
Loal Analysis of a New Multipliers MethodLu��s N. Viente �AbstratIn this paper we introdue a penalty funtion and a orresponding multipliers method for the solutionof a lass of nonlinear programming problems where the equality onstraints have a partiular struture.The lass models optimal ontrol and engineering design problems with bounds on the state and ontrolvariables and has wide appliability.The multipliers method updates multipliers orresponding to inequality onstraints (maintaining theirnonnegativity) instead of dealing with multipliers assoiated with equality onstraints. The basi loalonvergene properties of the method are proved and a dual framework is introdued. We also analyzethe properties of the penalized problem related with the penalty funtion.Keywords. Nonlinear programming, optimal ontrol, state onstraints, penalty funtion, multipliersmethod, augmented Lagrangian.AMS subjet lassi�ations. 49M37, 90C06, 90C301 IntrodutionConsider the following nonlinear optimization problem:minimize f(y; u)subjet to (y; u) = 0 ;(y; u) � 0 ; (1)in the variables x = � yu � ;where the struture of the equality onstraints (y; u) = 0 arises from optimal ontrol and design engineeringproblems. So, we assume that the state variables y are in IRny and the ontrol or design variables u lie inIRnu , where ny and nu are positive integers. The funtions f and  are onsidered smooth and de�ned asf : 
 �! IR and  : 
 �! IRny , where 
 is an open set of IRny+nu . The nonlinear system (y; u) = 0 withny equalities is the state equation. Due to the partition of x in y and u, we an write the Jaobian matrixof  as: r(y; u)> = � y(y; u) u(y; u) � ;where the partial Jaobian y(y; u) is a square matrix of order ny. We assume that y(y; u) is nonsingular in
. In the Appendix, the optimality onditions for this problem are desribed, assuming that the funtionsf and  are twie ontinuously di�erentiable in 
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2 L. N. VICENTEwhere the partial Jaobian dw(w; u) is nonsingular, an be reformulated as problem (1) by settingy = � ws � and (y; u) = (w; s; u) = � d(w; u)g(w; u)� s � :In this situation, as it an be easily heked, y(y; u) would still be nonsingular.Sine we are assuming that y(y; u) is nonsingular, the impliit funtion theorem guarantees the loalexistene of a smooth vetor funtion y(u) from IRnu to IRny de�ned by (y(u); u) = 0. This allows us toredue the minimization problem (1) to the spae of the ontrol variables u:minimize f(y(u); u)subjet to y(u) � 0 ; u � 0 : (2)The formulation (1) is alled \all-at-one" whereas the formulation (2) is referred to as \blak-box". Notethat bounds on states in the all-at-one formulation orrespond to nonlinear inequality onstraints on theontrols in the \blak-box" formulation. Further, if the optimal ontrol problem is given in the form (2) itan be easily reformulated in the form (1):minimize f(y(u); u)subjet to y(u)� s = 0 ;(s; u) � 0 :The multipliers method was proposed by Hestenes [18℄ and Powell [26℄ for nonlinear optimization problemswith equality onstraints. The book by Bertsekas [1℄ gives a omprehensive treatment of this topi withonnetions to other approahes. Extensions of the multipliers method for inequality onstraints have beenproposed using slak and square slak variables and nondi�erentiable penalty funtions (see the books byBertsekas [1, Setions 3.1-3.2℄ and Flether [10, Setion 12.2℄, the papers by Rokafellar [27, 28℄, and thereferenes therein). A ommon feature in these approahes is that the nonnegativity of the multipliersorresponding to inequality onstraints has to be expliitly imposed. Another approah was introdued laterby Conn, Gould, and Toint [5℄. Their algorithm, implemented in the optimization solver LANCELOT[6℄, �rst onverts the nonlinear programming problem into a problem with equality onstraints and simplebounds. The objetive funtion and the equality onstraints then de�ne the augmented Lagrangian funtionthat does not take into aount the simple bounds. Their method then onsists of minimizing a sequene ofaugmented Lagrangian funtions within the bounds.A (smooth) penalty funtion P for the solution of problem (1) is introdued in Setion 2 and its derivativesomputed in Setion 3. The penalty funtion is based on Flether's augmented Lagrangian penalty funtion[9℄. In fat, the penalty funtion is derived by eliminating from the �rst-order neessary onditions for (1) themultipliers � orresponding to the state equation (y; u) = 0. This derivation also means that the penaltyfuntion P depends on the values of the multipliers zy orresponding to the bounds y � 0. Beause of thedependene on the multipliers zy, this penalty funtion is not exat in the traditional sense [24, 25℄. Howeverit does share some exatness properties as it is shown in Setion 4.The multipliers method we propose in this paper is based on the penalty funtion P . Its novelty omesfrom the fat that the multipliers that are expliitly updated are the multipliers zy orresponding to thebounds on the state variables y. The update formula maintains these multipliers zy nonnegative withoutany arti�ial use of the max(0; �) operator. The multipliers � (that depend in turn on zy) orrespondingto the state equation (y; u) = 0 are then impliitly updated within the formula for P . The traditionalmultipliers method for problems with equality onstraints requires at eah major iteration the solution of anunonstrained minimization problem; the method proposed here (like the one in [5℄) requires the solution ofa minimization problem with simple bounds.The desription of the multipliers method and the proof of its basi loal onvergene properties are givenin Setion 5. In Setion 6 we introdue the dual interpretation of this multipliers method. In Setion 7 westate some onlusions and point out diretions for future work.



