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Abstract

In this paper we introduce a penalty function and a corresponding multipliers method for the solution
of a class of nonlinear programming problems where the equality constraints have a particular structure.
The class models optimal control and engineering design problems with bounds on the state and control
variables and has wide applicability.

The multipliers method updates multipliers corresponding to inequality constraints (maintaining their
nonnegativity) instead of dealing with multipliers associated with equality constraints. The basic local
convergence properties of the method are proved and a dual framework is introduced. We also analyze
the properties of the penalized problem related with the penalty function.
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1 Introduction

Consider the following nonlinear optimization problem:
minimize f(y,u)
subject to  ¢(y,u) =0, (1)
(y,u) 20,

=(1).

where the structure of the equality constraints ¢(y,u) = 0 arises from optimal control and design engineering
problems. So, we assume that the state variables y are in IR™ and the control or design variables u lie in
IR", where n, and n, are positive integers. The functions f and c are considered smooth and defined as
f:Q— Randc:Q — IR"™, where Q is an open set of IR"**"™*, The nonlinear system c(y,u) = 0 with
n, equalities is the state equation. Due to the partition of = in y and u, we can write the Jacobian matrix
of ¢ as:

in the variables

Vely,u)" = (ey(y,u) culy,u) ),
where the partial Jacobian ¢, (y, u) is a square matrix of order n,. We assume that c,(y, u) is nonsingular in
Q. In the Appendix, the optimality conditions for this problem are described, assuming that the functions
f and c are twice continuously differentiable in .
This problem setting formulates a broad class of optimal control and design engineering problems. For
instance, any problem of the form

minimize f(w,u)

subject to d(w,u) =0,
g(w,u) >0,
(w,u) >0,

*Departamento de Matematica, Universidade de Coimbra, 3001-454 Coimbra, Portugal. Support for this work was provided
by Centro de Matemética da Universidade de Coimbra, by FCT under grant POCTI/35059/MAT/2000, and by the European
Union under grant IST-2000-26063.



2 L. N. VICENTE

where the partial Jacobian d,,(w,u) is nonsingular, can be reformulated as problem (1) by setting

y = ( w ) and ey, u) = c(w,s,u) = <g(d<w,u> > '

s w,u) — §

In this situation, as it can be easily checked, ¢, (y, u) would still be nonsingular.

Since we are assuming that ¢, (y,u) is nonsingular, the implicit function theorem guarantees the local
existence of a smooth vector function y(u) from IR™ to IR™ defined by c¢(y(u),u) = 0. This allows us to
reduce the minimization problem (1) to the space of the control variables u:

minimize f(y(u),u) @)
subject to y(u) >0, u>0.
The formulation (1) is called “all-at-once” whereas the formulation (2) is referred to as “black-box”. Note
that bounds on states in the all-at-once formulation correspond to nonlinear inequality constraints on the
controls in the “black-box” formulation. Further, if the optimal control problem is given in the form (2) it
can be easily reformulated in the form (1):

minimize f(y(u),u)
subject to  y(u) —s=0,
(s,u) >0.

The multipliers method was proposed by Hestenes [18] and Powell [26] for nonlinear optimization problems
with equality constraints. The book by Bertsekas [1] gives a comprehensive treatment of this topic with
connections to other approaches. Extensions of the multipliers method for inequality constraints have been
proposed using slack and square slack variables and nondifferentiable penalty functions (see the books by
Bertsekas [1, Sections 3.1-3.2] and Fletcher [10, Section 12.2], the papers by Rockafellar [27, 28], and the
references therein). A common feature in these approaches is that the nonnegativity of the multipliers
corresponding to inequality constraints has to be explicitly imposed. Another approach was introduced later
by Conn, Gould, and Toint [5]. Their algorithm, implemented in the optimization solver LANCELOT
[6], first converts the nonlinear programming problem into a problem with equality constraints and simple
bounds. The objective function and the equality constraints then define the augmented Lagrangian function
that does not take into account the simple bounds. Their method then consists of minimizing a sequence of
augmented Lagrangian functions within the bounds.

A (smooth) penalty function P for the solution of problem (1) is introduced in Section 2 and its derivatives
computed in Section 3. The penalty function is based on Fletcher’s augmented Lagrangian penalty function
[9]. In fact, the penalty function is derived by eliminating from the first-order necessary conditions for (1) the
multipliers A corresponding to the state equation ¢(y,u) = 0. This derivation also means that the penalty
function P depends on the values of the multipliers 2z, corresponding to the bounds y > 0. Because of the
dependence on the multipliers z,, this penalty function is not exact in the traditional sense [24, 25]. However
it does share some exactness properties as it is shown in Section 4.

The multipliers method we propose in this paper is based on the penalty function P. Its novelty comes
from the fact that the multipliers that are explicitly updated are the multipliers z, corresponding to the
bounds on the state variables y. The update formula maintains these multipliers 2z, nonnegative without
any artificial use of the max(0,-) operator. The multipliers A (that depend in turn on z,) corresponding
to the state equation ¢(y,u) = 0 are then implicitly updated within the formula for P. The traditional
multipliers method for problems with equality constraints requires at each major iteration the solution of an
unconstrained minimization problem; the method proposed here (like the one in [5]) requires the solution of
a minimization problem with simple bounds.

