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for some �k and �k > 0. The multipliers method [1℄ updates the multipliers � for thenext iteration by using the formula�k+1 = �k + 1�k h(xk) :Thus, the multipliers � orresponding to the equality onstraints h(x) = 0 are updatedexpliitly. The nonnegative multipliers w 2 IRn, orresponding to the inequality on-straints x � 0 in problem (1.1), an be impliitly approximated from the multipliersassoiated with x � 0 in problem (1.2), see [2℄.The question addressed in this paper is the interhange of the impliit vs expliitroles of the multipliers in the multipliers method. It turns out that it is possible toderive a multipliers method where the multipliers w orresponding to the inequalityonstraints are updated expliitly | and kept nonnegative | whereas the multipliersorresponding to the equality onstraints are impliitly approximated.For this purpose let us onsider the duality part of the �rst-order neessary opti-mality onditions for problem (1.1),rf(x) +rh(x)� � w = 0 ;and the orresponding least-squares Lagrange multipliers estimate (when rh(x) hasfull rank), �(x;w) = � (rh(x)>rh(x))�1rh(x)>(rf(x) � w):It is therefore possible to onsider an augmented Lagrangian penalty funtion in thevariables x, parameterized by the penalty parameter � > 0 and by the multipliersw � 0, P (x;w; �) = f(x) + h(x)>�(x;w) + 12�h(x)>h(x);and to pose the orresponding penalized problemmin P (x;w; �) s.t. x � 0:(1.3)Eah outer iteration of the new multipliers method involves the omputation ofthe primal variables xk by solving the problemmin P (x;wk; �k) s.t. x � 0;(1.4)for some wk � 0 and �k > 0. The outer iteration provides then a formula to updatew for the next iteration: wk+1 = rP (xk ;wk; �k):(1.5)This formula results naturally from the �rst-order neessary onditions for prob-lem (1.4) and guarantees the nonnegativity of the new multipliers estimate wk+1.In this paper we establish the loal onvergene properties of the new multipliersmethod based on (1.4) and (1.5) for general programming problems of the form (1.1).Although the analysis presented here has a lot in ommon with the proof of loalonvergene for the original multipliers method [1℄, several diÆulties inherent to thenature of the new update had to be overome. In partiular, it is shown that the2



neighborhood of loal onvergene is smaller than in the original multipliers method,see (3.4). The new multipliers method was originally developed in [6℄ for nonlinearoptimization problems of the formmin f(y; u) s.t. (y; u) = 0; (y; u) � 0;(1.6)where it was assumed that the partial Jaobian of  with respet to y is square andinvertible.The paper is strutured as follows. In setion 2 we desribe the new multipliersmethod for (1.1) in more detail. The loal onvergene properties are then presentedin setion 3. In setion 4 we state some onlusions and omments. The proof of themain result of the loal onvergene analysis, stated in theorem 3.2, is given in theappendix of the paper.2. The new multipliers method. A point x satis�es the �rst-order neessaryoptimality onditions for problem (1.1) if there exist � 2 IRm and w 2 IRn suh thatrx`(x; �)� w = 0;(2.1a) h(x) = 0; x � 0;(2.1b) x>w = 0; w � 0:(2.1)Conditions (2.1a)-(2.1) are know as the �rst-order Karush-Kuhn-Tuker onditionsand an be written in the equivalent formZ(x)>(rf(x) � w) = 0;h(x) = 0; x � 0;x>w = 0; w � 