LOCAL ANALYSIS OF A NEW MULTIPLIERS METHOD 32 The penalty funtionThe penalty funtion we propose in this paper is based on the Lagrangian of f with respet to the onstraints(y; u) = 0: `(y; u; �) = f(y; u) + (y; u)>�and on the orresponding augmented Lagrangian funtion:L(y; u; �;�) = f(y; u) + (y; u)>�+ 12�(y; u)>(y; u) ;where � 2 IRny are multipliers orresponding to the state equation and � is a positive penalty parameter.We would like to ome up with an expression for � in terms of (y; u), hoping that that would lead us to apenalty funtion with some interesting exatness properties. To do so, we take a lose look to the struture ofour problem. A point (y; u) satis�es the �rst-order neessary onditions for problem (1) (see the Appendix)if there exist � 2 IRny and (zy; zu) 2 IRny+nu suh thatryf(y; u) + y(y; u)>�� zy = 0 ;ruf(y; u) + u(y; u)>�� zu = 0 ;(y; u) = 0 ; (y; u) � 0 ;y>zy = u>zu = 0 ; (zy; zu) � 0 :Given y, u, and zy, the �rst-order neessary onditions indiate a formula for �:�(y; u; zy) = �y(y; u)�>(ryf(y; u)� zy) : (3)Given the parameters zy � 0 and � > 0, we introdue the penalty funtionP (y; u; zy; �) = f(y; u) + (y; u)>�(y; u; zy) + 12�(y; u)>(y; u)and the orresponding penalized problem:minimize P (y; u; zy; �)subjet to (y; u) � 0 ; (4)in the optimization variables y and u. The parameter zy is updated expliitly rather than inorporated in theoptimization variables. The penalty funtion P shares some exatness properties as it is shown in Setion 4.Throughout this paper we will make the following assumptions.Assumptions 2.1 The funtions f and  are three times ontinuously di�erentiable in an open set 
 �IRny+nu . The partial Jaobian y(y; u) is nonsingular in 
.To alleviate the notation we will omit the arguments x = (y; u) and x� = (y�; u�) when it is lear fromthe ontext where the funtions are evaluated. For instane, u = u(y; u) and ryf� = ryf(y�; u�). Thesymbol e represents a vetor of ones with appropriate size. Also, for any vetor v, V is the diagonal matrixfor whih the diagonal elements are the elements of v. We use the notation kvk = O(Æ; �) or v = O(Æ; �) (andsay that v is of size Æ and �) to denote kvk � �(Æ + �), where � is a positive onstant.3 Derivatives of the penalty funtionWe alulate now the gradient and the Hessian of P (y; u; zy; �) with respet to y and u.To obtain the �rst-order partial derivatives of P (y; u; zy; �), we �rst alulatery�(y; u; zy) = �y(y; u)�>r2yy`(y; u; �(y; u; zy)) ;ru�(y; u; zy) = �y(y; u)�>r2yu`(y; u; �(y; u; zy)) ;



4 L. N. VICENTEby di�erentiating y(y; u)>�(y; u; zy) = �ryf(y; u) + zy with respet to y and u, respetively. Thus thegradient of P (y; u; zy; �) is given byrP (y; u; zy; �) = G1(y; u; zy; �) +G2(y; u; zy; �) +G3(y; u; zy; �) ;where G1(y; u; zy; �) =  zyruf(y; u)� u(y; u)>y(y; u)�>(ryf(y; u)� zy) ! ;G2(y; u; zy; �) =  �r2yy`(y; u; �(y; u; zy))y(y; u)�1(y; u)�r2uy`(y; u; �(y; u; zy))y(y; u)�1(y; u) ! ;and G3(y; u; zy; �) =  1� y(y; u)>(y; u)1� u(y; u)>(y; u) ! :If (y; u) = 0, the gradient rP (y; u; zy; �) is just:rP (y; u; zy; �) = G1(y; u; zy; �) = 0B� zyw(y; u)>� ryf(y; u)� zyruf(y; u) � 1CA ;where w(y; u) = � �y(y; u)�1u(y; u)I � : (5)To ompute the gradient one has to solve one linearized state equation y(y; u)�1(y; u) and one adjointequation y(y; u)�>(ryf(y; u)� zy).We alulate now the Hessian of P (y; u; zy; �). The proedures are similar as before. For instane, weneed to obtain the partial derivatives of y(y; u)�1(y; u) with respet to y and u and we aomplish thistask by notiing that s(y; u) = y(y; u)�1(y; u) and by di�erentiating y(y; u)s(y; u) = (y; u):rys(y; u) = I � y(y; u)�1 nyXi=1 �y(y; u)�1(y; u)�ir2yyi(y; u) ;rus(y; u) = y(y; u)�1u(y; u)� y(y; u)�1 nyXi=1 �y(y; u)�1(y; u)�ir2yui(y; u) :Moreover, we need to di�erentiate the u omponent of G1(y; u; zy; �) with respet to y and u. This omponentis nothing else than ru`(y; u; zy) = ruf(y; u) + u(y; u)>�(y; u; zy), where `(y; u; zy) = `(y; u; �(y; u; zy)).So, its derivatives are given byry (ru`(y; u; zy)) = r2uyf(y; u) +Pnyi=1 �(y; u; zy)ir2uyi(y; u)�u(y; u)>y(y; u)�>r2yy`(y; u; �(y; u; zy)) ;ru (ru`(y; u; zy)) = r2uuf(y; u) +Pnyi=1 �(y; u; zy)ir2uui(y; u)�u(y; u)>y(y; u)�>r2yu`(y; u; �(y; u; zy)) :Hene, the Hessian of P (y; u; zy; �) is expressed asr2P (y; u; zy; �) = H1(y; u; zy; �) +H2(y; u; zy; �) +H3(y; u; zy; �) ;where H1(y; u; zy; �) =  0 0�>u �>y r2yy`+r2uy` �>u �>y r2yu`+r2uu` ! ;



