �), and write0B� rrx̂(r; s; �)> rsx̂(r; s; �)> r�x̂(r; s; �)>rr ẑy(r; s; �)> rsẑy(r; s; �)> r�ẑy(r; s; �)>rr ẑu(r; s; �)> rsẑu(r; s; �)> r�ẑu(r; s; �)> 1CA = �J(r; s; �)�1 B(r; s; �) ;where the Ja
obian of the ve
tor fun
tion given in (28)-(30) at the pair (x̂(r; s; �); ẑ(r; s; �)), and in thesituation where the parameters r, s, and � are not ne
essarily zero, is given byJ(r; s; �) � J(x̂(r; s; �); ẑ(r; s; �); r; s; �)
= 0BBBBBBBBBBB�

��r2yy`+ 
>y 
y ��r2yy`
�1y 
u + 
>y 
u ��I 0r2uu`� 
>u 
�>y r2yu`0 +
>u 
�>y r2yy`
�1y 
u 
>u 
�>y �I�r2uy`
�1y 
uZy 0 Y 00 Zu 0 U
1CCCCCCCCCCCA

+
0BBBBBBBBBBBBBBBBBBBB�

��Pnyj=1(
�1y 
)jry �r2yy`�j+Pnyj=1 
jr2yy
j + �r2yy`(I �rys) ��Pnyj=1(
�1y 
)jru �r2yy`�j+Pnyj=1 
jr2yu
j + �r2yy`(
�1y 
u �rus) 0 0Pnyj=1 h(
�1y 
)jry �
>u 
�>y r2yy`�j i�Pnyj=1(
�1y 
)jry �r2uy`�j�
>u 
�>y r2yy`(I �rys)+r2uy`(I �rys)
Pnyj=1 h(
�1y 
)jru �
>u 
�>y r2yy`�j i�Pnyj=1(
�1y 
)jru �r2uy`�j�
>u 
�>y r2yy`(
�1y 
u �rus)+r2uy`(
�1y 
u �rus) 0 00 0 0 00 0 0 0

1CCCCCCCCCCCCCCCCCCCCA :
The matrix B is de�ned by B(r; s; �) = 0BBBB� I B12(r; s; �) B13(r; s; �)0 B22(r; s; �) 00 0 00 0 0 1CCCCA ;



12 L. N. VICENTEwith �B12(r; s; �)�k = �� [L12(r; s; �)℄sk 
y(x̂(r; s; �))�1
(x̂(r; s; �)) ;B13(r; s; �) = �r2yy`(x̂(r; s; �))
y(x̂(r; s; �))�1
(x̂(r; s; �)) + �z�y � ẑy(r; s; �) ;�B22(r; s; �)�k = �
u(x̂(r; s; �))>
y(x̂(r; s; �))�> [L12(r; s; �)℄sk 
y(x̂(r; s; �))�1
(x̂(r; s; �))� [L22(r; s; �)℄sk 
y(x̂(r; s; �))�1
(x̂(r; s; �)) :In the expressions for B12(r; s; �) and B22(r; s; �), the index k goes through the ny 
olumns of these matri
es,the subs
ript sk denotes derivative with respe
t to sk, andL12(r; s; �) = Pnyj=1r2yy
j(x̂(r; s; �)) �
y(x̂(r; s; �))�>s�j ;L22(r; s; �) = Pnyj=1r2uy
j(x̂(r; s; �)) �
y(x̂(r; s; �))�>s�j :Hen
e, 0B� x̂(r; s; �)� x�ẑy(r; s; �)� �z�yẑu(r; s; �)� �z�u 1CA = 0B� x̂(r; s; �)� x̂(0; 0; 0)ẑy(r; s; �)� ẑy(0; 0; 0)ẑu(r; s; �)� ẑu(0; 0; 0) 1CA= � R 10 J(�r; �s; ��)�1 B(�r; �s; ��)0� rs� 1A d� : (38)Sin
e J�(0; 0; �) is nonsingular for all � 2 [0; ��℄, we 
an show that for � and Æ suÆ
iently small J(r; s; �)�1is bounded on f(r; s; �) : k(r; s)k < Æ ; � 2 [0; ��℄g � B(K; Æ) :In fa
t, it is quite 
lear from the 
ontinuity assumptions that the �rst matrix term of J(r; s; �) is a pertur-bation of size Æ and � of J�(0; 0; 0). Furthermore, from (35) we write
(x̂(r; s; �)) = 
y(x̂(r; s; �)) ���r2yy`(x̂(r; s; �) +
y(x̂(r; s; �))>
y(x̂(r; s; �))��1 (�r + �ẑy(r; s; �)� ��z�y) ;whi
h enables us to say that the se
ond matrix term of J(r; s; �) is O(Æ; �).Now we 
an �nally show (18)-(21). Sin
