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(We assume that x 2 IRn with n > m and f and g are twice continuously di�erentiable functionswith Lipschitz second derivatives. The Lagrangian function `(x; y) is de�ned as `(x; y) = f(x) +y>g(x).) The Newton step associated with the system (1.1) is given by: r2xx`(x; y) rg(x)rg(x)> 0 !  �x�y ! = �  rx`(x; y)g(x) ! ; (1.2)where rg(x)> represents the transpose of the Jacobian matrix dgdx(x) of g(x), and rx`(x; y) andr2xx`(x; y) are the gradient and the Hessian of the Lagrangian with respect to x, respectively.There are cases in constrained optimization where the system of �rst{order necessary conditionsis reformulated by eliminating variables and/or equations. For the example given above, we knowthat (1.1) is equivalent (with x = �x) to:Z(�x)>rf(�x) = 0 andg(�x) = 0 ; (1.3)where the columns of the orthogonal matrix Z(�x) form a basis for the null space of rg(�x)>. Thematrix Z(�x) should be computed as described in [7] so that it can be extended smoothly in aneighborhood of �x (see [7, Lemma 2.1]). The Newton step associated with (1.3) is de�ned by: Z(�x)>r2xx`(�x; y(�x))rg(�x)> ! �x = �  Z(�x)>rf(�x)g(�x) ! ; (1.4)where y(�x) is the vector of least squares multipliers obtained by solvingminimize krg(�x)y +rf(�x)k22 ;with respect to y. See [7].Two equivalent forms of the necessary conditions gave rise to two di�erent Newton methods(computational issues related to these methods are described, e.g., in the books [6] and [8]). It isnatural to ask how do these two methods compare, in other words how close �x and �x are fromeach other. The goal of this work is not to provide the answer only for this particular reformulation.We propose a model where the answer can be given for the equality{constrained case but also forother cases.One case in which we are also interested is minimization with simple bounds:minimize f(x)subject to x � 0 :The �rst{order necessary conditions are: rf(x)� y = 0 ; (1.5)x>y = 0 ; and (1.6)x; y � 0 : (1.7)Since this problem involves inequality constraints, we will rather call conditions (1.5){(1.7), �rst{order Karush{Kuhn{Tucker (KKT) necessary conditions. A step of Newton's method applied to(1.5){(1.6) is the solution of r2f(x) �IY X !  �x�y ! = �  rf(x)� yXY e ! ; (1.8)2



where X = diag(x) and Y = diag(y). (Given a vector u in IRn, diag(u) represents the diagonalmatrix of order n whose i{th diagonal element is ui. Also, e represents a vector of ones. We omitthe dimension of e since that will be determined from the context.) The application of Newton'smethod is made by using an interior{point approach, where x and y are positive and �x and �yare scaled by �x and �y so that x+ �x�x and y+ �y�y are also positive. The equivalent form of(1.5){(1.7) that we would like to consider (with x = �x) is given byD(�x)2rf(�x) = 0 and (1.9)�x � 0 ;where D(�x) is the diagonal matrix of order n with i{th diagonal element given by:�D(�x)�ii = 8><>: (�xi) 12 if (rf(�x))i � 0 ;1 if (rf(�x))i < 0 :This simple fact is proved in [1]. The diagonal element �D(�x)2�ii might not be di�erentiable, oreven continuous, but if �D(�x)2�ii is di�erentiable for all i, thenddx �D(�x)2rf(�x)� = D(�x)2r2f(�x) + � ddx(D(�x)2e)�rf(�x) :The diagonal element �D(�x)2�ii is not di�erentiable if (rf(�x))i = 0, in which case the i{th com-ponent of the (diagonal) Jacobian matrix ddx(D(�x)2e) is arti�cially set to zero. So, it makes senseto de�ne E(�x) as the diagonal matrix of order n whose i{th component is given by�E(�x)�ii = 8><>: (rf(�x))i if (rf(�x))i > 0 ;0 otherwise ;and to de�ne the Newton step corresponding to the equation (1.9) as�D(�x)2r2f(�x) +E(�x)��x = �D(�x)2rf(�x) : (1.10)See [1] and [2] for more details.For these and other examples, we are interested in comparing the two alternative Newtonapproaches by looking at the distance between the two alternative Newton steps �x and �x. Inthe next section, we derive an abstract model to provide a general answer that can be particularizedfor the di�erent examples. The analysis will consider a relating condition U(x; �x; y) = 0, and willestablish that the norm of the di�erence of the steps is bounded by a constant times kU(x; �x; y)k.We will observe in the equality-constrained example (Section 3) that kU(x; �x; y)k converges to zeroif both Newton sequences are converging to a point satisfying the �rst-order necessary conditions.As a consequence of our analysis, the alternative Newton steps tend to be the same. However,this is not true in the second type of examples (Sections 4 and 5) because kU(x; �x; y)k does notnecessarily converge to zero even if both Newton sequences are converging to the same stationarypoint. 3