The description of the multipliers method and the proof of its basic local convergence properties are given
in Section 5. In Section 6 we introduce the dual interpretation of this multipliers method. In Section 7 we
state some conclusions and point out directions for future work.
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2 The penalty function

The penalty function we propose in this paper is based on the Lagrangian of f with respect to the constraints
c(y,u) =0 .
Uy, u. A) = f(y,u) +c(y,u) A

and on the corresponding augmented Lagrangian function:
T 1 T
L(y,UIA,,U) = f(y,u)+c(y,u) A+ Ec(y:u) c(y,u),

where A € IR™ are multipliers corresponding to the state equation and u is a positive penalty parameter.
We would like to come up with an expression for A in terms of (y,u), hoping that that would lead us to a
penalty function with some interesting exactness properties. To do so, we take a close look to the structure of
our problem. A point (y,u) satisfies the first-order necessary conditions for problem (1) (see the Appendix)
if there exist A € IR™ and (z,,2,) € R™""™ such that

YV, fy,u) +cy(y,u) A=z, =0,
Vuf(,u) + cu(y,u) "A— 2, =0,
c(y,u) =0, (y,u) >0,

y'zy =u'z, = 0, (2,24) >0.

Given y, u, and 2y, the first-order necessary conditions indicate a formula for A:

My, u,2y) = —cy(y,u);r(vyf(y,u) —zy). (3)

Given the parameters z, > 0 and p > 0, we introduce the penalty function

P(y,u;zy, p) = f(y=u)+0(y=U)T/\(y=u,Zy)+%C(ym)TC(ym)

and the corresponding penalized problem:

minimize  P(y, u; zy, )

subject to  (y,u) >0,

(4)

in the optimization variables y and u. The parameter z, is updated explicitly rather than incorporated in the
optimization variables. The penalty function P shares some exactness properties as it is shown in Section 4.
Throughout this paper we will make the following assumptions.

Assumptions 2.1 The functions f and c are three times continuously differentiable in an open set Q C
IR" ™. The partial Jacobian c,(y,u) is nonsingular in Q.

To alleviate the notation we will omit the arguments z = (y,u) and z* = (y*,u*) when it is clear from
the context where the functions are evaluated. For instance, ¢, = ¢,(y,u) and V,f* = V, f(y*,u*). The
symbol e represents a vector of ones with appropriate size. Also, for any vector v, V is the diagonal matrix
for which the diagonal elements are the elements of v. We use the notation ||v]| = O(d,€) or v = O(d, €) (and
say that v is of size ¢ and €) to denote ||v]| < k(d + €), where & is a positive constant.

3 Derivatives of the penalty function

We calculate now the gradient and the Hessian of P(y, u; z,, u) with respect to y and u.
To obtain the first-order partial derivatives of P(y, u; zy, pt), we first calculate

vyA(yau/Zy) = _cy(yau)iTVZyE(ghuaA(@’:“azy))a

vuA(yaU,Zy) = —cy(y,u)_—rvzué(y,u,)\(y,u,zy)),
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by differentiating c, (y,u) " A\(y, u,zy) = =V, f(y,u) + 2z, with respect to y and u, respectively. Thus the
gradient of P(y, u; zy, u) is given by

VP(y,u;zy, n) = Gi(y,u; 2y, p) + Ga(y,u; 2y, 1) + Ga(y, us 2y, 1)

where
Gi(y,u; 2y, p) = %y :
v g ( Vuf(y,u) = culy,u) T ey (y,w)™ T (Vy f(y,u) = zy) )
_viye(yvuaA(yau:Zy))cy(yvu)_lc(yau)
Ga(y, u; zy, = ~ _
. 2 ( —Viyé(y,u,)\(y,u,zy))cy(y,u) Le(y, u) )

nd
' Ley(y,u) ey, u)

Gl ) =\ Lo g ety )

If c(y,u) = 0, the gradient VP(y, u; zy, ) is just:

VP(y,uzy, 1) = Gi(y,uszy,p) = w(gou)T < V,fy,u) -z, > ;

where
wiy.u) = ( —cy(y,U);lcu(y,U) ) _ (5)

To compute the gradient one has to solve one linearized state equation ¢, (y, u)~'e(y,u) and one adjoint
equation ¢, (y,u)™ " (Vyf(y,u) — 2).

We calculate now the Hessian of P(y,u; zy, ). The procedures are similar as before. For instance, we
need to obtain the partial derivatives of ¢, (y,u) 'c(y,u) with respect to y and u and we accomplish this
task by noticing that s(y,u) = ¢, (y,u) 'e(y,u) and by differentiating ¢, (y,u)s(y, u) = c(y, u):

Ny

Vys(u) = I -, 3 (ey(y,w) " ely,u), Vigeily,u),

VUS(Z},U) = cy(y,u)_lcu(y,u) - cy(y,u)_l Z (Cy(y=u)_1c(y=u))i vzucz(yu) .

Moreover, we need to differentiate the w component of G1 (y, u; 2y, 1) with respect to y and w. This component
is nothing else than V,£(y,u,2,) = Vuf(y,u) + cu(y,w) "Ny, u, 2,), where €(y,u, z,) = £(y, u, ANy, u, z,)).
So, its derivatives are given by

Vy (Vul(y,u,2y)) = Vi, fly,u)+ 302 My, u, 2)iVa,ci(y,u)
—cu(y,u) Tey(y,u)” TV, Uy, u, A(y,u zy)) s
Vi (Vul(y,u,2y)) = Vi, fy,u)+ 32 My, u,2)iVi,ci(y, u)
—cu(y,u)Tey(y,u)” TV, y,u A(y U, 2y)) -

Hence, the Hessian of P(y, u; zy, pt) is expressed as

V2P(y,u; 2y, 1) = Hi(y,u;zy, 1) + Ha(y, ws 2y, p) + Hs(y, u; 2y, 1)

where

0 0
Hl(y=U§Zy=H) = s
—cuCy 'NVE U+ Vol —ciey TV L+ VL
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—szf —szécglcu ) . < szﬁ(l—vys) V2 Sy “ley — Vus) )