0;where Z(x) is a matrix whose olumns form an orthonormal basis for the null spaeof rh(x)>, i.e., where Z(x) satis�esZ(x)>Z(x) = I and rh(x)>Z(x) = 0:The matrix Z(x) an be obtained from the QR fatorization of rh(x).Note that the matrixZ(x)Z(x)> = I �rh(x) (rh(x)>rh(x))�1rh(x)>is an orthogonal projetor onto the null spae N (rh(x)>) of the matrix rh(x)>.Similarly, I �Z(x)Z(x)> is an orthogonal projetor onto R (rh(x)), the range spaeof rh(x).First and seond order derivatives of the penalty funtion P require seond andthird order derivatives of f and h, respetively. To establish loal onvergene proper-ties we will therefore need the following assumptions that will be assumed throughoutthis paper.A.1 The funtions f and h are three times ontinuously di�erentiable in 
, where
 is an open set of IRn. The Jaobian matrix rh(x)> of h(x) has full rankin 
.We point out that an implementation of the multipliers method (with or withouta globalization sheme) ould require only �rst or seond order derivatives.3



To derive the �rst-order neessary onditions for problem (1.3), we need �rst toalulate the gradient of P (x;w; �) with respet to x. First, we note thatrx�(x;w) = � �r2xx`(x; �(x;w))rh(x) +R(x;w)>� (rh(x)>rh(x))�1 ;where the i-th row of R(x;w) is given byR(x;w)i = (rx`(x; �(x;w)) � w)>r2hi(x) ; i = 1; :::;m:Thus, the gradient of P (x;w; �) is given byrP (x;w; �) = G1(x;w; �) +G2(x;w; �) +G3(x;w; �);(2.2)whereG1(x;w; �) = Z(x)Z(x)>rf(x) + (I � Z(x)Z(x)>)w;G2(x;w; �) = � �r2xx`(x; �(x;w))rh(x) +R(x;w)>� (rh(x)>rh(x))�1 h(x);G3(x;w; �) = 1�rh(x)h(x):To alleviate the notation, we will omit the arguments x and x� when it is learfrom the ontext where the funtions are evaluated. For instane, rh = rh(x) andrf� = rf(x�).A point x satis�es the �rst-order neessary onditions for problem (1.3) if thereexists �w 2 IRn suh thatZZ>rf + (I � ZZ>)w � (r2xx`rh+R>) (rh>rh)�1 h+ 1�rh h� �w = 0;(2.3a) x � 0;(2.3b) x> �w = 0; �w � 0:(2.3)Equation (2.3a) provides an update formula for the multipliers orresponding to theonstraints x � 0, that is the basis of the multipliers method onsidered in this paper.The penalty funtion P , together with the penalized problem (1.3) and the equa-tion (2.3a), suggest a new multipliers method to solve the nonlinear programmingproblem (1.1), whih is presented below without any globalization strategy.Algorithm 2.1.Step 0. Choose initial values: �0 for the penalty parameter and w0 for the approxi-mation of the multipliers.Step 1. For k = 0; 1; 2; ::: do1.1 Solve problem (1.4).1.2 Update the multipliers approximation:wk+1 = ZZ>rf + (I � ZZ>)wk � �r2xx`rh+R>� (rh>rh)�1 h+ 1�krhh;where the funtions rf , h, rh, and Z are evaluated at the solution~x(wk; �k) obtained in step 1.1, and the funtions r2xx` and R are eval-uated at (~x(wk ; �k); �(~x(wk; �k); wk)).1.3 Update the penalty parameter �k+1.The loal onvergene analysis of the multipliers method, based on algorithm 2.1,is presented in setion 3 and orresponds to the analysis given in Bertsekas [1℄ for thetraditional augmented Lagrangian multipliers method.4



