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and other approahes are reviewed in the paper by Bakr et al. [3℄ and in the masters thesis ofS�ndergaard [15℄. Leary, Bhaskar, and Keane [11℄ introdued spae-mapping tehniques for thetreatment of models that appear as onstraints. New spae-mapping appliations are reported inthe papers olleted in the volume edited by Nielsen [13℄ (see also [9℄).We address �rst in this paper the mapping from the �ne spae to the oarse spae when themodels are vetor-valued funtions, as analyzed in the work by Bakr et al. [4℄. We show that thesensitivities of the spae mapping P , de�ned in (1), an be alulated provided �rst-order derivativesof the �ne model f and �rst-order and seond-order derivatives of the oarse model  are given andsome invertibility is assumed related with the size of the spae-mapping (nonlinear) least-squaresresidual. The sensitivities of the spae mapping P de�ne the linearization P` of this mapping.Thus, we an use  ÆP` to loally minimize the surrogate  ÆP that the spae mapping P providesfor the �ne model f . An alternative surrogate introdued by Bakr et al. [4℄ is w(ÆP )+(1�w)fapp` ,where w 2 [0; 1℄ and fapp` is an approximation to the linearized model of the �ne model f . In asimilar way, we an work with w( ÆP`)+ (1�w)fapp` to minimize w( ÆP )+ (1�w)fapp` . The ideabehind this linear ombination is to introdue more aurate loal information of the �ne model.We show how to develop trust-region methods that are globally onvergent to stationary points ofthese surrogates.We address then a di�erent situation where the �ne and the oarse models are salar funtions,denoted by g and ĝ, respetively. The shape of the surrogate ĝ Æ P , de�ned by the omposition ofthe spae mapping P and the oarse model ĝ, is investigated. Given a point x in the �ne spae,the spae-mapping image P (x) is de�ned in this ontext by minimizing, in the oarse spae, thedistane to x subjet to the mathing of the oarse model to the �ne-model value g(x), see (21) and(22). It is possible to observe that suh de�nition of spae mapping yields a point-to-point map inseveral instanes where spae mapping based only on the mathing of the models is point-to-set.When P is point-to-point, it is proved that the surrogate ĝ Æ P is a regular funtion, i.e., that ithas always �rst-order diretional derivatives. The surrogate ĝ Æ P oinides with the �ne modelexept possibly near minimizers of the oarse model where it may beome at. The transition anreate kinks, the soure of non-di�erentiability. We also disuss trust-region methods to minimizethis type of surrogate models.We have strutured this paper in two main setions, orresponding to the two spae-mappingapproahes mentioned above. At the end of eah setion, we draw some onlusions and disusspossible extensions. Norms and inner produts used in this paper are the `2 ones.2 Spae mapping using vetor-valued models2.1 The spae-mapping de�nitionLet us onsider a physial phenomenon where the variables de�ning it belong to a subset of IRn andthe funtion values that de�ne it belong to IRm. We follow the approah in Bakr et al. [4℄ and de�nespae mapping by onsidering a �ne model of this phenomenon denoted by f with f : S(f) ! IRm,and a oarse model represented by  with  : S() ! IRm, where S(f); S() � IRn. The �ne model fis expensive to evaluate but the oarse model  is relatively heap. It is assumed that m > n (thepratial situation in mind is when m � n). The ase m � n requires a di�erent, more generalapproah, gives rise to nondi�erentiable surrogates, and will be disussed in setion 2.5.The performane of both models is measured by a merit funtion H : IRm ! IR. In severalengineering appliations H is not di�erentiable as it may result from the use of the `1 norm. Wewill assume in this paper that H is quadrati: for instane the squared `2 norm in IRm, or other2