Hy(y,u; 2y, ) =
! V2 U1 =Vys) V2,0(c; ey — Vo)

-Vl =Vilc ey

= X560V (V5 0); = X560V (Vi 0),

J

+
= X510V (Vigh); = X5%i(e, 03 Vu (Viyf),
and
%;Cy‘*' Zz 1czv2 Ci %;CU-F Zz 1cl
H3(y7u;2y7:u) = 1T 1. T
Lefe, + 1 LS aV? wCuCut Y GiViC

If e(y,u) = 0, the Hessian of P(y,u; 2y, pt) reduces to

—V2 ¢ —V2 lc e
vy yytty “u 1.T 1.T
. 2CyCy 5 CyCu
T .~ T2 2
—cle Tv2 /¢ Cy 2vyu£ 1+ vuué lCTCy lCTCu
u y _ — u u
Viyley cu " "

4 Properties of the penalty function

In this section we analyze the relationships between problem (1) and the penalized problem (4). We start
with a result that is analogous to [1, Proposition 2.3]. We appeal to the first-order necessary conditions for
problem (4):

1
2y = Vi, le, e+ ;c;c—zy =0, (6)
1
Vuf —c) cy (Vyf—2) — Viyﬁc;10+;czc—2u:0, (7)
(y,u) >0, (8)
y' 'z, =u'z, =0, (2,2,)>0. (9)

Theorem 4.1 Let Assumptions 2.1 hold. If (zk,(Zy)k, (Zu)r) satisfies the first-order necessary conditions
for (4) with p, > 0 and (zy)r > 0, {(2y)r} is bounded, and limy_ 4o ux = 0, then every limit point of
{(xk, (Zy)k: (Zu)k)} satisfies the first-order necessary conditions for the original problem (1).

Proof: Let (z,Zy,%2,) be a limit point of {(zx, (Zy)k,(Zu)k)}. Since {(zy)r} is bounded, there exists
a subsequence {(z, (Zy)k, (Zu)k) }xc such that imgex(zk, (Zy)k, (Zu)k) = (2, 2y, Zy) and limgex (2y)r = 2.
Now we set

(Z)k = VyP(xr; (2y)k, ) -
It follows from the first-order necessary conditions for (4) that

hm (Z,)r = lm VyP(ai; (z)i ) = 2y > 0.

Thus, limgci l%kcy(xk)—rc(xk) exists. Since limg_, 1 o0 pr = 0, we have that

) =0
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and ¢(z) = 0. Then 2, = limpecic(2y)r + ;—kcy(xk)—rc(xk) and

0 = limpex (Vuf(@r) = culen) Tey(@r) T (Vyf@r) = (2)8)
=V, 0k, (2)8)ey(21) Lelan) + Lealwe) Telmr) = (Zu)i)
= limgex (Vuf(ﬂfk)
—cu(z) Ty (2n) " T (Vy flzn) = (2y)k = qmey (@) Te(zn)) - (fu)k)

= Vuf(@) = cul2) ey (2)"T(Vyf(2) - ) — 20

Since yTEy =u'%, = 0 the proof is completed. 0

The next two theorems relate problems (1) and (4).

Theorem 4.2 Let Assumptions 2.1 hold. Also, let u > 0 and x be such that ¢(z) = 0. The point x satisfies
the first-order necessary conditions for the original problem (1) with multipliers z, corresponding to y > 0 if
and only if © satisfies the first-order necessary conditions for the penalized problem (4) for some z, > 0.

Proof: If ¢(y,u) = 0, the first-order necessary conditions for the penalized problem (4) imply
2y — 2y =0,
Vil (ysu) = culy,u) Tey(y,u) T (Vy fly,u) = 2) = 2 = 0,
(y,u) 20,
y'z, =u'z, = 0, (3,2,) >0.
Since z, = Z,, these conditions can be rewritten as
Vauf (y,u) = ey, u) ey (y,u)™ T (Vyf(y,u) = 2) = 22 = 0,
(y,u) 20,
y'zy =u'z, = 0, (2,24) >0,

which are the first-order necessary conditions for the original problem (1) with z, = z,. 0

Also, if z satisfies the first-order necessary conditions for the penalized problem (4) for some 2z, > 0 and
zy = Zy, then we get

—Viyé(:n,)\(:U,zy))cy(a:)_lc(:n)—|— cy(z)Te(z) = 0.

1
I
So,
B - 1 _
(o) e(a) T (=300 M5, 2)) + (o) Teyf)) o)) = 0
and there exists u* > 0 such that for all 0 < u < p*, ¢y (z) " te(z) =0, ie., c(z) = 0.

Theorem 4.3 Let Assumptions 2.1 hold. Also, let > 0 and (y,u) be such that c(y,u) = 0. If (y,u)
satisfies the second-order necessary (sufficient) conditions for the penalized problem (4) for some z, > 0,
then (y,u) satisfies the second-order necessary (sufficient) conditions for the original problem (1).

Proof: The first-order part of this result follows from the previous theorem. To establish the second-order

assertions we need to calculate
Ay ) oo Ay
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in the situation where (Ay, Au) satisfies:

(Ay); =0 if y; =0 and (Z); >
(Au); =0 if uw; =0 and (z,); >

(Au)l >0 if u; =0 and (Eu)z =0.

We will also assume that (Ay, Au) lies in the null-space of the Jacobian of ¢(y, u), i.e., that Ay = —¢,

cu(y, u)Awu. Since ¢(y,u) = 0, the value of (10) is given by:
—AyTVZyKAy - AyTVZyK c;lcuAu — AuTCIc;TvzyﬁAy
+AuT V2 Ay — AuTCIc_TVQUKAu - AuTVZ Ley ey Au
+-= Ay ¢y Tey Ay + 1Ay ¢y TeyAu 4+ 1 Au Cu cyAy—}— LAuTe] ey Au.