LOCAL ANALYSIS OF A NEW MULTIPLIERS METHOD 5
H2(y; u; zy; �) =  �r2yy` �r2yy` �1y u�r2uy` �r2uy` �1y u !+ r2yy`(I �rys) r2yy`(�1y u �rus)r2uy`(I �rys) r2uy`(�1y u �rus) !+ 0� �Pnyj=1(�1y )jry �r2yy`�j �Pnyj=1(�1y )jru �r2yy`�j�Pnyj=1(�1y )jry �r2uy`�j �Pnyj=1(�1y )jru �r2uy`�j 1A ;and H3(y; u; zy; �) = 0� 1�>y y + 1�Pnyi=1 ir2yyi 1�>y u + 1�Pnyi=1 ir2yui1� >u y + 1�Pnyi=1 ir2uyi 1�>u u + 1�Pnyi=1 ir2uui 1A :If (y; u) = 0, the Hessian of P (y; u; zy; �) redues to0B� �r2yy` �r2yy` �1y u�>u �>y r2yy` �>u �>y r2yu`+r2uu`�r2uy`�1y u 1CA+0� 1�>y y 1�>y u1�>u y 1�>u u 1A :4 Properties of the penalty funtionIn this setion we analyze the relationships between problem (1) and the penalized problem (4). We startwith a result that is analogous to [1, Proposition 2.3℄. We appeal to the �rst-order neessary onditions forproblem (4): zy �r2yy` �1y + 1�>y � �zy = 0 ; (6)ruf � >u �>y (ryf � zy)�r2uy` �1y + 1�>u � �zu = 0 ; (7)(y; u) � 0 ; (8)y>�zy = u>�zu = 0 ; (�zy; �zu) � 0 : (9)Theorem 4.1 Let Assumptions 2.1 hold. If (xk; (�zy)k; (�zu)k) satis�es the �rst-order neessary onditionsfor (4) with �k > 0 and (zy)k � 0, f(zy)kg is bounded, and limk!+1 �k = 0, then every limit point off(xk; (�zy)k; (�zu)k)g satis�es the �rst-order neessary onditions for the original problem (1).Proof: Let (x; �zy; �zu) be a limit point of f(xk; (�zy)k; (�zu)k)g. Sine f(zy)kg is bounded, there existsa subsequene f(xk; (�zy)k; (�zu)k)gK suh that limk2K(xk; (�zy)k; (�zu)k) = (x; �zy; �zu) and limk2K(zy)k = zy.Now we set (~zy)k = ryP (xk ; (zy)k; �k) :It follows from the �rst-order neessary onditions for (4) thatlimk2K(~zy)k = limk2KryP (xk; (zy)k; �k) = �zy � 0 :Thus, limk2K 1�k y(xk)>(xk) exists. Sine limk!+1 �k = 0, we have thatlimk2K (xk) = 0



6 L. N. VICENTEand (x) = 0. Then ~zy = limk2K(zy)k + 1�k y(xk)>(xk) and0 = limk2K �ruf(xk)� u(xk)>y(xk)�>(ryf(xk)� (zy)k)�r2uy`(xk; (zy)k)y(xk)�1(xk) + 1�u(xk)>(xk)� (�zu)k�= limk2K �ruf(xk)�u(xk)>y(xk)�>(ryf(xk)� (zy)k � 1�k y(xk)>(xk))� (�zu)k�= ruf(x)� u(x)>y(x)�>(ryf(x)� ~zy)� �zu :Sine y>~zy = u>�zu = 0 the proof is ompleted.The next two theorems relate problems (1) and (4).Theorem 4.2 Let Assumptions 2.1 hold. Also, let � > 0 and x be suh that (x) = 0. The point x satis�esthe �rst-order neessary onditions for the original problem (1) with multipliers zy orresponding to y � 0 ifand only if x satis�es the �rst-order neessary onditions for the penalized problem (4) for some zy � 0.Proof: If (y; u) = 0, the �rst-order neessary onditions for the penalized problem (4) implyzy � �zy = 0 ;ruf(y; u)� u(y; u)>y(y; u)�>(ryf(y; u)� zy)� �zu = 0 ;(y; u) � 0 ;y>�zy = u>�zu = 0 ; (�zy; �zu) � 0 :Sine zy = �zy, these onditions an be rewritten asruf(y; u)� u(y; u)>y(y; u)�>(ryf(y; u)� zy)� �zu = 0 ;(y; u) � 0 ;y>zy = u>�zu = 0 ; (zy; �zu) � 0 ;whih are the �rst-order neessary onditions for the original problem (1) with zu = �zu.Also, if x satis�es the �rst-order neessary onditions for the penalized problem (4) for some zy � 0 andzy = �zy, then we get �r2yy`(x; �(x; zy))y(x)�1(x) + 1�y(x)>(x) = 0 :So, �y(x)�1(x)�>��r2yy`(x; �(x; zy)) + 1�y(x)>y(x)� �y(x)�1(x)� = 0and there exists �� > 0 suh that for all 0 < � � ��, y(x)�1(x) = 0, i.e., (x) = 0.Theorem 4.3 Let Assumptions 2.1 hold. Also, let � > 0 and (y; u) be suh that (y; u) = 0. If (y; u)satis�es the seond-order neessary (suÆient) onditions for the penalized problem (4) for some zy � 0,then (y; u) satis�es the seond-order neessary (suÆient) onditions for the original problem (1).Proof: The �rst-order part of this result follows from the previous theorem. To establish the seond-orderassertions we need to alulate � �y�u �>r2P (y; u; zy; �)� �y�u � (10)