3. Loal onvergene analysis. The study of the rate of loal onvergeneof the multipliers method (as desribed in algorithm 2.1) requires seond derivativesof the penalty funtion P (x;w; �). One an easily show that the Hessian matrix ofP (x;w; �) is given byr2P (x;w; �) = H1(x;w; �) +H2(x;w; �) +H3(x;w; �);(3.1)where H1(x;w; �) = r2xx`ZZ> �RT (rh>rh)�1rhT ;H2(x;w; �) = � (I � ZZ>)r2xx`�rh (rh>rh)�1R + mXi=1 hir2xx�i;H3(x;w; �) = 1�rhrh> + 1� mXi=1 hir2hi;orrespond to the derivatives of G1(x;w; �), G2(x;w; �), and G3(x;w; �) in (2.2),respetively.We start by showing that the penalty funtion P (x;w; �) exhibits some exatnessproperties. The result stated in the next theorem will be helpful later in the analysisof loal onvergene, in partiular the fat that the Hessian of P (x;w; �) is positivede�nite for � in (0; ��℄, where �� > 0 is spei�ed later, provided that x satis�esthe seond-order suÆient onditions for the original problem (1.1) with multipliers�(x;w) and w.Theorem 3.1. Let assumptions A.1 hold. If (x; �(x;w)) satis�es the seond-order neessary (resp. suÆient) onditions for the original problem (1.1), with mul-tipliers w orresponding to x � 0, then there exists �� > 0 suh that x satis�es theseond-order neessary (resp. suÆient) onditions for the penalized problem (1.3),for this w and for any � 2 (0; ��℄.Proof. We start by pointing out that beause the matrix� Z(x)>rh(x)> �is nonsingular, the equation (2.3a), when h(x) = 0, is equivalent toZ(x)>(rf(x) � �w) = 0 and rh(x)>(w � �w) = 0:Thus, from the fat that x satis�es the �rst-order neessary onditions for the originalproblem (1.1) with multipliers �(x;w) and w, we onlude that x also satis�es the�rst-order neessary onditions (2.3) for the penalized problem (1.3) with multipliers�w = w.Now, let us prove the result onerning the seond-order suÆient onditions. Forthis purpose, let �x satisfy(�x)i = 0 if xi = 0 and �wi > 0;(3.2a) (�x)i � 0 if xi = 0 and �wi = 0:(3.2b)Sine h(x) = 0 and R(x;w) = 0, we have�x>r2P (x;w; �)�x =�x>ZZ>r2xx`ZZ>�x��x>(I � ZZ>)r2xx`(I � ZZ>)�x + 1��x>rhrh>�x:5



On the other hand, the seond-order suÆient onditions for the original prob-lem (1.1) say that r2xx`(x; �(x;w)) has to be positive de�nite for all vetors �xsatisfying (3.2) and rh(x)>�x = 0, i.e., �x = ZZ>�x. Thus,�x>ZZ>r2xx`ZZ>�x > 0for all vetors �x satisfying (3.2).So, sine I � ZZ> = rh(rh>rh)�1rh>,�x>r2P (x;w; �)�x> �x>rh��(rh>rh)�1rh>r2xx`rh(rh>rh)�1 + 1�I�rh>�x;and the proof is ompleted by setting:�� = 8><>: any positive real if (rh>rh)�1rh>r2xx`rh(rh>rh)�1is negative semi-de�nite,1�(x;w) otherwise,where �(x;w) is the largest eigenvalue of (rh>rh)�1rh>r2xx`rh(rh>rh)�1.The loal onvergene properties of the multipliers method are established underassumptions A.1 and A.2, where A.2 is given below.A.2 The point x� 2 
 is a nondegenerate point (i.e., the gradients of the funtionsde�ning the ative onstraints are linearly independent) satisfying the seond-order suÆient onditions for problem (1.1) with orresponding multipliers�(x�; �w�) and �w�. The pair (x�; �w�) satis�es strit omplementarity.The main result is presented in theorem 3.2 and bounds the distane between aloal minimizer of (1.3) and (x�; �w�) by the penalty parameter � times the distanebetween the approximation w and the orresponding multipliers �w�. The proof of thistheorem is quite long and tehnial and is postponed to the appendix of this paper.Theorem 3.2. Let x�, with orresponding multipliers �w�, satisfy assumptionsA.1-A.2. There exist positive salars ��, Æ, �, �1, and �2 suh thatZ�Z�>r2xx`�Z�Z�> � (I � Z�Z�>)r2xx`�(I � Z�Z�>) + 1��rh�rh�>is positive de�nite, the problemmin P (x;w; �) s.t. x � 0; x 2 B(x�; �);(3.3)has an unique solution ~x(w; �) for all (w; �) inD� = �(w; �) : kw � �w�k < min�Æ; Æ�� ; 0 < � � ��� ;(3.4)the funtion ~x(w; �) is ontinuously di�erentiable in D�, and for all (w; �) 2 D�, wehave k~x(w; �)� x�k � �1�kw � �w�k;(3.5a) k ~w(w; �) � �w�k � �2�kw � �w�k;(3.5b) 6