Thus, from Ay = — cuAu a number of terms cancel out and we obtain:

A A A A
(Aﬁ) meﬁ(y,u,zy)<AZ> = (AZ) V2P(y,u;zy,u)<AZ )

Since (Ay, Au) satisfies (11)-(14) and ¢, (y, u)Ay + ¢y (y, u)Au = 0 the proof is completed.

Finally, we establish the exactness property of the penalty function P (a result that can be seen as the

reciprocal of Theorem 4.3).

Theorem 4.4 Let Assumptions 2.1 hold. Also, let x be such that c(z) = 0. If (z,z,) satisfies the second-
order necessary (sufficient) conditions for the original problem (1) with multipliers z, corresponding toy > 0,
then there exists a u* > 0 such that (y,u) satisfies the second-order necessary (sufficient) conditions for the

penalized problem (4) for this z, and any 0 < p < p*.

Proof: We prove the result only for the sufficient conditions. Let Ay and Awu satisfy (11)-(14). The proof

is based on the fact that

T
Ay 2 . Ay
<Au> VP(y,u,zy,u)<Au>

- ( —enly) ety A )Tvixé(y,ugzy) ( —ey(y, )~ eu(y, w)Au )

Au

. ( A )T ( V2, 0y, 2,) +05cy<y,u>Tcy<y,u> 2 ) ( A )

T _
Ay TI . 0 -Vi,(+ %cgcy 0 I ¢ ley Ay
Au cyey, 0 wTV2, tw 0o I Au
w)~le

where Ae = Ay — (—c¢y(y,
problem (1) imply that

Aulw(z) V2, z))w(z)Au > 0.
The proof is completed by setting:

a(z)
B(z,zy)

. { any positive real if szé(az, zy) is negative semi-definite,
u o=

otherwise,

w(y, u)Au). Since (13)-(14) hold, the second-order sufficient conditions for

where c,(z) "¢, (z) has eigenvalue decomposition c,(7) ey (z) = Q(z)A(z)Q(z)" and smallest eigenvalue

a(z), and f(z, z,) is the largest eigenvalue of Q(z)" V3 £(x,2,)Q(x).

O
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5 The multipliers method

The penalty function P together with the penalized problem (4) and the equation (6) motivate a new
multipliers method.

Algorithm 5.1 (Multipliers method for (1))
1. Choose initial values: pg for the penalty parameter and 22 for the approximation of the multipliers.

2. For k=0,1,2,...do

2.1 Solve problem (4) with z, = z¥ and p = py.

2.2 Update the multipliers approximation:

Z5+1 = Zlgj _vaz(i(zlyfa,uk)Zlgj)cy(j(zlgj/’Lk))_lc(j(zgljuk))

+ Hikcy(ﬁz(z’;,uk))—rc(j(zlgj:/“6))’

(15)

where #(z}, jur,) is the solution obtained in Step 2.1.

2.3 Update the penalty parameter 1.

If szé(i’(zif,uk),zﬁ)cy(i’(zj,uk))_lc(:ﬁ(zg,,uk)) ~ 0, then the update (15) is just

1 . -
25+1 = 25 + Ecy(x(zlyc:/”k))—rc(x(zgnuk))a

which differs from the classical update of the multipliers methods for equality constrained optimization only
because ¢, (Z(z), ux)) " is multiplying ¢(Z(zF, u)) on the left.

The basic local convergence properties of the multipliers method 5.1 are proved under the following set
of assumptions.

*

Assumptions 5.1 The point z* = (y*,u*) € Q with corresponding multipliers z* = (z;, Z;;) is a nondegen-
erate point satisfying the second-order sufficient conditions and strict complementarity for problem (1).

The main result is proved in Theorem 5.1 and bounds the distance between a local minimizer of (4) and
(x*,2*) by the penalty parameter ;4 times the distance between the parameter z, and the corresponding
multipliers Z;. Although the structure of the proof follows [1, Proposition 2.4], we have additional difficulties
here due to the presence of the bound constraints on the variables. Another difficulty arises when dealing
with the cross term in the multipliers update. This term is not multiplied by 1/u; but involves z{j A
consequence of having to handle this extra term is that the region D* in (17) becomes smaller than the one
in [1, Proposition 2.4] where instead of min{d,d/u} we only have d/pu.

Theorem 5.1 Let 2* = (y*,u*) with corresponding multipliers z* = (z;, z;;) satisfy Assumptions 2.1-5.1.
There exist positive scalars i, 8, €, k1, ko, K3, and k4 such that

ok % 1 * K * ok
_vaz(y ;U :Zy) + ﬁcy(y U )Tcy(y ;U )

is positive definite, the problem
minimize P(y,u; zy, 1)
subject to  (y,u) >0, (16)
(y,u) € B(y",u";€),

has a unique solution &(zy, ) for all (zy,u) in

1)
D = ey ey -5l <min {82} 0<usa}. (a7)
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the function Z(zy, 1) is continuously differentiable in D*, and for all (z,, ) € D* we have

ripllzy =zl 18

=

oW
S
EEE
Lo
e w
=
IA 1A

rapllzy = Zyl, 19

I
N
IN

(18)
(19)
rapllzy =zl (20)
(21)

21

™
S5
(S
<
=
=
(]
il
IN

”4H||Zy - 2;” )

where Z,(2y, 1t) and Z,(zy, ) are the multipliers corresponding to §(zy, ) and @(zy, 1), and Z,(2y, p) is such

that:
Zy(zg, 1) = zy = Vi UE(2y, 1), 2y) ey (E(2y, 1) e(Z(2y, 1))