quadrati variants based on the squared `2 distane (as it is the ase in several data �tting andparameter estimation problems).The goal is to minimize Hf def= H Æ fby onsidering the surrogate H def= H Æ and the omposition of H with a mapping relating the models f and .The spae mapping P : S(f) ! S() is based on the solution of a nonlinear least-squaresminimization problem, in the following way:P (x) def= argminx̂2S() 12 k(x̂)� f(x)k2 : (1)(We will assume in this paper that the minimal argument is always unique and therefore we anonsider the notation where argmin returns a point and not a singleton.)Bakr et al. [4℄ onsider also a linear approximation p(x) for P (x) onstruted by Broyden'smethod, looking then at the surrogate H Æ  Æ p that take values in the �ne spae S(f). Thesurrogate they work with is atually given byH ((w)(p(x)) + (1� w)`(x)) (2)where w 2 [0; 1℄ is a weighted parameter and ` is a linear approximation for f : S(f) ! IRm. Theirlinear approximation ` is omputed using one again Broyden's method and the term (1 � w)`provides to the surrogate more loal aurate information about the �ne model.2.2 Spae-mapping sensitivities and adjointsAssuming that P is well de�ned as a point-to-point map and assuming appropriate smoothness forf and , the spae-mapping image P (x) is given by the �rst-order neessary onditions for (1):J(P (x))>((P (x)) � f(x)) = 0 ; (3)where J denotes the Jaobian of . We will assume that S(f) and S() are open domains and that(3) is true for all x 2 S(f).2.2.1 Sensitivities of the spae mappingTo ompute the sensitivities of P , JP : S(f) ! IRn�n, we now di�erentiate (3) with respet to x,yieldingmXi=1[i(P (x))� fi(x)℄r2i(P (x))JP (x) + J(P (x))> �JP (x)>J(P (x))> � Jf (x)>�> = 0 ; (4)where Jf and J denote the Jaobians of f and , respetively. Thus, JP (x) an be omputed fromG(x)JP (x) = J(P (x))>Jf (x) ;where G(x) def= mXi=1[i(P (x)) � fi(x)℄r2i(P (x)) + J(P (x))>J(P (x)) :3



Sine G(x) is symmetri, we also haveJP (x)>G(x) = Jf (x)>J(P (x)) : (5)Had we assumed that f(x) = (P (x)) for all x 2 S(f), whih is ideally the underlying motivation,we would have obtained Jf (x) = J(P (x))JP (x), onsistently with (4,5).The alulation (5) of the sensitivities JP (x) requires the solution of n systems of linear equationswith the matrix G(x). It also requires the evaluation of �rst-order derivatives of the �ne modeland the evaluation of �rst-order and seond-order derivatives of the oarse model. We will see laterthat it is not JP (x) but rather its ation on appropriate vetors that needs to be omputed.We will assume that G(x)�1 exists for all x in S(f). The ase where JP (x) and Jf (x) areapproximated, say by JappP (x) and Jappf (x), respetively, will be disussed later.2.2.2 Gradient of the surrogate H(P )The spae mapping provides a surrogate model H(P ) def= H Æ  Æ P for the �ne-model funtion Hf .The next iteration involves solvingminx2S(f) H(P )(x) = H((P (x))) :The sensitivities of P provide the gradient for the surrogate H(P ):rH(P )(x) = JP (x)>J(P (x))>rH((P (x))) ;where rH((P (x))) is the gradient of H at (P (x)). One an see that the gradient rH(P )(x) anbe also omputed by an adjoint-type alulation (note that G(x) is symmetri):rH(P )(x) = Jf (x)>J(P (x))G(x)�1J(P (x))>rH((P (x))) ;requiring the solution of a single system of linear equations with G(x).2.3 Trust-region methods for minimizing the surrogate H(P )2.3.1 A quadrati model for the surrogate H(P )Given the sensitivities JP (x), one an onsider a loal linear model P`(x+ �) for P (x) near x:P`(x+ s) def= P (x) + JP (x)s : (6)The minimization of the surrogate H(P ) an be arried out by a trust-region approah. Toompute a step s from x, we introdue a trust-region subproblem of the typeminksk��H`(P`)(x+ s) def= (H Æ ` Æ P`) (x+ s) ; (7)where � > 0 is the trust radius. Here `(P (x)+ �) denotes a loal linear model of the oarse modelnear P (x) with exat �rst-order information, i.e., a linear model of the form`(P (x) + ŝ) def= (P (x)) + J(P (x))ŝ : (8)At this point it is important to remark that we are using ` instead of . Sine the oarsemodel  is heap to evaluate, it is reasonable to expet that  ould be used diretly instead of4