2 The abstract reformulationThe original system of nonlinear equations is de�ned in the variables x and y:F (x; y) = 0 : (2.1)The equivalent form of this system that we consider is based on the equationG(�x)H(�x) = 0 ; (2.2)where G satis�es at a solution (x�; y�) a de�ning condition of the formG(x�)F (x�; y�) = G(x�)H(x�) : (2.3)The equivalence relates the variables x, �x, and y through the relating conditionU(x; �x; y) = 0 ;so that F (x; y) = 0 is equivalent to G(x)H(x) = 0 and U(x; x; y) = 0 :The entrances in F , G, and H are assumed to have Lipschitz �rst derivatives. Their meaning isclear for the examples we have given before but we postpone this for a while to analyze Newton'smethod when applied to (2.1) and (2.2).A step of Newton's method when applied to (2.1) is the solution of@F@x (x; y)�x+ @F@y (x; y)�y = �F (x; y) ; (2.4)whereas a Newton's step for system (2.2) is given by:� ddx (G(�x)H(�x))��x = �G(�x)H(�x) : (2.5)Our goal is to bound k�x��xk in terms of kU(x; �x; y)k. First, we multiply (2.4) by G(x):G(x)@F@x (x; y)�x+G(x)@F@y (x; y)�y = �G(x)F (x; y) : (2.6)By subtracting (2.5) to (2.6), we obtain� � ddx (G(�x)H(�x))��x = �G(x)@F@x (x; y)�x�G(x)@F@y (x; y)�y + �G(�x)H(�x)�G(x)F (x; y)� :Finally, we add � ddxG(�x)H(�x)��x to both sides, to geth ddx (G(�x)H(�x))i (�x��x) = � ddx (G(�x)H(�x))�G(x)@F@x (x; y)��x�G(x)@F@y (x; y)�y+ �G(�x)H(�x)�G(x)F (x; y)� :Using the de�nitionsR(�x) = ddx (G(�x)H(�x)) and S(x; y) = G(x)@F@x (x; y) ;4



we derive an upper bound for k�x��xk:k�x��xk � kR(�x)�1k�kR(�x)� S(x; y)k+ kG(x)@F@y (x; y)k� krF (x; y)�>k kF (x; y)k+ kR(�x)�1k kG(�x)H(�x)�G(x)F (x; y)k:If �GH , �F , and �F are positive constants such thatkR(�x)�1k � �GH ;krF (x; y)�>k � �F ; andkF (x; y)k � �F ;thenk�x��xk � �F�F�GH �kR(�x)� S(x; y)k + G(x)@F@y (x; y)�+�GHkG(�x)H(�x)�G(x)F (x; y)k :We observe from this inequality that k�x��xk is bounded above by three important terms.First, k�x��xk depends on how close the values for the functions G(�x)H(�x) and G(x)F (x; y)are from each other. It does not matter how small the residuals G(�x)H(�x) and F (x; y) are, butrather how close the function value G(�x)H(�x) is from the value of F (x; y) reduced by G(x).The dependence on R(�x) � S(x; y) is about the consistency of the derivatives ddx (G(�x)H(�x))and G(x)@F@x (x; y), the former being the derivative of G(�x)H(�x) and the latter the derivative ofF (x; y) with respect to x reduced by the operator G(x).We conclude also that the norm of �x��x depends on the norm of G(x)@F@y (x; y) which is aquite interesting aspect of the analysis. In the examples given later, the term kG(x)@F@y (x; y)k iseither zero or bounded by kU(x; �x; y)k with �x = x. One can see that G(x)@F@y (x; y) is the derivativeof F (x; y) with respect to y reduced by the operator G(x), and its norm inuences the di�erencebetween �x and �x.From the inequality given above we can easily prove the following theorem.Theorem 2.1 Consider a Newton step (2.4) for F (x; y) = 0, where rF (x; y) is nonsingular.Consider a Newton step (2.5) for G(�x)H(�x) = 0, where R(�x) is nonsingular.If there exist positive constants 1, 2, and 3 such thatkR(�x)� S(x; y)k � 1kU(x; �x; y)k ;G(x)@F@y (x; y) � 2kU(x; �x; y)k (for some �x), andkG(�x)H(�x)�G(x)F (x; y)k � 3kU(x; �x; y)k ;then �x��x �  kU(x; �x; y)kfor some positive constant .The constant  in Theorem 2.1 depends on x, �x, and y since 1, 2, and 3 depend also on thesepoints. We can assume that the standard Newton assumptions [4] hold for the Newton methodsde�ned by (2.4) and (2.5) at the points (x�; y�) and x�, respectively. Then, if x and y are su�cientlyclosed to x� and y�, and �x is su�ciently close to x�, the constants 1, 2, 3, and  do not dependon the points x, �x, and y.We move rapidly to the examples to illustrate our analysis.5