+%cy( (2, 1)) T (i (2y, 1)) (22)

Proof: Consider, for u > 0, the system of nonlinear equations that results from the first-order necessary
conditions (6)-(9) for problem (4). We replace z, in the second equation (7) from its expression in the first
equation (6)

2y — Vi Uz, zy)c, e + ic;c —z,=0, (23)
Vuf —cqey ' (Vyf - V Sz, zy)ylc z,) — Vi Sz, zy)ylc—éuzo, (24)
y'z, = uTzu =0, (25)
canceling the term iczc. Now we multiply equation (23) by x and do the changes of variables
= (s - 7). (26)
5 = 2y —%,, (27)
to obtain
r— ,uV2 E(:r, Z, + s)cflc + cTc +pz, —pz, = 0, (28)
Vuf —cpcy  (Vyf - V (@, 2 + s)e 1c—zy)
—Viyé(x, 2; +s)e,le—2, =0, (29)
YZe =UZye = 0. (30)
We analyze this system for p € [0, u*], where p* is such that —,uVQ 0+ c*Tc* is positive definite for

Y
all p € [0 W *]. For r = s =0 and p € [0, u*], it is easy to check that the system (28)-(30) has the solution

(v 0 2. 20).

For r = s = 0, the Jacobian of (28)-(30) with respect to (y,u, Z,, Z,,) at (y*,u*, z¥, is given by
Yy Yy u
Mv2 0+ C*T ; _'uv2 VAT, * 16* + C*T Z _MI 0
V2, 0 — c*—r v TVQ I
* T x—Tv72 px x—1 % * 1T x—1
J50,0, 1) = 0 +e, VyyZ ¢,y CuoCy -1
‘ —Viyﬁ*c;flcz
Z; 0 Yy 0
0 Z! 0 U

u
because the cross derivative with respect to y and u vanishes:
2 * *T * T2 g% *T *— 1 2 g% 2 *
Vit Vit ¢y, V=Vt =0.

’LL
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We mean J*(0,0,u) = J(z*,2%;0,0,u). When p =0, J*(0,0, ) is just

e ;e 0
PRV e
J*(0,0,0) — E) w Vmﬁ w w
7z 0
y = *
0 Z X

The nonsingularity of this matrix is a direct consequence of the nonsingularity of the matrix

ver)T 0 0
V2 0+ Ve -1
7* 0 X*

which in turn results from the assumptions on (y*,u * 2y, 2, ).
The Jacobian J*(0,0, i) is also nonsingular for u € ( w*]. In fact, let (Ay, Au, Az,, Az,) be a solution
of the homogeneous linear system with the matrix J*(0,0, u):

( uV2 ﬁ*—}—c*—r *)Ay+( uV2 €*+c *) Tl Au—pAz, = 0, (31)
w* V2 0w Au—l—c*—r TAzy— Az, = 0, (32)

Z;Ay+Y* Az, = 0, (33)

ZiAu+U*Az, = 0. (34)

Equations (33)-(34) and strict complementarity between z* and z* imply AyTAz, = AuT Az, = 0. Multi-
plying (32) on the left by AuT yields

Au w*TV2 rfw* Au+Au—r # T ox— TAzy =

* 1 x—1
uw C

» » this last equation is equivalent to

Using (31) to eliminate Au'c

-1
AuTw*TVizé*w*Au —AyTAz, + quyT ( uV2  +cy 2) Az, = 0.

From (33)-(34) and the assumptions on (z*, 7*), we know that w* ' V2, ¢*w* is positive definite for all Au
such that (Au); = 0 if uf = 0. From the choice of p., —uvgyz* + c;Tc; is also positive definite. Thus, we
conclude that Ay = 0 and Az, = 0. From (31) and the choice of p., Ay = 0. Finally, from (32), Az, = 0.
The conclusion is that the Jacobian J*(0,0, ) is nonsingular for u € (0, pu*].

We now apply the implicit function theorem [1, pp. 12] to the system (28)-(30). We identify the set

= {0} x {0} x [0, *] with the compact set X of that theorem. The consequence is that there exist positive
scalars € and ¢ and unique continuously differentiable functions §(r, s, u), u(r, s, 1), 2,(r, s, ), and 2, (r, s, )
defined on a neighborhood B(K,§) = {(r,s,u) : ||(r,s,u) — (0,0,u")|| < & for some (0,0,u') € K} of K
satisfying

r = WV L (r, s, 1), 2y + s)ey (@(r, 5, 1)~ e(@(r, 5, 1))
+ Cy( (T‘ S, M)) ( (T=S=ll’)) + //’2; - /l,ZAy(’I“,S“u) = 07 (35)
Vuf(@(r,s, 1) = cu(@(r,s,m) e, T (@(r, S=M))(Vyf(ﬂ3(hs,u))
- vae(j(rvshu):Z; + S)Cy(:%(rvSvu))_lc(i(rvsvu)) - 2y(r757u))

- v2 é( (T s :u) Z -I-S)Cy( (r,s“u))flc(:%(r,s,y)) —EU(T,S,,U) = 07 (36)

X(r,s,u)Z(r,s,u)e = 0, (37)
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and such that
z(r, s, 1) —

Zy(rys,p) — 2,
Zu(ry s, 1) — 2,

for all (r,s,u) € B(K,d). Making use of (37) and strict complementarity of the pair (z*,2*), and reducing
€ and ¢ if necessary, one can easily show that:

IN
™

(i) &(r, s, 1) >0, 2(r,,11) >0,
(ii) the pair (Z(r, s, u), 2(r, s, ) also satisfies strict complementarity,
(iii) the gradients of the active constraints are linearly independent at Z(r, s, u),

for all (r,s,u) € B(K,J).
To derive the bounds (18)-(21), we differentiate Z(r, s, 1) and £(r, s, u) with respect to (r, s, u), and write