LOCAL ANALYSIS OF A NEW MULTIPLIERS METHOD 7in the situation where (�y;�u) satis�es:(�y)i = 0 if yi = 0 and (�zy)i > 0 ; (11)(�y)i � 0 if yi = 0 and (�zy)i = 0 ; (12)(�u)i = 0 if ui = 0 and (�zu)i > 0 ; (13)(�u)i � 0 if ui = 0 and (�zu)i = 0 : (14)We will also assume that (�y;�u) lies in the null-spae of the Jaobian of (y; u), i.e., that �y = �y(y; u)�1u(y; u)�u. Sine (y; u) = 0, the value of (10) is given by:��y>r2yy`�y ��y>r2yy` �1y u�u��u>>u �>y r2yy`�y+�u>r2uu`�u��u>>u �>y r2yu`�u��u>r2uy` �1y u�u+ 1��y>>y y�y + 1��y>>y u�u+ 1��u>>u y�y + 1��u>>u u�u :Thus, from �y = ��1y u�u, a number of terms anel out and we obtain:� �y�u �>r2xx`(y; u; zy)� �y�u � = � �y�u �>r2P (y; u; zy; �)� �y�u � :Sine (�y;�u) satis�es (11)-(14) and y(y; u)�y + u(y; u)�u = 0 the proof is ompleted.Finally, we establish the exatness property of the penalty funtion P (a result that an be seen as thereiproal of Theorem 4.3).Theorem 4.4 Let Assumptions 2.1 hold. Also, let x be suh that (x) = 0. If (x; zy) satis�es the seond-order neessary (suÆient) onditions for the original problem (1) with multipliers zy orresponding to y � 0,then there exists a �� > 0 suh that (y; u) satis�es the seond-order neessary (suÆient) onditions for thepenalized problem (4) for this zy and any 0 < � � ��.Proof: We prove the result only for the suÆient onditions. Let �y and �u satisfy (11)-(14). The proofis based on the fat that� �y�u �>r2P (y; u; zy; �)� �y�u �= � �y(y; u)�1u(y; u)�u�u �>r2xx`(y; u; zy)� �y(y; u)�1u(y; u)�u�u �+ � �e0 �> �r2yy`(y; u; zy) + 1�y(y; u)>y(y; u) 00 0 !� �e0 �= � �y�u �>� I 0>u �>y I �� �r2yy`+ 1�>y y 00 w>r2xx`w �� I �1y u0 I �� �y�u �where �e = �y � (�y(y; u)�1u(y; u)�u). Sine (13)-(14) hold, the seond-order suÆient onditions forproblem (1) imply that �u>w(x)>r2xx`(x; zy)w(x)�u > 0 :The proof is ompleted by setting:�� = ( any positive real if r2yy`(x; zy) is negative semi-de�nite,�(x)�(x;zy) otherwise,where y(x)>y(x) has eigenvalue deomposition y(x)>y(x) = Q(x)A(x)Q(x)> and smallest eigenvalue�(x), and �(x; zy) is the largest eigenvalue of Q(x)>r2yy`(x; zy)Q(x).



8 L. N. VICENTE5 The multipliers methodThe penalty funtion P together with the penalized problem (4) and the equation (6) motivate a newmultipliers method.Algorithm 5.1 (Multipliers method for (1))1. Choose initial values: �0 for the penalty parameter and z0y for the approximation of the multipliers.2. For k = 0; 1; 2; : : : do2.1 Solve problem (4) with zy = zky and � = �k.2.2 Update the multipliers approximation:zk+1y = zky �r2yy`(~x(zky ; �k); zky )y(~x(zky ; �k))�1(~x(zky ; �k))+ 1�k y(~x(zky ; �k))>(~x(zky ; �k)) ; (15)where ~x(zky ; �k) is the solution obtained in Step 2.1.2.3 Update the penalty parameter �k+1.If r2yy`(~x(zky ; �k); zky )y(~x(zky ; �k))�1(~x(zky ; �k)) ' 0, then the update (15) is justzk+1y ' zky + 1�k y(~x(zky ; �k))>(~x(zky ; �k)) ;whih di�ers from the lassial update of the multipliers methods for equality onstrained optimization onlybeause y(~x(zky ; �k))> is multiplying (~x(zky ; �k)) on the left.The basi loal onvergene properties of the multipliers method 5.1 are proved under the following setof assumptions.Assumptions 5.1 The point x� = (y�; u�) 2 
 with orresponding multipliers �z� = (�z�y ; �z�u) is a nondegen-erate point satisfying the seond-order suÆient onditions and strit omplementarity for problem (1).The main result is proved in Theorem 5.1 and bounds the distane between a loal minimizer of (4) and(x�; �z�) by the penalty parameter � times the distane between the parameter zy and the orrespondingmultipliers �z�y . Although the struture of the proof follows [1, Proposition 2.4℄, we have additional diÆultieshere due to the presene of the bound onstraints on the variables. Another diÆulty arises when dealingwith the ross term in the multipliers update. This term is not multiplied by 1=�k but involves zky . Aonsequene of having to handle this extra term is that the region D� in (17) beomes smaller than the onein [1, Proposition 2.4℄ where instead of minfÆ; Æ=�g we only have Æ=�.Theorem 5.1 Let x� = (y�; u�) with orresponding multipliers �z� = (�z�y ; �z�u) satisfy Assumptions 2.1-5.1.There exist positive salars ��, Æ, �, �1, �2, �3, and �4 suh that�r2yy`(y�; u�; �z�y) + 1��y(y�; u�)>y(y�; u�)is positive de�nite, the problem minimize P (y; u; zy; �)subjet to (y; u) � 0 ;(y; u) 2 B(y�; u�; �) ; (16)has a unique solution ~x(zy; �) for all (zy; �) inD� = �(zy; �) : kzy � �z�yk < min�Æ; Æ�� ; 0 < � � ��� ; (17)