3 Equality{constrained optimizationIn this case F (x; y) =  rf(x) +rg(x)yg(x) !and G(�x)H(�x) =  Z(�x)>rf(�x)g(�x) ! :The choices for G(�x) and H(�x) areG(�x) =  Z(�x)> 00 I ! and H(�x) =  rf(�x)g(�x) ! :Since G(�x)H(�x)�G(x)F (x; y) =  Z(�x)>rf(�x)� Z(x)>rf(x)g(�x)� g(x) ! ;the de�ning condition (2.3) is satis�ed for any pair (x; y), even if it does not verify the �rst-ordernecessary conditions. From the theory presented in [7],R(�x) = ddx (G(�x)H(�x)) =  Z(�x)>r2xx`(�x; y(�x))rg(�x)> ! :Also, S(x; y) =  Z(x)>r2xx`(x; y)rg(x)> ! ;and the Lipschitz continuity of the second derivatives of `(x; y) implykR(�x)� S(x; y)k � 1  x� �xy � y(�x) ! ;for some positive constant 1. Moreover,G(x)@F@y (x; y) = 0 :It is natural to de�ne the relating condition asU(x; �x; y) =  x� �xy � y(�x) ! = 0 :Theorem 2.1 assures the existence of a positive constant  such thatk�x��xk �   x� �xy � y(�x) ! ;where �x and �x are given by (1.2) and (1.4). It is obvious that F (x; y) = 0 is equivalent toG(x)H(x) = 0 and U(x; x; y) = 0. Also, if (x�; y�) is a stationary point thenlim(x; y) �! (x�; y�)�x �! x� kU(x; �x; y)k = 0 ; (3.1)and the Newton steps �x and �x tend in this situation to be the same step.6



4 Minimization with simple boundsIn this case, the equivalent KKT systems are:F (x; y) =  rf(x)� yXY e ! = 0and G(�x)H(�x) = D(�x)2rf(�x) = 0 :Of course, we have excluded from the KKT systems the nonnegativity of x, �x, and y. The choicesfor G(�x) and H(�x) areG(�x) = � D(�x)2 I � and H(�x) =  rf(�x)0 ! :In this case the de�ning condition (2.3) is not satis�ed unless we are at a point that veri�es the�rst{order KKT necessary conditions. In fact, we haveG(�x)H(�x)�G(x)F (x; y) = D(�x)2rf(�x)�D(x)2rf(x) � �X �D(x)2�Y e :R(�x) and S(x; y) are given by:R(�x) = D(�x)2r2f(�x) +E(�x) and S(x; y) = D(x)2r2f(x) + Y :Moreover, G(x)@F@y (x; y) = �D(x)2 +X :Thus, if the relating condition is de�ned asU(x; �x; y) = 0BBB@ x� �x�X �D(x)2� e� �X �D(�x)2� e(Y �E(x)) e 1CCCA = 0 ;then there exist positive constants 1, 2, and 3 satisfying the assumptions of Theorem 2.1. Thistheorem assures the existence of a positive constant  such thatk�x��xk �  0BBB@ x� �x�X �D(x)2� e� �X �D(�x)2� e(Y �E(x)) e 1CCCA ;where �x and �x are given by (1.8) and (1.10). Note that F (x; y) = 0 is equivalent to G(x)H(x) =0 and U(x; x; y) = 0 provided rf(x) � 0. However, in this example, if (x�; y�) is a point thatsatis�es the �rst-order KKT necessary conditions, the limit (3.1) might not hold becauselimx�!x� �X �D(x)2� e and lim�x�!x� � �X �D(�x)2� edo not necessarily exist or equal zero. 7