Ved(r,s,u) " Ved(r,s,u) T Vud(r,s,pu)"
Vréy(r“g:u)T vséy(“S:N)T vuéy(“S:H)T = _J(T:S:M)_l B(r,s,,u),
Vitu(rys, )T Veiu(r,s,u)T  Vizu(r,s,pu)’

where the Jacobian of the vector function given in (28)-(30) at the pair (&(r,s, u), 2(r,s, 1)), and in the
situation where the parameters r, s, and p are not necessarily zero, is given by

J(rys,p) = J(@(r,s,p),2(r, s, u)ir, 5, 1)
—Mvjye + c;—cy ,uV2 Ec cu + cTcu —ul 0

V2 L—cl ¢y TVQ 14
0 +eb yTVQ Zc_l czc;—r -I
—Viyécgl Cu
Z, 0 Y 0
0 Zy 0 U
—H Z?L (nglc)jvy (szg)j —H Zyll (Czjlc)jv“ (szé)j 0 0
+ 30 ¢V e+ uVa (I — Vys) + 30 Ve + uV e e, ew — Vaus)
2l [CtoR S5 [(ete)s
Yy (ele, V3,0, ] Vi (ele, T30, ]
* =300 ey k) Vy (V2,0), - (! 2 (Viut), 00
—cy ¢, V2 (I —Vys) —cy ey V2 (e, ey — Vis)
+V2, I = Vys) +V2, e, ew = Vus)
0 0 0 0
0
The matrix B is defined by
I Bia(r,s,u) Bis(r,s, )
0 Baa(r,s, ) 0
B(r, s, = )
(r,s, ) 0 0
0 0
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with
(Biatros.w), = —nlLialrs, ], e (@0 s.0) " elalr,s,0))
Bl3 (7“, S, H) = —szﬁ(ﬁz(r, S, M))Cy(ﬁf(ra Svu))_lc(i(r: S, H)) + 2; - 21/(7"7 Sv,u) 3

(B22(’I‘,8,,U))k = _Cu(:i(r:5:”))Tcy(‘%(rasnu))_—r [L12(Ta8nu)]sk Cy(i(nS:V’))_lc(i(rasaﬂ))

- [LQQ(T: S, li)]sk Cy(ﬁf(ra Svu))ilc(i(r: S, H)) .

In the expressions for Bia(r, s, ) and Bas (7, s, 1), the index k goes through the n, columns of these matrices,
the subscript s; denotes derivative with respect to sz, and

LIQ(T:S:M) = Zyll szcj(f(ﬁ&ﬂ)) (Cy(i(ﬁS:M))*Ts)]’ ’
L22(7‘757M) = Zyll Vin]‘(i(T,S,M)) (cy(jj(r,g,'u))f—rs)

IE
Hence,
53(7“757#)—33* 53(7“78,#)—53(070,0)
29(’[‘,8,#) - _; = 2y(T,S,M) _éy(oloao)
Zu(r, s, ) — 2, Zu(r, s, 1) — 24(0,0,0) (38)
r
= - fol J(rryrs,Tu) L B(rr,ms,Tp) | s | dr.
I

Since J*(0, 0, 1) is nonsingular for all y € [0, u*], we can show that for € and § sufficiently small J(r, s, u) ~*
is bounded on

{(rs,p) : [l(r,9)l| <60, pel0,p*]} C B(K,9).

In fact, it is quite clear from the continuity assumptions that the first matrix term of J(r, s, u) is a pertur-
bation of size  and € of J*(0,0,0). Furthermore, from (35) we write

c(@(r,s.p) = c(#(r,s,p0)) (—pV2 L0 5, 0) +
ey (i(r,5,1) ey (@(r,5.0)) " (=1 + pzy (r, s, 1) — pz5),

which enables us to say that the second matrix term of J(r, s, u) is O(J,¢€).
Now we can finally show (18)-(21). Since the integral in (38) is bounded above by

1 r
max_||J(rr, Ts,Tu)*1||/ B(rr,ts,tu) | s | dr,
7€[0,1] 0 1

there exist positive constants ks-kg such that

2(r, s, ) — 2™ + [[2(r, s, ) = 2*|| < &s|lrl] + wepl|sl|d(r, s, ) + K7pd(r, s, 1)
+ Kgpumax,gpo 1] ||2y (77, 75, TH) — 2;||

+ ollslld(r, s, 1) ,

where
d(r,s,p) = max |le,(@(rr,7s, 7))~ e(@(rr, 75, 7p))]| -
7€[0,1]
We developed this bound applying the continuity assumptions to the four terms that appeared in Bis(r, s, 1),

Bis(r, s, ), and Bas(r, s, u). However, from equation (35), the choice of u*, and the continuity assumptions,
we can derive

d(T‘,S,/j,) < RlOHTH + K114 max ||2y(7'7'= TSaT//’) - 2;”:
T€[0,1]
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for some positive constants k19 and x11. Thus, since p < p* and ||s]| < d, there exist constants k12, k13 > 0
such that

li(r.5.00) = 2|+ 1120810 = 2°1| < muallrl] + miage mase |2 (rr.s.7) = 51,

from which we get for (r, s, u) replaced by (7r,7s,7u)

12y (7,78, 71) = Zy || < FaaIr]] + L 12y (BT, Brs, BTi) — 2, ||

Thus

max ||2,(rr, s zr 71‘
ma (13, ms i) = 5] < TR

for p € [0, @] with i < min {u*, i} Therefore

i (r,s,0) = [+ 1120 8,0) = 20 < (1 + 52228 ) || )
< (o + 2B )z, — 5.
For p € (0, %] and ||z, — Z;|| < min {5, %} let us define
G2y, ) = 9(r,s,pn) = Ylplzy —2;),2y — 2, 10)
gy(zy,//’) = 2y(T,S,M) = 2y(ﬂ(zy _2;)72?; _zzap‘)a
Zu(zy, 1) = Zu(rys,p) = Zu(p(zy — 2;)7214 - Zgjnu) .