being approximated, as happens in [4℄. The algorithmi approahes that we develop next ouldbe arried out in that way, with H`(P`) replaed by H(P`). However, we remark that for globalonvergene purposes, the surrogate H(P`) would be required to yield a ondition of the type (11)and it is not lear that that would hold for every oarse model . We will return to this point later.Sine H`(P`) = H Æ`ÆP` has been de�ned by the omposition of two linear models (6,8) holdingexat �rst-order information with the quadratiH, we obtain thatH`(P`) is itself a quadrati model,of the form H`(P`)(x+ s) = a(x) + hb(x); si+ 12 hs;B(x)si ;where a(x) = H(P )(x) ;b(x) = rH(P )(x) = JP (x)>J(P (x))>rH((P (x))) ;B(x) = JP (x)>J(P (x))>r2H J(P (x))JP (x) ;rH((P (x))) is the gradient of H at (P (x)), and r2H is the Hessian of the quadrati H.2.3.2 Cauhy dereaseThe step s an be required to satisfy a fration of Cauhy derease:H`(P`)(x)�H`(P`)(x+ s) � � �H`(P`)(x)�H`(P`)(x+ sC)� ; (9)where � 2 (0; 1℄. Here sC is the Cauhy step de�ned by sC = ��CrH(P )(x), with �C given bythe solution of the one-dimensional problem:�C = argmin�>0; k��rH(P )(x)k�� H`(P`)(x� �rH(P )(x)) :There are several algorithms that produe steps satisfying the fration of Cauhy derease ondi-tion (9); see [8℄.Sine H`(P`) is quadrati, a result due to Powell [14, theorem 4℄ (see also [8, setion 6.3℄, [12,lemma 4.8℄) impliesH`(P`)(x)�H`(P`)(x+ sC) � 12krH(P )(x)kmin(�; krH(P )(x)kkB(x)k ) : (10)where B(x) is the Hessian of the quadrati model H`(P`) of the surrogate H(P ) as de�ned before.The Hessian B(x), or a symmetri approximation thereof, will be assumed uniformly boundedaross all iterations of the trust-region methods. The lower bound (10) for the derease obtainedin H`(P`) by sC , together with the fration of Cauhy derease ondition (9) implyH`(P`)(x)�H`(P`)(x+ s) � �2 krH(P )(x)kmin(�; krH(P )(x)kkB(x)k ) : (11)This estimate is key to prove global onvergene of trust-region methods to stationary points ofH(P ).One an replae ` by  and still retain global onvergene provided (11), or alternatively (9)and (10), is valid for  instead of `. More elaborated model managing tehniques (see Alexandrovet al. [1℄) ould be applied to enfore (11) with ` replaed by .5



2.3.3 Minimization of the surrogate H(P ) using surrogate funtion valuesIf the goal is only to minimize the surrogate H(P ), then we have all the ingredients we need toidentify a lass of trust-region methods that are able to onverge to stationary points of H(P ).In fat, all it takes is to require the step s to satisfy the fration of Cauhy derease ondition (9)and to aept the step s and possibly inrease � ifared(x; s)pred(x; s) def= H(P )(x)�H(P )(x+ s)H`(P`)(x)�H`(P`)(x+ s) � �1 (12)and, otherwise, to rejet the step s (reduing � to 1� and reomputing a new step s yielding (9)).The onstants 1 and �1 must belong to (0; 1) and be �xed aross all iterations. We desribe nextthis family of trust-region methods.Algorithm 2.1 Trust-region methods for the minimization of H(P ) using surrogate funtion valuesLet x0 2 IRn, �0 > 0, and 1; �1 2 (0; 1) be given.For k = 0; 1; 2; : : :� Compute a step sk from the trust-region subproblem (7) that satis�es (9), for x = xk.� Let �k = ared(xk; sk)pred(xk; sk) = H(P )(xk)�H(P )(xk + sk)H`(P`)(xk)�H`(P`)(xk + sk) :� If �k � �1 then xk+1 = xk + sk and �k+1 is hosen so that �k+1 � �k.� If �k < �1 then xk+1 = xk and �k+1 = 1�k.endThe rules to update the trust radius �k are in pratie more sophistiated. What we have justdesribed enables the method to ahieve global onvergene and it is veri�ed by most implementa-tions.Any suh trust-region method generates a sequene of iterates fxkg that veri�es an asymptotiresult of the following form [8, setion 6.4℄:Theorem 2.1 Let H(P ) be a ontinuously di�erentiable funtion with uniformly ontinuous gra-dient in S(f). Consider a sequene fxkg generated by a trust-region method of the form of algo-rithm 2.1. Let also H(P ) be bounded below onL(x0) = fx 2 S(f) : H(P )(x) � H(P )(x0)g :Finally, let fB(xk)g be a bounded sequene. Thenlimk!+1 krH(P )(xk)k = 0: (13)The assumptions of theorem 2.1 are posed in terms of the surrogate H(P ). Those assumptionsare satis�ed provided:Conditions 2.1� S(f) and S() are open domains; 6