LOCAL ANALYSIS OF A NEW MULTIPLIERS METHOD 9the funtion ~x(zy; �) is ontinuously di�erentiable in D�, and for all (zy; �) 2 D� we havek~y(zy; �)� y�k � �1�kzy � �z�yk ; (18)k~u(zy; �)� u�k � �2�kzy � �z�yk ; (19)k~zy(zy; �)� �z�yk � �3�kzy � �z�yk ; (20)k~zu(zy; �)� �z�uk � �4�kzy � �z�yk ; (21)where ~zy(zy; �) and ~zu(zy; �) are the multipliers orresponding to ~y(zy; �) and ~u(zy; �), and ~zy(zy; �) is suhthat: ~zy(zy; �) = zy �r2yy`(~x(zy; �); zy)y(~x(zy; �))�1(~x(zy; �))+ 1� y(~x(zy; �))>(~x(zy; �)) : (22)Proof: Consider, for � > 0, the system of nonlinear equations that results from the �rst-order neessaryonditions (6)-(9) for problem (4). We replae zy in the seond equation (7) from its expression in the �rstequation (6) zy �r2yy`(x; zy)�1y + 1�>y � �zy = 0 ; (23)ruf � >u �>y �ryf �r2yy`(x; zy)�1y � �zy��r2uy`(x; zy)�1y � �zu = 0 ; (24)y>�zy = u>�zu = 0 ; (25)aneling the term 1� >u . Now we multiply equation (23) by � and do the hanges of variablesr = �(zy � �z�y) ; (26)s = zy � �z�y ; (27)to obtain r � �r2yy`(x; �z�y + s)�1y + >y + ��z�y � ��zy = 0 ; (28)ruf � >u �>y �ryf �r2yy`(x; �z�y + s)�1y � �zy��r2uy`(x; �z�y + s)�1y � �zu = 0 ; (29)Y �Zye = U �Zue = 0 : (30)We analyze this system for � 2 [0; ��℄, where �� is suh that ��r2yy`� + �y>�y is positive de�nite forall � 2 [0; ��℄. For r = s = 0 and � 2 [0; ��℄, it is easy to hek that the system (28)-(30) has the solution(y�; u�; �z�y ; �z�u).For r = s = 0, the Jaobian of (28)-(30) with respet to (y; u; �zy; �zu) at (y�; u�; �z�y ; �z�u) is given by
J�(0; 0; �) = 0BBBBBBBBBBB�

��r2yy`� + �y>�y ��r2yy`��y�1�u + �y>�u ��I 0r2uu`� � �u>�y�>r2yu`�0 +�u>�y�>r2yy`��y�1�u �u>�y�> �I�r2uy`��y�1�u�Z�y 0 Y � 00 �Z�u 0 U�
1CCCCCCCCCCCAbeause the ross derivative with respet to y and u vanishes:r2uy`� � �u>�y�>r2yy`� + �u>�y�>r2yy`� �r2uy`� = 0 :



10 L. N. VICENTEWe mean J�(0; 0; �) � J(x�; �z�; 0; 0; �). When � = 0, J�(0; 0; �) is justJ�(0; 0; 0) = 0BBB� �y>�y �y>�u 00 w�>r2xx`�w� �w�>�Z�y0 0�Z�u X� 1CCCA :The nonsingularity of this matrix is a diret onsequene of the nonsingularity of the matrix0B� r�> 0 0r2xx`� r� �I�Z� 0 X� 1CA ;whih in turn results from the assumptions on (y�; u�; �z�y ; �z�u).The Jaobian J�(0; 0; �) is also nonsingular for � 2 (0; ��℄. In fat, let (�y;�u;�zy;�zu) be a solutionof the homogeneous linear system with the matrix J�(0; 0; �):���r2yy`� + �y>�y��y + ���r2yy`� + �y>�y� �y�1�u�u� ��zy = 0 ; (31)w�>r2xx`�w��u+ �u>�y�>�zy ��zu = 0 ; (32)�Z�y�y + Y ��zy = 0 ; (33)�Z�u�u+ U��zu = 0 : (34)Equations (33)-(34) and strit omplementarity between x� and �z� imply �y>�zy = �u>�zu = 0. Multi-plying (32) on the left by �u> yields�u>w�>r2xx`�w��u+�u>�u>�y�>�zy = 0 :Using (31) to eliminate �u>�u>�y�>, this last equation is equivalent to�u>w�>r2xx`�w��u��y>�zy + ��z>y ���r2yy`� + �y>�y��1�zy = 0 :From (33)-(34) and the assumptions on (x�; �z�), we know that w�>r2xx`�w� is positive de�nite for all �usuh that (�u)i = 0 if u�i = 0. From the hoie of ��, ��r2yy`� + �y>�y is also positive de�nite. Thus, weonlude that �u = 0 and �zy = 0. From (31) and the hoie of ��, �y = 0. Finally, from (32), �zu = 0.The onlusion is that the Jaobian J�(0; 0; �) is nonsingular for � 2 (0; ��℄.We now apply the impliit funtion theorem [1, pp. 12℄ to the system (28)-(30). We identify the setK = f0g�f0g� [0; ��℄ with the ompat set �X of that theorem. The onsequene is that there exist positivesalars � and Æ and unique ontinuously di�erentiable funtions ŷ(r; s; �), û(r; s; �), ẑy(r; s; �), and ẑu(r; s; �)de�ned on a neighborhood B(K; Æ) = f(r; s; �) : k(r; s; �) � (0; 0; �0)k < Æ for some (0; 0; �0) 2 Kg of Ksatisfying r � �r2yy`(x̂(r; s; �); �z�y + s)y(x̂(r; s; �))�1(x̂(r; s; �))+ y(x̂(r; s; �))>(x̂(r; s; �)) + ��z�y � �ẑy(r; s; �) = 0 ; (35)ruf(x̂(r; s; �))� u(x̂(r; s; �))>�>y (x̂(r; s; �))�ryf(x̂(r; s; �))� r2yy`(x̂(r; s; �); �z�y + s)y(x̂(r; s; �))�1(x̂(r; s; �))� ẑy(r; s; �)�� r2uy`(x̂(r; s; �); �z�y + s)y(x̂(r; s; �))�1(x̂(r; s; �))� ẑu(r; s; �) = 0 ; (36)X̂(r; s; �)Ẑ(r; s; �)e = 0 ; (37)