Hence, the bounds (18)-(21) follow immediately from (39).

We end the proof by showing that Z(z,,p) is the solution of problem (16). First we point out that
(&(zy, 1), 2(2y, p)) satisfies the first-order necessary conditions for (16) as it can be seen by rewriting system
(35)-(37) using the changes of variables (26)-(27) and (40). The first equation of the first-order necessary
conditions is

2 = V(2 1), 2)ey (#(zy 1) 7 (@ (2, 1))
+ Loy (@2 0) Te(@(zy 1) — Zy(zopn) = 0 (41)

and (22) is clearly true. Then, we show that the Hessian of P(z;z,, i) is positive definite at #(z,, u) for all
vectors

(Ay)i =0 if §(zy,pu); =0 and (Zy(zy,p))i >0, (42)
(Au); =0 if a(zy,p)i =0 and (Zu(zy,p))i > 0. (43)

The cases (Ay); > 0 and (Au); > 0 are eliminated because the pair (Z(zy, 1), 2(2y, 1)) is strictly comple-
mentary (see ii above). The scalar € can be chosen sufficiently small so that we can consider

(Ay)i=0 if y; =0 and (z,); >0,
(Au); =0 if ul=0 and (2); >0.

This means that we can check the positive definiteness of V2 P(x; z, 1) in the same subspace that we consider
for V>P(x*; z;, ju). Moreover, we proved in Theorem 4.4 that V> P(x*; 2}, ju) is positive definite for u € (0, pu*]
in the above mentloned subspace To achieve our goal we show that the Hessian of P at (&(zy, it); 2y, 1) is
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a perturbation of size e and ¢ of the Hessian V2P (z*; Z;, p1). In fact, V2P (&(zy, it); 2y, 1) is given by:

-V, l+ lcTcy -Vl ey }chc
cuCy Vo b+ —c ¢y —cuc, Vi L+ Ve l—Va le, oy + %c;rcu

>oiti(ey10)iVy (Vi 0); — 26 Viyei  Xita(ey ') Vu (Viy0) — weiViug

j=1 Y
St (e, te);Vy (Viyé) - —c]V2 Y (e, 1)V (Viyﬂ) - —c]V2
Vo LI =Vys) Vo l(c; ¢y — Vus)
V2 I —=Vys) Vi l(c, ey = Vys)

with the Lagrangian evaluated at (Z(z,, 1), 2,) and the remaining functions at a:(zy, u). It is quite clear that

the first matrix term is a perturbation of size e and & of the Hessian V> P(z*; Z, ). To bound the second
matrix term we rewrite (41) as
pe(@(zy, 1)) = ey(@(zy, ) (—1V3, 0@ (2y, 1), 2) +

ey (# (2, 1) Ty (8 (2, 1))~ (By (20 1) — 2)

Thus, using the continuity assumptions and adding and subtracting z;, we obtain

lre(@(zy, Il < k(12 (2g, 1) = 2511 + 12y = Z5]1)
S I<.‘,14(6+5)

and
le(@(zy, p)Il < Rk1a(e+6).

The conclusion is that the second and third matrix terms are also O(d, ¢) and the proof that the Hessian of
P(y, u; zy, ) is positive definite for all vectors Ay and Aw satisfying (42)-(43) is terminated. 0

Using Theorem 5.1 we can state the basic properties of local convergence of the multipliers method 5.1.

Corollary 5.1 Let 2* = (y*,u*) with corresponding multipliers z* = (z,, z;) satisfy Assumptions 2.1-5.1.
There exist scalars 69 € (0,8], & € (0,1), and po € (0, 1] such that if the sequence {ui} is monotone
decreasing and ||2) — zy|| < min{do, b0/}, then the sequence {zF} generated by (15) is well defined (in the

sense that (2, ) € D* for all k) and satisfies

. 2,1 — 2]
hmsupﬁ < kK (44)
k—too 125 — Z5l
when liminfy_, oo pur > 0, and
]
= =0 (45)
k—+o0 ||zy — zy||
when limy oo i, = 0. In both cases, we have
Jim E(zy, ) = @ Jim 2z, m) = 7, (46)
lim 2} =z, 4
S = 4

Proof: The limits (44), (45), and (47) follow from inequality (20). The limits (46) are a consequence of
(18), (19), and (21). 0

We point out that the constant x in (44) depends on the condition number of ¢y, as we have seen in the
proof of Theorem 5.1.
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6 Dual interpretation of the multipliers method
In the context of Theorem 5.1, we introduce the dual function

du(zy) = me?(i;l* 9 P(x; 2y, 1) , (48)

for (zy, ) € D*, where z, are the dual variables and p is a positive parameter. From Theorem 5.1, we know
that

where Z(z,, ) and the corresponding multipliers £(z,, ) are continuously differentiable functions satisfying
Vo P(E(2y, 1); 2y, 1) = Z(zy, ) = 0, (50)
(@(2y, )i (E(zy, )i = 0,0=1,...,ny +ny. (51)
We now need to introduce the following notation
B = {i:zj >0}, N = {i:z] =0}.
Differentiating (49) and (51) with respect to z, and using (50)

Ve, du(zy) = Vi, @2y, 1) Vo P(E(2y, 1); 2y 1) + y(F(2y, 1) " e(E(2y, 1))

Ve, &2y, 1)2(zy, 1) + ¢y (Z(2y, u))_lc(;ﬁ(z% 1))
= ¢y(E(zy, 1) e(E(2y, 1)) - (52)
Differentiating (52) with respect to z, and (50) with respect to 2 and appealing to strict complementarity
vgyzydu(zy) = vzyf(zyaﬂ)l?c(i(zy,ll))l?