e the integral in (38) is bounded above bymax�2[0;1℄ kJ(�r; �s; ��)�1k Z 10 B(�r; �s; ��)0� rs� 1A d� ;there exist positive 
onstants �5-�9 su
h thatkx̂(r; s; �)� x�k+ kẑ(r; s; �)� �z�k � �5krk+ �6�kskd(r; s; �) + �7�d(r; s; �)+ �8�max�2[0;1℄ kẑy(�r; �s; ��) � �z�yk+ �9kskd(r; s; �) ;where d(r; s; �) = max�2[0;1℄k
y(x̂(�r; �s; ��))�1
(x̂(�r; �s; ��))k :We developed this bound applying the 
ontinuity assumptions to the four terms that appeared in B12(r; s; �),B13(r; s; �), and B22(r; s; �). However, from equation (35), the 
hoi
e of ��, and the 
ontinuity assumptions,we 
an derive d(r; s; �) � �10krk+ �11� max�2[0;1℄kẑy(�r; �s; ��) � �z�yk ;
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onstants �10 and �11. Thus, sin
e � � �� and ksk < Æ, there exist 
onstants �12; �13 > 0su
h that kx̂(r; s; �)� x�k+ kẑ(r; s; �)� �z�k � �12krk+ �13� max�2[0;1℄kẑy(�r; �s; ��) � �z�yk ;from whi
h we get for (r; s; �) repla
ed by (�r; �s; ��)kẑy(�r; �s; ��) � �z�yk � �12krk+ �13� max�2[0;1℄ kẑy(��r; ��s; ���) � �z�yk :Thus max�2[0;1℄ kẑy(�r; �s; ��) � �z�yk � �121� �13�krk ;for � 2 [0; ��℄ with �� < minn��; 1�13o. Thereforekx̂(r; s; �)� x�k+ kẑ(r; s; �)� �z�k � ��12 + �12�13�1��13� � krk� ��12 + �12�13��1��13 �� ��kzy � �z�yk : (39)For � 2 (0; ��℄ and kzy � �z�yk < minnÆ; Æ�o let us de�ne~y(zy; �) = ŷ(r; s; �) = ŷ(�(zy � �z�y); zy � �z�y ; �) ;~u(zy; �) = û(r; s; �) = û(�(zy � �z�y); zy � �z�y ; �) ;~zy(zy; �) = ẑy(r; s; �) = ẑy(�(zy � �z�y); zy � �z�y ; �) ;~zu(zy; �) = ẑu(r; s; �) = ẑu(�(zy � �z�y); zy � �z�y ; �) : (40)Hen
e, the bounds (18)-(21) follow immediately from (39).We end the proof by showing that ~x(zy; �) is the solution of problem (16). First we point out that(~x(zy; �); ~z(zy; �)) satis�es the �rst-order ne
essary 
onditions for (16) as it 
an be seen by rewriting system(35)-(37) using the 
hanges of variables (26)-(27) and (40). The �rst equation of the �rst-order ne
essary
onditions is zy � r2yy`(~x(zy; �); zy)
y(~x(zy; �))�1
(~x(zy; �))+ 1� 
y(~x(zy; �))>
(~x(zy; �)) � ~zy(zy; �) = 0 (41)and (22) is 
learly true. Then, we show that the Hessian of P (x; zy; �) is positive de�nite at ~x(zy; �) for allve
tors (�y)i = 0 if ~y(zy; �)i = 0 and (~zy(zy; �))i > 0 ; (42)(�u)i = 0 if ~u(zy; �)i = 0 and (~zu(zy; �))i > 0 : (43)The 
ases (�y)i � 0 and (�u)i � 0 are eliminated be
ause the pair (~x(zy; �); ~z(zy; �)) is stri
tly 
omple-mentary (see ii above). The s
alar � 
an be 
hosen suÆ
iently small so that we 
an 
onsider(�y)i = 0 if y�i = 0 and (�z�y)i > 0 ;(�u)i = 0 if u�i = 0 and (�z�u)i > 0 :This means that we 