where ~w = ~w(w; �) are the multipliers orresponding to ~x = ~x(w; �), and~w = Z(~x)Z(~x)>rf(~x) + (I � Z(~x)Z(~x)>)w� �r2xx`(~x;w)rh(~x) +R(~x;w)>� (rh(~x)>rh(~x))�1 h(~x) + 1�rh(~x)h(~x):(3.6)Theorem 3.2 an be used to state the basi loal onvergene properties of themultipliers method given in algorithm 2.1, whih we summarize in the next orollary.Corollary 3.3. Let x�, with orresponding multipliers �w�, satisfy assumptionsA.1-A.2. There exist salars Æ0 2 (0; Æ℄, � 2 (0; 1), and �0 2 (0; ��℄ suh that ifthe sequene f�kg is monotone dereasing and jjw0 � �w�jj < minnÆ0; Æ0�0o, then thesequene fwkg, generated by wk+1 = rP (~x(wk ; �k);wk; �k), is well de�ned (in thesense that (wk ; �k) 2 D� for all k) and satis�eslim supk!+1 kwk+1 � �w�kkwk � �w�k � �;(3.7)when limk!+1 �k > 0, and limk!+1 kwk+1 � �w�kkwk � �w�k = 0;(3.8)when limk!+1 �k = 0. In both ases, we havelimk!+1 ~x(wk ; �k) = x�;(3.9) limk!+1wk = �w�:(3.10)Proof. The limits (3.7), (3.8) and (3.10) follow from inequality (3.5b). The limit(3.9) is a onsequene of (3.5a).It is also worthwhile to note that the multipliers update (3.6) an be seen as anapproximation to the steepest asent iteration applied to the dual funtion assoiatedwith problem (3.3); see [6℄ for details on how this was arried out in the ontext ofproblem (1.6).4. Conlusions and future researh. The augmented Lagrangian multipliersmethod proposed in this paper is based on the solution of a sequene of bound-onstrained minimization problems. Eah outer iteration of the method involvesthe minimization, within the bounds, of the augmented Lagrangian penalty fun-tion P (x;w; �) for spei� values of the penalty parameter � and of the multipliers w.The evaluation of P (x;w; �) and of its gradient requires the solution of systems oflinear equations with rh(x)>rh(x). The gradient of P (x;w; �) involves a ross termwhere seond-order derivatives of the problem funtions f and h appear. Thus, eahinner or minor iteration, i.e., eah iteration of the iterative proess applied to minimizeP (x;w; �) within the bounds, is relatively ostly.This augmented Lagrangian multipliers method was proposed originally in [6℄for a lass of nonlinear programming problems with a struture arising from optimalontrol or design, see (1.6). There, the role of the matrix rh(x)>rh(x) is played by7



the matrix y(y; u), the partial Jaobian of (y; u) with respet to the state variables y.The omputation of the gradient of the penalty funtion involves there the solutionof linear systems with y(y; u) (linearized state equations) and with y(y; u)> (adjointequations), for whih solvers are available in many appliations, see [4℄.One major open question is weather a globalization sheme, similar to what wasdeveloped in [2℄ for the original multipliers method, would be appliable to the newmultipliers method of this paper, yielding the same type of global onvergene. Inontrast to what happens in [2℄, we do not have here the equality rP (x;w; �) =rx`(x; �(x; �w)) that seems to us to be ruial to the derivation of global onvergene.What we get instead is the following:rP (x;w; �) �rx`(x; �(x; �w)) =�Z(x)Z(x)>(r2xx`(x; �(x;w))rh(x) +R(x;w)>) (rh(x)>rh(x))�1 