LOCAL ANALYSIS OF A NEW MULTIPLIERS METHOD 11and suh that 0B� x̂(r; s; �)� x�ẑy(r; s; �)� �z�yẑu(r; s; �)� �z�u 1CA � �for all (r; s; �) 2 B(K; Æ). Making use of (37) and strit omplementarity of the pair (x�; �z�), and reduing� and Æ if neessary, one an easily show that:(i) x̂(r; s; �) � 0, ẑ(r; s; �) � 0,(ii) the pair (x̂(r; s; �); ẑ(r; s; �)) also satis�es strit omplementarity,(iii) the gradients of the ative onstraints are linearly independent at x̂(r; s; �),for all (r; s; �) 2 B(K; Æ).To derive the bounds (18)-(21), we di�erentiate x̂(r; s; �) and ẑ(r; s; �) with respet to (r; s; �), and write0B� rrx̂(r; s; �)> rsx̂(r; s; �)> r�x̂(r; s; �)>rr ẑy(r; s; �)> rsẑy(r; s; �)> r�ẑy(r; s; �)>rr ẑu(r; s; �)> rsẑu(r; s; �)> r�ẑu(r; s; �)> 1CA = �J(r; s; �)�1 B(r; s; �) ;where the Jaobian of the vetor funtion given in (28)-(30) at the pair (x̂(r; s; �); ẑ(r; s; �)), and in thesituation where the parameters r, s, and � are not neessarily zero, is given byJ(r; s; �) � J(x̂(r; s; �); ẑ(r; s; �); r; s; �)
= 0BBBBBBBBBBB�

��r2yy`+ >y y ��r2yy`�1y u + >y u ��I 0r2uu`� >u �>y r2yu`0 +>u �>y r2yy`�1y u >u �>y �I�r2uy`�1y uZy 0 Y 00 Zu 0 U
1CCCCCCCCCCCA

+
0BBBBBBBBBBBBBBBBBBBB�

��Pnyj=1(�1y )jry �r2yy`�j+Pnyj=1 jr2yyj + �r2yy`(I �rys) ��Pnyj=1(�1y )jru �r2yy`�j+Pnyj=1 jr2yuj + �r2yy`(�1y u �rus) 0 0Pnyj=1 h(�1y )jry �>u �>y r2yy`�j i�Pnyj=1(�1y )jry �r2uy`�j�>u �>y r2yy`(I �rys)+r2uy`(I �rys)
Pnyj=1 h(�1y )jru �>u �>y r2yy`�j i�Pnyj=1(�1y )jru �r2uy`�j�>u �>y r2yy`(�1y u �rus)+r2uy`(�1y u �rus) 0 00 0 0 00 0 0 0

1CCCCCCCCCCCCCCCCCCCCA :
The matrix B is de�ned by B(r; s; �) = 0BBBB� I B12(r; s; �) B13(r; s; �)0 B22(r; s; �) 00 0 00 0 0 1CCCCA ;



12 L. N. VICENTEwith �B12(r; s; �)�k = �� [L12(r; s; �)℄sk y(x̂(r; s; �))�1(x̂(r; s; �)) ;B13(r; s; �) = �r2yy`(x̂(r; s; �))y(x̂(r; s; �))�1(x̂(r; s; �)) + �z�y � ẑy(r; s; �) ;�B22(r; s; �)�k = �u(x̂(r; s; �))>y(x̂(r; s; �))�> [L12(r; s; �)℄sk y(x̂(r; s; �))�1(x̂(r; s; �))� [L22(r; s; �)℄sk y(x̂(r; s; �))�1(x̂(r; s; �)) :In the expressions for B12(r; s; �) and B22(r; s; �), the index k goes through the ny olumns of these matries,the subsript sk denotes derivative with respet to sk, andL12(r; s; �) = Pnyj=1r2yyj(x̂(r; s; �)) �y(x̂(r; s; �))�>s�j ;L22(r; s; �) = Pnyj=1r2uyj(x̂(r; s; �)) �y(x̂(r; s; �))�>s�j :Hene, 0B� x̂(r; s; �)� x�ẑy(r; s; �)� �z�yẑu(r; s; �)� �z�u 1CA = 0B� x̂(r; s; �)� x̂(0; 0; 0)ẑy(r; s; �)� ẑy(0; 0; 0)ẑu(r; s; �)� ẑu(0; 0; 0) 1CA= � R 10 J(�r; �s; ��)�1 B(�r; �s; ��)0� rs� 1A d� : (38)Sine J�(0; 0; �) is nonsingular for all � 2 [0; ��℄, we an show that for � and Æ suÆiently small J(r; s; �)�1is bounded on f(r; s; �) : k(r; s)k < Æ ; � 2 [0; ��℄g � B(K; Æ) :In fat, it is quite lear from the ontinuity assumptions that the �rst matrix term of J(r; s; �) is a pertur-bation of size Æ and � of J�(0; 0; 0). Furthermore, from (35) we write(x̂(r; s; �)) = y(x̂(r; s; �)) ���r2yy`(x̂(r; s; �) +y(x̂(r; s; �))>y(x̂(r; s; �))��1 (�r + �ẑy(r; s; �)� ��z�y) ;whih enables us to say that the seond matrix term of J(r; s; �) is O(Æ; �).Now we an �nally show (18)-(21). Sine the integral in (38) is bounded above bymax�2[0;1℄ kJ(�r; �s; ��)�1k Z 10 B(�r; �s; ��)0� rs� 1A d� ;there exist positive onstants �5-�9 suh thatkx̂(r; s; �)� x�k+ kẑ(r; s; �)� �z�k � �5krk+ �6�kskd(r; s; �) + �7�d(r; s; �)+ �8�max�2[0;1℄ kẑy(�r; �s; ��) � �z�yk+ �9kskd(r; s; �) ;where d(r; s; �) = max�2[0;1℄ky(x̂(�r; �s; ��))�1(x̂(�r; �s; ��))k :We developed this bound applying the ontinuity assumptions to the four terms that appeared in B12(r; s; �),B13(r; s; �), and B22(r; s; �). However, from equation (35), the hoie of ��, and the ontinuity assumptions,we an derive d(r; s; �) � �10krk+ �11� max�2[0;1℄kẑy(�r; �s; ��) � �z�yk ;