an 
he
k the positive de�niteness of r2P (x; zy; �) in the same subspa
e that we 
onsiderforr2P (x�; �z�y ; �). Moreover, we proved in Theorem 4.4 that r2P (x�; �z�y ; �) is positive de�nite for � 2 (0; ��℄in the above mentioned subspa
e. To a
hieve our goal we show that the Hessian of P at (~x(zy; �); zy; �) is



14 L. N. VICENTEa perturbation of size � and Æ of the Hessian r2P (x�; �z�y ; �). In fa
t, r2P (~x(zy; �); zy; �) is given by:0� �r2yy`+ 1�
>y 
y �r2yy` 
�1y 
u + 1�
>y 
u�
>u 
�>y r2yy`+ 1� 
>u 
y �
>u 
�>y r2yu`+r2uu`�r2uy` 
�1y 
u + 1�
>u 
u 1A �0� Pnyj=1(
�1y 
)jry �r2yy`�j � 1� 
jr2yy
j Pnyj=1(
�1y 
)jru �r2yy`�j � 1�
jr2yu
jPnyj=1(
�1y 
)jry �r2uy`�j � 1� 
jr2uy
j Pnyj=1(
�1y 
)jru �r2uy`�j � 1�
jr2uu
j 1A + r2yy`(I �rys) r2yy`(
�1y 
u �rus)r2uy`(I �rys) r2uy`(
�1y 
u �rus) !with the Lagrangian evaluated at (~x(zy; �); zy) and the remaining fun
tions at ~x(zy; �). It is quite 
lear thatthe �rst matrix term is a perturbation of size � and Æ of the Hessian r2P (x�; �z�y ; �). To bound the se
ondmatrix term we rewrite (41) as1� 
(~x(zy; �)) = 
y(~x(zy; �)) ���r2yy`(~x(zy; �); zy) +
y(~x(zy; �))>
y(~x(zy; �))��1 (~zy(zy; �)� zy) :Thus, using the 
ontinuity assumptions and adding and subtra
ting �z�y , we obtaink 1� 
(~x(zy; �))k � �14 �k~zy(zy; �)� �z�yk+ kzy � �z�yk�� �14(�+ Æ)and k
(~x(zy; �))k � ���14(�+ Æ) :The 
on
lusion is that the se
ond and third matrix terms are also O(Æ; �) and the proof that the Hessian ofP (y; u; zy; �) is positive de�nite for all ve
tors �y and �u satisfying (42)-(43) is terminated.Using Theorem 5.1 we 
an state the basi
 properties of lo
al 
onvergen
e of the multipliers method 5.1.Corollary 5.1 Let x� = (y�; u�) with 
orresponding multipliers �z� = (�z�y ; �z�u) satisfy Assumptions 2.1-5.1.There exist s
alars Æ0 2 (0; Æ℄, � 2 (0; 1), and �0 2 (0; ��℄ su
h that if the sequen
e f�kg is monotonede
reasing and kz0y � �z�yk � minfÆ0; Æ0=�0g, then the sequen
e fzkyg generated by (15) is well de�ned (in thesense that (zky ; �k) 2 D� for all k) and satis�eslim supk!+1 kzk+1y � �z�ykkzky � �z�yk � � (44)when lim infk!+1 �k > 0, and limk!+1 kzk+1y � �z�ykkzky � �z�yk = 0 (45)when limk!+1 �k = 0. In both 
ases, we havelimk!+1 ~x(zky ; �k) = x� ; limk!+1 ~zu(zky ; �k) = �z�u ; (46)limk!+1 zky = �z�y : (47)Proof: The limits (44), (45), and (47) follow from inequality (20). The limits (46) are a 
onsequen
e of(18), (19), and (21).We point out that the 
onstant � in (44) depends on the 
ondition number of 
�y, as we have seen in theproof of Theorem 5.1.