h(x):(4.1)When h(x) = 0 we do have, of ourse, rP (x;w; �) = rx`(x; �(x; �w)). The fat thatthere is a term depending on the size of the feasibility funtion h(x) in (4.1) makesthe global analysis onsiderably more diÆult.Numerial results obtained for small-sale dimension problems have shown thatthe method is ompetitive with Lanelot [3℄, sharing some of the advantages anddisadvantages of the lass of augmented Lagrangian multipliers methods.Appendix. We prove here the main result of loal onvergene established intheorem 3.2. We will use the following notation. The symbol e represents a vetorof ones with appropriate size and ei denotes a vetor whose i-th omponent is unityand the others zero. Also, for any vetor v, V is the diagonal matrix for whih thediagonal elements are the elements of v.Although the struture of the proof follows the one in [1, proposition 2.4℄, wehave additional diÆulties here due to the presene of the bound onstraints on thevariables. Another diÆulty arises when dealing with the ross term in the multipliersupdate. This term is not multiplied by 1�k but involves wk . A onsequene of havingto handle this extra term is that the region D� in (3.4) beomes smaller than the onein [1, proposition 2.4℄, where instead of minfÆ; Æ=�g we only have Æ=�.We need �rst to organize some of the alulations that will appear later. Thederivative of s(x) = (rh(x)>rh(x))�1h(x) is given byrs(x)> = (rh>rh)�1rh> � (rh>rh)�1 mXi=1 r(rh>rh)i �(rh>rh)�1h�idef=(rh>rh)�1rh> � F (h);where we have omitted the argument x in the right hand side. The size of F (h(x))varies ontinuously with h(x).Further, we note that from rh(x)>Z(x) = 0 one obtainsrh(x)>rZ(x)>j = �0BB� Z(x)>j r2h(x)1...Z(x)>j r2h(x)m 1CCA ;(4.2)for j = 1; :::; n�m, where Z(x)j denotes the j-th olumn of Z(x). By using (4.2), we8



an write0BB� (rf � w)>(I � ZZ>)rZ>1...(rf � w)>(I � ZZ>)rZ>n�m 1CCA = �Z> mXi=1 �(rh>rh)�1rh>(rf � w)�ir2hi:We have assumed that Z(x) is di�erentiable. Goodman [5℄ has shown how to extendloally an orthonormal basis Z(x) given by the QR fatorization of rh(x) so thatZ(x) exhibits the same smoothness of h(x).We �nally get an expression that will be used later on:0BB� (rf � w)>rZ>1...(rf � w)>rZ>n�m 1CCA = 0BB� (rf � w)>ZZ>rZ>1...(rf � w)>ZZ>rZ>n�m 1CCA� Z>r2f + Z>r2xx`:(4.3)We are ready now to prove theorem 3.2. The proof is divided in six major steps.Proof. A. Preparing the system of nonlinear equations. Consider, for� > 0, the system of nonlinear equations that results from the �rst-order neessaryonditions (2.3a)-(2.3) for problem (1.3). If we multiply equation (2.3a) by rh> andZ>, we obtain the equivalent systemrh>w �rh>(r2xx`(x;w)rh+R(x;w)>) (rh>rh)�1 h+ 1�rh>rh h�rh> �w = 0;(4.4a) Z>rf � Z>(r2xx`(x;w)rh +R(x;w)>) (rh>rh)�1 h� Z> �w = 0;(4.4b) X �We = 0:(4.4)Now we multiply equation (4.4a) by � and perform the hanges of variablesr = �(w � �w�);(4.5a) s = w � �w�;(4.5b)to obtain the system of nonlinear equationsrh>r � �rh>(r2xx`(x; �w� + s)rh+R(x; �w� + s)>) (rh>rh)�1 h+rh>rhh+ �rh> �w� � �rh> �w = 0;(4.6a) Z>rf � Z>(r2xx`(x; �w� + s)rh+R(x; �w� + s)>) (rh>rh)�1 h�Z> �w = 0;(4.6b) X �We = 0;(4.6)that we write as J(x;w; �) = 0:We analyze this system for � 2 [0; ��℄, where �� is suh that�Z�Z�>r2xx`�Z�Z�> � �(I � Z�Z�>)r2xx`�(I � Z�Z�>) +rh�rh�>(4.7) 9