LOCAL ANALYSIS OF A NEW MULTIPLIERS METHOD 13for some positive onstants �10 and �11. Thus, sine � � �� and ksk < Æ, there exist onstants �12; �13 > 0suh that kx̂(r; s; �)� x�k+ kẑ(r; s; �)� �z�k � �12krk+ �13� max�2[0;1℄kẑy(�r; �s; ��) � �z�yk ;from whih we get for (r; s; �) replaed by (�r; �s; ��)kẑy(�r; �s; ��) � �z�yk � �12krk+ �13� max�2[0;1℄ kẑy(��r; ��s; ���) � �z�yk :Thus max�2[0;1℄ kẑy(�r; �s; ��) � �z�yk � �121� �13�krk ;for � 2 [0; ��℄ with �� < minn��; 1�13o. Thereforekx̂(r; s; �)� x�k+ kẑ(r; s; �)� �z�k � ��12 + �12�13�1��13� � krk� ��12 + �12�13��1��13 �� ��kzy � �z�yk : (39)For � 2 (0; ��℄ and kzy � �z�yk < minnÆ; Æ�o let us de�ne~y(zy; �) = ŷ(r; s; �) = ŷ(�(zy � �z�y); zy � �z�y ; �) ;~u(zy; �) = û(r; s; �) = û(�(zy � �z�y); zy � �z�y ; �) ;~zy(zy; �) = ẑy(r; s; �) = ẑy(�(zy � �z�y); zy � �z�y ; �) ;~zu(zy; �) = ẑu(r; s; �) = ẑu(�(zy � �z�y); zy � �z�y ; �) : (40)Hene, the bounds (18)-(21) follow immediately from (39).We end the proof by showing that ~x(zy; �) is the solution of problem (16). First we point out that(~x(zy; �); ~z(zy; �)) satis�es the �rst-order neessary onditions for (16) as it an be seen by rewriting system(35)-(37) using the hanges of variables (26)-(27) and (40). The �rst equation of the �rst-order neessaryonditions is zy � r2yy`(~x(zy; �); zy)y(~x(zy; �))�1(~x(zy; �))+ 1� y(~x(zy; �))>(~x(zy; �)) � ~zy(zy; �) = 0 (41)and (22) is learly true. Then, we show that the Hessian of P (x; zy; �) is positive de�nite at ~x(zy; �) for allvetors (�y)i = 0 if ~y(zy; �)i = 0 and (~zy(zy; �))i > 0 ; (42)(�u)i = 0 if ~u(zy; �)i = 0 and (~zu(zy; �))i > 0 : (43)The ases (�y)i � 0 and (�u)i � 0 are eliminated beause the pair (~x(zy; �); ~z(zy; �)) is stritly omple-mentary (see ii above). The salar � an be hosen suÆiently small so that we an onsider(�y)i = 0 if y�i = 0 and (�z�y)i > 0 ;(�u)i = 0 if u�i = 0 and (�z�u)i > 0 :This means that we an hek the positive de�niteness of r2P (x; zy; �) in the same subspae that we onsiderforr2P (x�; �z�y ; �). Moreover, we proved in Theorem 4.4 that r2P (x�; �z�y ; �) is positive de�nite for � 2 (0; ��℄in the above mentioned subspae. To ahieve our goal we show that the Hessian of P at (~x(zy; �); zy; �) is



14 L. N. VICENTEa perturbation of size � and Æ of the Hessian r2P (x�; �z�y ; �). In fat, r2P (~x(zy; �); zy; �) is given by:0� �r2yy`+ 1�>y y �r2yy` �1y u + 1�>y u�>u �>y r2yy`+ 1� >u y �>u �>y r2yu`+r2uu`�r2uy` �1y u + 1�>u u 1A �0� Pnyj=1(�1y )jry �r2yy`�j � 1� jr2yyj Pnyj=1(�1y )jru �r2yy`�j � 1�jr2yujPnyj=1(�1y )jry �r2uy`�j � 1� jr2uyj Pnyj=1(�1y )jru �r2uy`�j � 1�jr2uuj 1A + r2yy`(I �rys) r2yy`(�1y u �rus)r2uy`(I �rys) r2uy`(�1y u �rus) !with the Lagrangian evaluated at (~x(zy; �); zy) and the remaining funtions at ~x(zy; �). It is quite lear thatthe �rst matrix term is a perturbation of size � and Æ of the Hessian r2P (x�; �z�y ; �). To bound the seondmatrix term we rewrite (41) as1� (~x(zy; �)) = y(~x(zy; �)) ���r2yy`(~x(zy; �); zy) +y(~x(zy; �))>y(~x(zy; �))��1 (~zy(zy; �)� zy) :Thus, using the ontinuity assumptions and adding and subtrating �z�y , we obtaink 1� (~x(zy; �))k � �14 �k~zy(zy; �)� �z�yk+ kzy � �z�yk�� �14(�+ Æ)and k(~x(zy; �))k � ���14(�+ Æ) :The onlusion is that the seond and third matrix terms are also O(Æ; �) and the proof that the Hessian ofP (y; u; zy; �) is positive de�nite for all vetors �y and �u satisfying (42)-(43) is terminated.Using Theorem 5.1 we an state the basi properties of loal onvergene of the multipliers method 5.1.Corollary 5.1 Let x� = (y�; u�) with orresponding multipliers �z� = (�z�y ; �z�u) satisfy Assumptions 2.1-5.1.There exist salars Æ0 2 (0; Æ℄, � 2 (0; 1), and �0 2 (0; ��℄ suh that if the sequene f�kg is monotonedereasing and kz0y � �z�yk � minfÆ0; Æ0=�0g, then the sequene fzkyg generated by (15) is well de�ned (in thesense that (zky ; �k) 2 D� for all k) and satis�eslim supk!+1 kzk+1y � �z�ykkzky � �z�yk � � (44)when lim infk!+1 �k > 0, and limk!+1 kzk+1y � �z�ykkzky � �z�yk = 0 (45)when limk!+1 �k = 0. In both ases, we havelimk!+1 ~x(zky ; �k) = x� ; limk!+1 ~zu(zky ; �k) = �z�u ; (46)limk!+1 zky = �z�y : (47)Proof: The limits (44), (45), and (47) follow from inequality (20). The limits (46) are a onsequene of(18), (19), and (21).We point out that the onstant � in (44) depends on the ondition number of �y, as we have seen in theproof of Theorem 5.1.