LOCAL ANALYSIS OF A NEW MULTIPLIERS METHOD 156 Dual interpretation of the multipliers methodIn the 
ontext of Theorem 5.1, we introdu
e the dual fun
tiond�(zy) = minx2B(x�;�) P (x; zy; �) ; (48)for (zy; �) 2 D�, where zy are the dual variables and � is a positive parameter. From Theorem 5.1, we knowthat d�(zy) = P (~x(zy; �); zy; �) ; (49)where ~x(zy; �) and the 
orresponding multipliers ~z(zy; �) are 
ontinuously di�erentiable fun
tions satisfyingrxP (~x(zy; �); zy; �)� ~z(zy; �) = 0 ; (50)(~x(zy; �))i(~z(zy; �))i = 0 ; i = 1; : : : ; ny + nu : (51)We now need to introdu
e the following notationB = fi : x�i > 0g ; N = fi : x�i = 0g :Di�erentiating (49) and (51) with respe
t to zy and using (50)rzyd�(zy) = rzy ~x(zy; �)rxP (~x(zy; �); zy; �) + 
y(~x(zy; �))�1
(~x(zy; �))= rzy ~x(zy; �)~z(zy; �) + 
y(~x(zy; �))�1
(~x(zy; �))= 
y(~x(zy; �))�1
(~x(zy; �)) : (52)Di�erentiating (52) with respe
t to zy and (50) with respe
t to x and appealing to stri
t 
omplementarityr2zyzyd�(zy) = rzy ~x(zy; �)BC(~x(zy; �))B= �C(~x(zy; �))>Br2xxP (~x(zy; �); zy; �)�1B C(~x(zy; �))B ; (53)where C(x) =  I
u(x)>
y(x)�> !� Pnyi=1(
y(x)�1
(x))ir2yy
i(x) 
y(x)�>Pnyi=1(
y(x)�1
(x))ir2uy
i(x) 
y(x)�> ! :If we negle
t the terms in (53) involving 
(~x(zy; �)), the Hessian r2zyzyd�(zy) redu
es to�
�1y r
>Br2xxP�1B r
B
�>y = �(
>y 
y)�1 �
>y r
>Br2xxP�1B r
B
�>y � :Lo
ally (around x�) and for suÆ
iently large values of �, solving the dual problemmaxzy d�(zy)redu
es to solve problem (1). The following 
orollary of Theorem 5.1 states this relationship formally. Theproof follows from the form (52) for the gradient of the dual fun
tion and from Theorems 4.2 and 4.3.Corollary 6.1 Let x� = (y�; u�) with 
orresponding multipliers �z� = (�z�y ; �z�u) satisfy Assumptions 2.1-5.1.If for (zdy ; �d) 2 D�, zdy is a stationary point for d�d(�), i.e., if rzyd�d(zdy) = 0, then the pair (~x(zdy ; �d);~z(zdy ; �d)) satis�es the se
ond-order suÆ
ient 
onditions for problem (1).The gradient of the dual fun
tion provides an interpretation of the multipliers method 5.1. In fa
t, thesteepest as
ent method to maximize d�(�) is of the formzk+1y = zky + �k(
�1y )k
k
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h parameter �k, while the multipliers method update (15) 
an be rewritten aszk+1y = zky + 1�k ���kr2yy`k + (
y)>k (
y)k� (
�1y )k
k :As in [1, Se
tion 2.3.2℄, a q-quadrati
ally 
onvergent multipliers method 
an be derived by applying Newton'smethod to the dual fun
tion d�(�):zk+1y = zky �r2zyzyd�k (zky )�1rzyd�k (zky )with (zky ; �k) 2 D�.7 Con
lusions and future workThe nonlinear programming problems (1) and (2) often arise from the dis
retization of optimal 
ontrolproblems (see referen
es [2, 3, 4, 8, 11, 12, 13, 14, 15, 19, 21, 20, 22, 23℄).The presen
e of bounds on the states variables makes the problem parti
ularly diÆ
ult but also withwider appli
ability. The 