is positive de�nite for all � 2 (0; ��℄. The existene of suh �� > 0 is guaranteed bytheorem 3.1.B. Nonsingularity at the solution when the penalty parameter is zero.When r = s = 0 and � 2 [0; ��℄, it is easy to hek that the system (4.6a)-(4.6) hasthe solution (x�; �w�). For r = s = 0, the Jaobian of (4.6a)-(4.6) with respet to(x; �w), at the point (x�; �w�), is given byJ�(0; 0; �) = 0BB� ��rh�>r2xx`� (I � Z�Z�>) +rh�>rh�rh�> ��rh�>Z�>r2xx`�Z�Z�> �Z�>�W � X� 1CCA :When � = 0, J�(0; 0; �) redues toJ�(0; 0; 0) = 0BB� rh�>rh�rh�> 0Z�>r2xx`�Z�Z�> �Z�>�W � X� 1CCA :(4.8)One an see that J�(0; 0; 0) is nonsingular. In fat, the assumptions on (x�; �w�) implythat the following matrix is nonsingular:0BB� rh�> 0 0Z�Z�>r2xx`�Z�Z�> rh� �I�W � 0 X� 1CCA :(4.9)The nonsingularity of (4.9) implies the nonsingularity of (4.8).C. Nonsingularity at the solution for positive values of the penaltyparameter. Let (�x;�w) be a solution of the homogeneous linear system with thematrix J�(0; 0; �):���rh�>r2xx`� (I � Z�Z�>) +rh�>rh�rh�>��x� �rh�>�w = 0;(4.10a) Z�>r2xx`�Z�Z�>�x� Z�>�w = 0;(4.10b) �W ��x+X��w = 0:(4.10)The equation (4.10) and strit omplementarity between x� and �w� imply�x>�w = 0. By multiplying (4.10a) and (4.10b) on the left by rh� (rh�>rh�)�1and �Z�, respetively, we obtain��� (I � Z�Z�>)r2xx`� (I � Z�Z�>) +rh�rh�>��x� � (I � Z�Z�>)�w = 0;�Z�Z�>r2xx`�Z�Z�>�x� �Z�Z�>�w = 0:Thus,�Z�Z�>r2xx`�Z�Z�>�x� � (I � Z�Z�>)r2xx`� (I � Z�Z�>)�x +rh�rh�>�x���w = 0:10



By multiplying this equation on the left by �x>, we derive�x> ��Z�Z�>r2xx`�Z�Z�> � � (I � Z�Z�>)r2xx`� (I � Z�Z�>) +rh�rh�>��x = 0:Sine (4.7) is positive de�nite for � 2 (0; ��℄, we onlude that �x = 0. Now, using�x = 0, we get rh�>�w = 0 and Z�>�w = 0, implying that �w = 0. We havetherefore proved that J�(0; 0; �) is nonsingular for � 2 (0; ��℄.D. The use of the impliit funtion theorem. We now apply the impliitfuntion theorem [1, page 12℄ to the system (4.6a)-(4.6). By identifying the setK = f0g � f0g � [0; ��℄ as the ompat set �X of that theorem, we guarantee theexisting of positive salars � and Æ and unique ontinuously di�erentiable funtionsx̂ = x̂(r; s; �) and ŵ = ŵ(r; s; �), de�ned on a neighborhood of K,B (K; Æ) = f(r; s; �) : k(r; s; �)� (0; 0; �0)k < Æ for some (0; 0; �0) 2 Kg ;satisfying (4.6a)-(4.6) with x = x̂ = x̂(r; s; �) and �w = ŵ = ŵ(r; s; �), and suh that���������� x̂(r; s; �)� x�ŵ(r; s; �)� �w� !���������� � �for all (r; s; �) 2 B (K; Æ). Using (4.6) and strit omplementarity of the pair (x�; �w�),and reduing � and Æ if neessary, one an easily show for all (r; s; �) 2 B (K; Æ)that: x̂(r; s; �) � 0; ŵ(r; s; �) � 0; the pair (x̂(r; s; �); ŵ(r; s; �)) also veri�es stritomplementarity; the gradients of the ative onstraints are linearly independent atx̂(r; s; �).E. The bounds (3.5a)-(3.5b). We di�erentiate (4.6a)-(4.6) with respet to(r; s; �), and writeJ(r; s; �) rrx̂(r; s; �)> rsx̂(r; s; �)> r�x̂(r; s; �)>rrŵ(r; s; �)> rsŵ(r; s; �)> r�ŵ(r; s; �)> ! = �B(r; s; �):(4.11)Here J(r; s; �) is the Jaobian of the vetor funtion of the left-hand side of (4.6) withrespet to x and �w, given by0BB� ��rh>r2xx` (I � ZZ>) +rh>rhrh> ��rh>Z>r2xx`ZZ> �Z>Ŵ X̂ 1CCA+0BBBBBBBBBBBBBB�
A11 � �rh>R> (rh>rh)�1rh> + �rh> �r2xx`rh+R>�F (h)�� mXi=1 rx(rh>(r2xx`rh+R>))i[(rh>rh)�1 h℄i + mXi=1 hir(rh>rh)i 0A21 � mXi=1 �(rh>rh)�1h�irx(Z> �r2xx`rh+R>�)i+Z> �r2xx`rh+R>�F (h)� Z>R> (rh>rh)�1rh> 00 0

1CCCCCCCCCCCCCCA ;