= _C(j(zy,N))gvixp(j(zy,ﬂ)aZyaﬂ)glc(j(zyaﬂ))l?a (53)

C(z) = < ; ) ) ( Xita(ey (@) e(@))i Viyeie) ey (2) 7 )
cu(@) ey (2) T S ey (2) 7 e())i Vi cilz) ey (@)™ )

If we neglect the terms in (53) involving ¢(&(zy, it)), the Hessian ngzy d,(zy) reduces to

where

—ly,.Ty2 p-1 -T _ T \-1[.To.Tv2 p-1 -T
—c,'Veg Vi Py'Vepe, ' = —(c,¢,) " [e, Veg Vi, Pg'Vepe, '] .

Locally (around z*) and for sufficiently large values of u, solving the dual problem

max  d,(zy)

reduces to solve problem (1). The following corollary of Theorem 5.1 states this relationship formally. The
proof follows from the form (52) for the gradient of the dual function and from Theorems 4.2 and 4.3.

Corollary 6.1 Let 2* = (y*,u*) with corresponding multipliers z* = (z;, z;) satisfy Assumptions 2.1-5.1.

If for (zg,ud) € D, zg is a stationary point for d,,(-), i.e., if V., d,, (zZ) =0, then the pair (:E(zz,ud),
(28, na)) satisfies the second-order sufficient conditions for problem (1).

The gradient of the dual function provides an interpretation of the multipliers method 5.1. In fact, the
steepest ascent method to maximize d,,(-) is of the form

2yt = 2+ ey Dken
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for some search parameter pg, while the multipliers method update (15) can be rewritten as

Asin [1, Section 2.3.2], a q-quadratically convergent multipliers method can be derived by applying Newton’s
method to the dual function d,(-):

z5+1 = 25_v2 dﬂk(zl?j)_leydﬂk(zl?j)

ZyZy

with (2%, uy,) € D*.

7 Conclusions and future work

The nonlinear programming problems (1) and (2) often arise from the discretization of optimal control
problems (see references [2, 3, 4, 8, 11, 12, 13, 14, 15, 19, 21, 20, 22, 23)).

The presence of bounds on the states variables makes the problem particularly difficult but also with
wider applicability. The contribution of this paper was to set a framework to solve (1) and (2) based on
a new multipliers method motivated in turn by a penalty function with some exactness properties. The
method explores the structure of the problem, requiring the solution of linearized state and adjoint linear
systems, and can be implemented using either adjoints or sensitivities [17].

The application of the multipliers method to solve the general nonlinear programming problem is the
subject of a forthcoming paper that will address the local analysis, a globalization scheme, and numerical
results. The use of the least squares multipliers (and the use of the orthogonal null space basis in the analysis)
in general nonlinear programming raises a number of questions about the efficiency of our approach in such
general setting. Our new multipliers method is perhaps better tailored to problems of the form (1) and (2)
where the null space basis (5) and the adjoint multipliers appear naturally in the problem structure.

Other topics of future research are: number of inner and outer iterations [7] and the identification of active
constraints; local analysis under weaker assumptions like degeneracy [29] and lack of strict complementarity
[16].

8 Appendix

The point x = (y,u) is a regular or nondegenerate point for problem (1) if the gradients of the active
constraints are linearly independent, i.e., if the matrix

Cy(yau) Cu(y7u)
Iy 0
0 Iy

has full row rank, where Iy (respectively I;) is the submatrix of the identity corresponding to indices i such
that y; = 0 (respectively u; = 0).

A point (y,u) satisfies the first-order necessary conditions for problem (1) if there exist A € IR and
(2, 24) € R™T™ such that

Vi l(y,u,A) — 2z, =0, 54

Vul(y,u,A) — 2z, =0, 55
c(y,u) =0, (y,u) >0, 56

(
(
(
(57

)
)
)
)

ysz =u'z, =0, (zy,2u) 20,



LOCAL ANALYSIS OF A NEW MULTIPLIERS METHOD 17

where £(y,u, \) = f(y,u)+c(y,u) "A. A pair (2, z) formed by a point z = (y,u) and corresponding multipliers
z = (2y, 2y) satisfies strict complementarity if

yi=0 = (zy)i>0,i:1,...,ny,
u; =0 = (24)i>0,i=1,...,n,4.

The second-order necessary conditions for problem (1) are composed by (54)-(57) and the condition

-
Ay Ay
V2 (y,u, A > 0 58
(Au) m<yu,>(m)_ 9
for all (Ay, Au) satisfying
[ Ay
VC(y,U) A = cy(y,u)Ay—l—cu(y,u)Au = 0: (59)
U

(Ay); =0if y; =0, and (Au); = 0if u; = 0. It is easy to check that the validation of (58) on the subspace
defined by (59) reduces to
Aulw(y, u) V2 (y,u, Nw(y, u)Au > 0.

The second-order sufficient conditions are the conjunction of (54)-(57) with
AuTw(y, u) "V, u, Nw(y. u)Au > 0 (60)

for all Au such that (Au); = 0 if u; = 0 and (zy); > 0, and (Au); > 0 if u; = 0 and (2y); = 0. A point
that satisfies the second-order sufficient conditions is a strict local minimizer. If the pair (z,z) is strictly
complementary then (60) has to hold only for Au such that (Au); =0 if u; = 0.
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