5 Discretized optimal control problems with bounds on the con-trol variablesIn this section, we consider the class of nonlinear programming problems analyzed in [3]. See also[5]. A nonlinear programming problem of this class is formulated asminimize f(x1; x2)subject to g(x1; x2) = 0x2 � 0 ;where x1 is in IRm and x2 is in IRn�m. In this class of problems, rg(x) is partitioned asrg(x) =  rx1g(x)rx2g(x) ! ;where rx1g(x) is nonsingular. The �rst{order KKT necessary conditions are:rf(x) +rg(x)y1 �  0y2 ! = 0 ;g(x) = 0 ;x>2 y2 = 0 ; andx2; y2 � 0 :A basis for the null space of rg(�x)> is given by the columns ofW (�x) =  �rx1g(�x)�>rx2g(�x)>I ! :The equivalent KKT system that we consider is:D(�x)2W (�x)>rf(�x) = 0 ; (5.1)g(�x) = 0 ; and (5.2)�x2 � 0 ;where D(�x) is the diagonal matrix of order n�m with i{th diagonal element given by:�D(�x)�ii = 8>><>>: (�x2)i 12 if �W (�x)>rf(�x)�i � 0 ;1 if �W (�x)>rf(�x)�i < 0 :The Newton step associated with (5.1){(5.2) is the solution of�D(�x)2W (�x)>r2xx`(�x; y1(�x)) +E(�x)��x = �D(�x)2W (�x)>rf(�x) ;8



where y1(�x) = �rx1g(�x)�1rx1f(�x) and E(�x) is a diagonal matrix of order n�m with i{th diagonalelement given by: �E(�x)�ii = 8><>: �W (�x)>rf(�x)�i if �W (�x)>rf(�x)�i > 0 ;0 otherwise :See [3] for more details.In this case, the KKT systems are represented by:F (x; y) = 0BBBB@ rf(x) +rg(x)y1 �  0y2 !g(x)X2Y2e 1CCCCAand G(�x)H(�x) =  D(�x)2W (�x)>rf(�x)g(�x) ! :(We have excluded the nonnegativity of x2, �x2, and y2.) The choices for G(�x) and H(�x) areG(�x) =  D(�x)2W (�x)> 0 I0 I 0 ! and H(�x) = 0BB@ rf(�x)g(�x)0 1CCA :The de�ning condition (2.3) is not satis�ed unless we are at a point that veri�es the �rst{orderKKT necessary conditions:G(�x)H(�x)�G(x)F (x; y) =  D(�x)2W (�x)>rf(�x)�D(x)2W (x)>rf(x)� �X2 �D(x)2�Y2eg(�x)� g(x) ! :Also, R(�x) and S(x; y) are given by:R(�x) =  D(�x)2W (�x)>r2xx`(�x; y1(�x)) +E(�x)rg(�x)> ! (see [3]) andS(x; y) =  D(x)2W (x)>r2xx`(x; y1) + Y2rg(x)> ! :Moreover, G(x)@F@y (x; y) =  0 �D(x)2 +X20 0 ! :So, the relating condition is de�ned asU(x; �x; y) = 0BBBBB@ x� �xy1 � y1(�x)�X2 �D(x)2� e� �X2 �D(�x)2� e(Y2 �E(x)) e
1CCCCCA = 0 ;9



assuring the existence of the positive constants 1, 2, and 3 in Theorem 2.1, which in turnguarantees the existence of a positive constant  such thatk�x��xk �  0BBBBB@ x� �xy1 � y1(�x)�X2 �D(x)2� e� �X2 �D(�x)2� e(Y2 �E(x)) e
1CCCCCA :Note that F (x; y) = 0 is equivalent to G(x)H(x) = 0 and U(x; x; y) = 0 providedW (x)>rf(x) � 0.In this example, as in the previous one, even if (x�; y�) satis�es the �rst-order KKT conditions,there is no guarantee that the limit (3.1) is true.A similar analysis for the nonlinear programming problem is also of interest. For instance,we could consider the primal{dual, the a�ne{scaling, and the reduced primal{dual algorithmsdescribed in [9].References[1] T. F. Coleman and Y. Li, On the convergence of interior{reective Newton methods fornonlinear minimization subject to bounds, Math. Programming, 67 (1994), pp. 189{224.[2] , An interior trust region approach for nonlinear minimization subject to bounds, SIAM J.Optim., 6 (1996), pp. 418{445.[3] J. E. Dennis, M. Heinkenschloss, and L. N. Vicente, Trust{region interior{point SQPalgorithms for a class of nonlinear programming problems, SIAM J. Control Optim., 36 (1998),pp. 1750{1794.[4] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization andNonlinear Equations, Prentice{Hall, Englewood Cli�s, New Jersey, 1983. Republished by SIAM,Philadelphia, 1996.[5] J. E. Dennis and L. N. Vicente, On the convergence theory of general trust{region{basedalgorithms for equality{constrained optimization, SIAM J. Optim., 7 (1997), pp. 927{950.[6] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, Chichester, second ed.,1987.[7] J. Goodman, Newton's method for constrained optimization, Math. Programming, 33 (1985),pp. 162{171.[8] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw-Hill, New York,1996.[9] L. N. Vicente, On interior-point Newton algorithms for discretized optimal control problemswith state constraints, Optimization Methods & Software, 8 (1998), pp. 249{275.
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