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where the funtions h, Z, rh, r2hi, i = 1; :::;m, are evaluated at x̂(r; s; �) and thefuntions r2xx` and R are evaluated at (x̂(r; s; �); ŵ(r; s; �)), and where the rows ofA11 are given by (A11)i = (r + �( �w� � �w))>r2hi, i = 1; :::;m. The term A21 is givenby A21 = 0BB� (rf � �w)>rZ>1...(rf � �w)>rZ>n�m 1CCA+ Z>r2f � Z>r2xx`= 0BB� (rf � �w)>ZZ>rZ>1...(rf � �w)>ZZ>rZ>n�m 1CCA ;where the last equality is justi�ed by the derivation (4.3).In (4.11), B is the Jaobian of the vetor funtion of the left-hand side of (4.6)with respet to r, s and �, de�ned byB(r; s; �) = 0BB� B11(r; s; �) B12(r; s; �) B13(r; s; �)0 B22(r; s; �) 00 0 0 1CCA ;with B11(r; s; �) = rh>;B12(r; s; �) ej = ��rh> mXi=1 �(rh>rh)�1rh>ej�ir2hi rh(rh>rh)�1h+�rh>0BB� (ZZ>ej)>r2h1...(ZZ>ej)>r2hm 1CCA (rh>rh)�1h;B13(r; s; �) = �rh> ��r2xx` rh+R>� (rh>rh)�1 h+ �w� � ŵ(r; s; �)� ;B22(r; s; �) ej = �Z> mXi=1 �(rh>rh)�1rh>ej�ir2hi rh(rh>rh)�1h+Z>0BB� (ZZ>ej)>r2h1...(ZZ>ej)>r2hm 1CCA (rh>rh)�1h;where j = 1; :::; n.Hene, for all (r; s; �) 2 B (K; Æ), we have x̂(r; s; �)� x�ŵ(r; s; �)� �w� ! =  x̂(r; s; �)� x̂(0; 0; 0)ŵ(r; s; �)� ŵ(0; 0; 0) != � Z 10 J(�r; �s; ��)�1B(�r; �s; ��)0� rs� 1A d�:12



Sine J�(0; 0; �) is nonsingular for all � 2 [0; ��℄, we an show that for � and ÆsuÆiently small, J(r; s; �)�1 is bounded onf(r; s; �) : k(r; s)k < Æ; � 2 [0; ��℄g � B(K; Æ):In fat, it is quite lear from the ontinuity assumptions, that the �rst matrix termof J(r; s; �) is a perturbation of size Æ and � of J�(0; 0; 0). If we look arefully at theseond term of J(r; s; �), we ome to the onlusion that all the expressions involveddepend ontinuously on either r, �, h, R or Z>(rf � �w), quantities that are of sizeÆ and �.Now we an �nally show (3.5a)-(3.5b). By appealing to���������� x̂(r; s; �)� x�ŵ(r; s; �)� �w� !���������� � max�2[0;1℄ kJ(�r; �s; ��)�1k Z 10 ������������B(�r; �s; ��)0� rs� 1A������������ d�;and by applying the ontinuity assumptions to the terms that appear in B11(r; s; �),B12(r; s; �), B13(r; s; �), B22(r; s; �), we an assume the existene of positive onstants�3-�7 suh thatkx̂(r; s; �)� x�k+ kŵ(r; s; �)� �w�k � �3krk+ �4�kskd(r; s; �) + �5�d(r; s; �) +�6� max�2[0;1℄ kŵ(�r; �s; ��) � �w�k+�7kskd(r; s; �);whered(r; s; �) = max�2[0;1℄ kfrh (x̂(�r; �s; ��))>rh (x̂(�r; �s; ��))g�1h (x̂(�r; �s; ��)) k:Furthermore, from (4.6a) we write, with x̂ = x̂(r; s; �) and ŵ = ŵ(r; s; �),h (x̂) = rh (x̂)>rh (x̂)���rh (x̂)> �r2xx` (x̂; ŵ)rh (x̂) +R (x̂; ŵ)>�+rh (x̂)>rh (x̂)rh (x̂)>rh (x̂)	�1rh (x̂)> (�r + �ŵ � � �w�) :(4.12)Thus, the hoie of �� and the ontinuity assumptions, together with the expres-sion (4.12) for h (x̂), imply thatd(r; s; �) � �8krk+ �9� max�2[0;1℄ kŵ(�r; �s; ��) � �w�k;for some positive onstants �8 and �9. Sine � � �� and ksk < Æ, there exist positiveonstants �10 and �11 suh thatkx̂(r; s; �)� x�k+ kŵ(r; s; �)� �w�k � �10krk+ �11� max�2[0;1℄ kŵ(�r; �s; ��) � �w�k;from whih we get for (r; s; �) replaed by (�r; �s; ��),max�2[0;1℄ kŵ(�r; �s; ��) � �w�k � �101� �11�krk;for � 2 [0; ��℄, with �� < minn��; 1�11o. Therefore,kx̂(r; s; �)� x�k+ kŵ(r; s; �)� �w�k � ��10 + �10�11�1��11� � krk� �101��11 ���kw � �w�k:(4.13) 13