ontribution of this paper was to set a framework to solve (1) and (2) based ona new multipliers method motivated in turn by a penalty fun
tion with some exa
tness properties. Themethod explores the stru
ture of the problem, requiring the solution of linearized state and adjoint linearsystems, and 
an be implemented using either adjoints or sensitivities [17℄.The appli
ation of the multipliers method to solve the general nonlinear programming problem is thesubje
t of a forth
oming paper that will address the lo
al analysis, a globalization s
heme, and numeri
alresults. The use of the least squares multipliers (and the use of the orthogonal null spa
e basis in the analysis)in general nonlinear programming raises a number of questions about the eÆ
ien
y of our approa
h in su
hgeneral setting. Our new multipliers method is perhaps better tailored to problems of the form (1) and (2)where the null spa
e basis (5) and the adjoint multipliers appear naturally in the problem stru
ture.Other topi
s of future resear
h are: number of inner and outer iterations [7℄ and the identi�
ation of a
tive
onstraints; lo
al analysis under weaker assumptions like degenera
y [29℄ and la
k of stri
t 
omplementarity[16℄.8 AppendixThe point x = (y; u) is a regular or nondegenerate point for problem (1) if the gradients of the a
tive
onstraints are linearly independent, i.e., if the matrix0B� 
y(y; u) 
u(y; u)IY 00 IU 1CAhas full row rank, where IY (respe
tively IU ) is the submatrix of the identity 
orresponding to indi
es i su
hthat yi = 0 (respe
tively ui = 0).A point (y; u) satis�es the �rst-order ne
essary 
onditions for problem (1) if there exist � 2 IRny and(zy; zu) 2 IRny+nu su
h that ry`(y; u; �)� zy = 0 ; (54)ru`(y; u; �)� zu = 0 ; (55)
(y; u) = 0 ; (y; u) � 0 ; (56)y>zy = u>zu = 0 ; (zy; zu) � 0 ; (57)
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(y; u)>�. A pair (x; z) formed by a point x = (y; u) and 
orresponding multipliersz = (zy; zu) satis�es stri
t 
omplementarity ifyi = 0 =) (zy)i > 0 ; i = 1; : : : ; ny ;ui = 0 =) (zu)i > 0 ; i = 1; : : : ; nu :The se
ond-order ne
essary 
onditions for problem (1) are 
omposed by (54)-(57) and the 
ondition �y�u !>r2xx`(y; u; �) �y�u ! � 0 (58)for all (�y;�u) satisfying r
(y; u)> �y�u ! = 
y(y; u)�y + 
u(y; u)�u = 0 ; (59)(�y)i = 0 if yi = 0, and (�u)i = 0 if ui = 0. It is easy to 
he
k that the validation of (58) on the subspa
ede�ned by (59) redu
es to �u>w(y; u)>r2xx`(y; u; �)w(y; u)�u � 0 :The se
ond-order suÆ
ient 
onditions are the 
onjun
tion of (54)-(57) with�u>w(y; u)>r2xx`(y; u; �)w(y; u)�u > 0 (60)for all �u su
h that (�u)i = 0 if ui = 0 and (zu)i > 0, and (�u)i � 0 if ui = 0 and (zu)i = 0. A pointthat satis�es the se
ond-order suÆ
ient 
onditions is a stri
t lo
al minimizer. If the pair (x; z) is stri
tly
omplementary then (60) has to hold only for �u su
h that (�u)i = 0 if ui = 0.A
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