LOCAL ANALYSIS OF A NEW MULTIPLIERS METHOD 156 Dual interpretation of the multipliers methodIn the ontext of Theorem 5.1, we introdue the dual funtiond�(zy) = minx2B(x�;�) P (x; zy; �) ; (48)for (zy; �) 2 D�, where zy are the dual variables and � is a positive parameter. From Theorem 5.1, we knowthat d�(zy) = P (~x(zy; �); zy; �) ; (49)where ~x(zy; �) and the orresponding multipliers ~z(zy; �) are ontinuously di�erentiable funtions satisfyingrxP (~x(zy; �); zy; �)� ~z(zy; �) = 0 ; (50)(~x(zy; �))i(~z(zy; �))i = 0 ; i = 1; : : : ; ny + nu : (51)We now need to introdue the following notationB = fi : x�i > 0g ; N = fi : x�i = 0g :Di�erentiating (49) and (51) with respet to zy and using (50)rzyd�(zy) = rzy ~x(zy; �)rxP (~x(zy; �); zy; �) + y(~x(zy; �))�1(~x(zy; �))= rzy ~x(zy; �)~z(zy; �) + y(~x(zy; �))�1(~x(zy; �))= y(~x(zy; �))�1(~x(zy; �)) : (52)Di�erentiating (52) with respet to zy and (50) with respet to x and appealing to strit omplementarityr2zyzyd�(zy) = rzy ~x(zy; �)BC(~x(zy; �))B= �C(~x(zy; �))>Br2xxP (~x(zy; �); zy; �)�1B C(~x(zy; �))B ; (53)where C(x) =  Iu(x)>y(x)�> !� Pnyi=1(y(x)�1(x))ir2yyi(x) y(x)�>Pnyi=1(y(x)�1(x))ir2uyi(x) y(x)�> ! :If we neglet the terms in (53) involving (~x(zy; �)), the Hessian r2zyzyd�(zy) redues to��1y r>Br2xxP�1B rB�>y = �(>y y)�1 �>y r>Br2xxP�1B rB�>y � :Loally (around x�) and for suÆiently large values of �, solving the dual problemmaxzy d�(zy)redues to solve problem (1). The following orollary of Theorem 5.1 states this relationship formally. Theproof follows from the form (52) for the gradient of the dual funtion and from Theorems 4.2 and 4.3.Corollary 6.1 Let x� = (y�; u�) with orresponding multipliers �z� = (�z�y ; �z�u) satisfy Assumptions 2.1-5.1.If for (zdy ; �d) 2 D�, zdy is a stationary point for d�d(�), i.e., if rzyd�d(zdy) = 0, then the pair (~x(zdy ; �d);~z(zdy ; �d)) satis�es the seond-order suÆient onditions for problem (1).The gradient of the dual funtion provides an interpretation of the multipliers method 5.1. In fat, thesteepest asent method to maximize d�(�) is of the formzk+1y = zky + �k(�1y )kk



16 L. N. VICENTEfor some searh parameter �k, while the multipliers method update (15) an be rewritten aszk+1y = zky + 1�k ���kr2yy`k + (y)>k (y)k� (�1y )kk :As in [1, Setion 2.3.2℄, a q-quadratially onvergent multipliers method an be derived by applying Newton'smethod to the dual funtion d�(�):zk+1y = zky �r2zyzyd�k (zky )�1rzyd�k (zky )with (zky ; �k) 2 D�.7 Conlusions and future workThe nonlinear programming problems (1) and (2) often arise from the disretization of optimal ontrolproblems (see referenes [2, 3, 4, 8, 11, 12, 13, 14, 15, 19, 21, 20, 22, 23℄).The presene of bounds on the states variables makes the problem partiularly diÆult but also withwider appliability. The ontribution of this paper was to set a framework to solve (1) and (2) based ona new multipliers method motivated in turn by a penalty funtion with some exatness properties. Themethod explores the struture of the problem, requiring the solution of linearized state and adjoint linearsystems, and an be implemented using either adjoints or sensitivities [17℄.The appliation of the multipliers method to solve the general nonlinear programming problem is thesubjet of a forthoming paper that will address the loal analysis, a globalization sheme, and numerialresults. The use of the least squares multipliers (and the use of the orthogonal null spae basis in the analysis)in general nonlinear programming raises a number of questions about the eÆieny of our approah in suhgeneral setting. Our new multipliers method is perhaps better tailored to problems of the form (1) and (2)where the null spae basis (5) and the adjoint multipliers appear naturally in the problem struture.Other topis of future researh are: number of inner and outer iterations [7℄ and the identi�ation of ativeonstraints; loal analysis under weaker assumptions like degeneray [29℄ and lak of strit omplementarity[16℄.8 AppendixThe point x = (y; u) is a regular or nondegenerate point for problem (1) if the gradients of the ativeonstraints are linearly independent, i.e., if the matrix0B� y(y; u) u(y; u)IY 00 IU 1CAhas full row rank, where IY (respetively IU ) is the submatrix of the identity orresponding to indies i suhthat yi = 0 (respetively ui = 0).A point (y; u) satis�es the �rst-order neessary onditions for problem (1) if there exist � 2 IRny and(zy; zu) 2 IRny+nu suh that ry`(y; u; �)� zy = 0 ; (54)ru`(y; u; �)� zu = 0 ; (55)(y; u) = 0 ; (y; u) � 0 ; (56)y>zy = u>zu = 0 ; (zy; zu) � 0 ; (57)
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