For � 2 (0; ��℄ and kw � �w�k < minnÆ; Æ�o, let us de�ne~x(w; �) = x̂(r; s; �) = x̂ (� (w � �w�) ; w � �w�; �) ;~w(w; �) = ŵ(r; s; �) = ŵ (� (w � �w�) ; w � �w�; �) :(4.14)Hene, the bounds (3.5a)-(3.5b) follow immediately from (4.13).F. Optimality of ~x(w;�). We �nish the proof by showing that ~x(w; �) is thesolution of problem (3.3). First we point out that (~x(w; �); ~w(w; �)) satis�es the �rst-order neessary onditions for (3.3) as it an be seen by rewriting system (4.6a)-(4.6)using the hanges of variables (4.5a)-(4.5b) and (4.14). The �rst equation of the�rst-order neessary onditions is, with ~x = ~x(w; �) and ~w = ~w(w; �),Z(~x)Z(~x)>rf(~x) + (I � Z(~x)Z(~x)>)w � �r2xx`(~x;w)rh(~x) +R(~x;w)>�(rh(~x)>rh(~x))�1 h(~x) + 1�rh(~x)h(~x)� ~w = 0;(4.15)and (3.6) is learly true. We show now that the Hessian of P (x;w; �) is positivede�nite at ~x(w; �) for all vetors(�x)i = 0 if (~x(w; �))i = 0 and ( ~w(w; �))i > 0:(4.16)The ase (�x)i � 0 is eliminated, beause the pair (~x(w; �); ~w(w; �)) is stritly om-plementary. The salar � an be hosen suÆiently small so that we an onsider(�x)i = 0 if x�i = 0 and ( �w�)i > 0:This means that we an hek the positive de�niteness of the Hessian of P (x;w; �)in the same subspae that we onsider for P (x�; �w�; �). Moreover, we proved intheorem 3.1 that the Hessian of P (x�; �w�; �) is positive de�nite for � 2 (0; ��℄ inthe above mentioned subspae. To ahieve our goal, we show that the Hessian ofP (~x(w; �);w; �) is a perturbation of size � and Æ of the Hessian of P (x�; �w�; �). Infat, the Hessian of P (~x(w; �);w; �) is given byr2xx`ZZ> �RT (rh>rh)�1rhT � (I � ZZ>)r2xx`�rh (rh>rh)�1R;+ mXi=1 hir2xx�i + 1�rhrh> + 1� mXi=1 hir2hi;see (3.1), with the Lagrangian and the residual R evaluated at (~x(w; �); w) and theremaining funtions at ~x(w; �). The termr2xx`ZZ> �RT (rh>rh)�1rhT � (I � ZZ>)r2xx`�rh (rh>rh)�1R+ 1�rhrh>is a perturbation of size � and Æ of the Hessian of P (x�; �w�; �). To bound the remainingterms, we an rewrite (4.15), using ~x = ~x(w; �) and ~w = ~w(w; �), as1�h(~x) = rh(~x)>rh(~x)f��rh(~x)> �r2xx`(~x;w)rh(~x) +R(~x;w)>�+(I � Z(~x)Z(~x)>)g�1rh(~x)> ( ~w � w) :14



Thus, using the ontinuity assumptions and adding and subtrating �w�, we obtain,for some positive onstant �12,�������� 1�h(~x(w; �))�������� � �12 (jj ~w(w; �)� �w�jj+ jjw � �w�jj)� �12(�+ Æ)and jjh(~x(w; �))jj � ���12(�+ Æ):The onlusion is that mXi=1 hir2xx�i + 1� mXi=1 hir2hi is also of size Æ and �, and theproof that the Hessian of P (x;w; �) is positive de�nite for all vetors �x satisfying(4.16) is terminated.The proof also shows that �1 and �2 in the bounds (3.5) grow with the onditionnumber of rh>rh. REFERENCES[1℄ D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods, Computer Sieneand Applied Mathematis, Aademi Press, New York, 1982.[2℄ A. R. Conn, N. I. M. Gould, and P. L. Toint, A globally onvergent augmented lagrangianalgorithm for optimization with general onstraints and simple bounds, SIAM J. Numer.Anal., 28 (1991), pp. 545{572.[3℄ , LANCELOT: A Fortran pakage for large-sale nonlinear optimization (Release A),Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1992.[4℄ J. E. Dennis, M. Heinkenshloss, and L. N. Viente, Trust{region interior{point SQP algo-rithms for a lass of nonlinear programming problems, SIAM J. Control Optim., 36 (1998),pp. 1750{1794.[5℄ J. Goodman, Newton's method for onstrained optimization, Math. Programming, 33 (1985),pp. 162{171.[6℄ L. N. Viente, Loal analysis of a new multipliers method, European Journal of OperationalResearh, 143 (2002), pp. 432{451.
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