� the Jaobian of f is uniformly ontinuous in S(f);� the Hessians of i, i = 1; : : : ;m, are uniformly ontinuous in S();� P : S(f) ! S() is a well de�ned point-to-point map, H(P ) = H Æ  Æ P is bounded below onS(f) (whih is trivially satis�ed when H is the squared `2 norm), (3) is true for all x 2 S(f),and G(�)�1 exists in S(f).The strongest assumptions onern the well-de�niteness and the smoothness of the mapping P .Assuming that P : S(f) ! S() is a well de�ned point-to-point map and that G(�)�1 exists in S(f)is reasonable when m� n. It is diÆult to establish senarios under whih these assumptions areveri�ed, as the situation is highly problem dependent. It is reasonable to say that the hanes ofsatisfying suh assumptions inrease as m beomes bigger and bigger than n, as the ontributionof the semi-positive de�nite term J> J in G beomes more and more relevant.2.3.4 Minimization of the surrogate H(P ) using �ne-model funtion valuesSine we need to evaluate the �ne model f to ompute H(P )(x) and H(P )(x+ s), we ould thinkof replaing the atual redution H(P )(x)�H(P )(x+ s)given in (12), by Hf (x)�Hf (x+ s) :Sine we are inexatly approximating H(P ) by Hf in this algorithmi ontext, we need toimpose the following onditions: jHf (x)�H(P )(x)j � �0 pred(x; s);jHf (x+ s)�H(P )(x+ s)j � �0 pred(x; s); (14)where 0 < �0 < 12�1.It is proved in [8, setion 10.6℄ that the limit result (13) is retained if onditions (14) aresatis�ed. However, the satisfation of these onditions might be problemati and expensive. Theyan be expensive beause they may fore the reomputation of Hf or H(P ) at x or x + s moreaurately (see [8, setion 10.6℄). But, more importantly, they an be problemati beause there isno guarantee that the surrogate H(P ) agrees with the �ne model Hf .2.4 Trust-region methods for minimizing a surrogate based on  ÆP and on the�ne model fBased on the work by Bakr et al. [4℄, in partiular in what has been developed for their surrogate(2), we onsider now the surrogateHw def= Hf(w) Æ P + (1� w)fg ;with w 2 [0; 1℄, and the orresponding quadrati modelqw def= Hf(w)` Æ P` + (1� w)f`g ;where f`(x+ �) is a loal linear model of the �ne model f . (The brakets are used to easy notation.Hffg represents H Æ f .) 7



We will assume now that both JP (x) and Jf (x) are omputed inexatly, and onsider a loallinear model of the �ne model f with inexat �rst-order information, of the formfapp` (x+ s) = f(x) + Jappf (x)s ;using an approximation Jappf (x) for the Jaobian Jf (x) of the �ne model, and a loal linear modelof the spae mapping with inexat �rst-order information, of the formP app` (x+ s) = P (x) + JappP (x)s ;using an approximation JappP (x) for the sensitivities JP (x).Thus, we get qappw (x+ s) = aw(x) + hbw(x); si+ 12hs;Bw(x)si ;wherebw(x) = rsH �(w)` Æ P app` + (1�w)fapp` 	 (x+ s)= �(w)JappP (x)>J(P (x))> + (1� w)Jappf (x)>�rH((w)(P (x)) + (1� w)f(x)) ;and rH((w)(P (x))+ (1�w)f(x)) is the gradient of H at (w)(P (x))+ (1�w)f(x). The HessianBw(x), or a symmetri approximation thereof, is assumed to be uniformly bounded aross alliterations of the trust-region methods.We onsider now a trust-region subproblem of the typeminksk�� qappw (x+ s) ; (15)with � > 0, and require the step s to satisfy the following fration of Cauhy derease ondition:qappw (x)� qappw (x+ s) � �w �qappw (x)� qappw (x+ sCw)� ; (16)where �w 2 (0; 1℄. Here sCw is the Cauhy step de�ned by sCw = ��Cwbw(x), with �Cw given by thesolution of the one-dimensional problem:�Cw = argmin�>0; k��bw(x)k�� qappw (x� �bw(x)) :The step s is aepted and � is possibly inreased ifared(x; s;w)pred(x; s;w) def= Hw(x)�Hw(x+ s)qappw (x)� qappw (x+ s) � �1 :Otherwise, the step s is rejeted and � is redued to 1�. The onstants 1 and �1 must belongto (0; 1) and be �xed aross all iterations.The gradient of Hw at x is given byrHw(x) = �(w)JP (x)>J(P (x))> + (1�w)Jf (x)>�rH((w)(P (x)) + (1� w)f(x)) :Sine the term bw(x) used in qappw (x + s) is not exatly the gradient rHw(x), we need to imposethe following ondition [7℄,[8, setion 8.4℄ on this �rst-order approximation:krHw(x)� bw(x)kkbw(x)k � �w(1� �1)2 : (17)8



One an see that the term bw(x) is di�erent from rHw(x) beause of the approximations Jappf (x)for Jf (x) and JappP (x) for JP (x). The approximation Jappf (x) for Jf (x) is used expliitly in theformula for bw(x) and in the omputation of JappP (x). The sensitivities JP (x) an be inexat justbeause of the inexatness of Jappf (x). But even when exat �rst-order derivatives are available forthe �ne model f , the sensitivities omputation an be inexat (e.g., it might result of the appliationof iterative linear solvers or of Broyden's method). Thus, ondition (17) is ontrolling both thequality of the approximation of the �rst-order derivatives of the �ne model f and the quality ofthe approximation of the sensitivities of P . We desribe next this family of trust-region methods,this time for the surrogate Hw.Algorithm 2.2 Trust-region methods for the minimization of HwLet x0 2 IRn, �0 > 0, and 1; �1 2 (0; 1) be given.For k = 0; 1; 2; : : :� Compute bw(xk) suh that krHw(xk)� bw(xk)kkbw(xk)k � �w(1� �1)2 :� Compute a step sk from the trust-region subproblem (15) that satis�es (16), for x = xk.� Let �k = ared(xk; sk)pred(xk; sk) = Hw(xk)�Hw(xk + sk)qappw (xk)� qappw (xk + sk) :� If �k � �1 then xk+1 = xk + sk and �k+1 is hosen so that �k+1 � �k.� If �k < �1 then xk+1 = xk and �k+1 = 1�k.endThe omment about the trust radius �k made after algorithm 2.1 also applies here.The global onvergene result [7℄,[8, setion 8.4℄ for any trust-region method in this family issummarized in the next theorem.Theorem 2.2 Let Hw be a ontinuously di�erentiable funtion with uniformly ontinuous gradientin S(f). Consider a sequene fxkg generated by a trust-region method of the form of algorithm 2.2.Let also Hw be bounded below onLw(x0) = fx 2 S(f) : Hw(x) � Hw(x0)g :Finally, let fBw(xk)g be a bounded sequene. Thenlimk!+1 krHw(xk)k = 0 :The assumptions of theorem 2.2 are posed in terms of the surrogate Hw. Those assumptionsare satis�ed provided onditions 2.1 hold.By tuning the parameter w iteratively, replaing w by wk in algorithm 2.2, and by foring wkto onverge to zero, we get an asymptoti result for the �ne model:Corollary 2.1 Under the assumptions of the previous theorem, if limk!+1wk = 0 thenlimk!+1 krHf (xk)k = 0 :9



2.5 Disussion and extensionsResults desribing global onvergene to points satisfying seond-order neessary onditions ouldalso be proved for modi�ed versions of algorithms 2.1 and 2.2, but suh modi�ations are lessrealisti from a pratial point of view sine they would require, among other things, one moreorder of di�erentiability for f and . Several other algorithmi enhanements ould be onsidered.One ould, for instane, use line-searh tehniques instead of the trust-region approah, developingalgorithms also globally onvergent. Quasi-Newton methods, suh as the BFGS or SR1, or theirlimited memory versions, ould be applied to improve the numerial behavior related with loalonvergene, without requiring more di�erentiability.When m � n, the de�nition of the spae mapping given by (1) gives easily rise to a point-to-setmap, as it is expeted that the system (x̂) = f(x), for �xed x, has nonunique solutions in S(). Inthis ase, one ould instead de�ne P (x) by looking at the problemminx̂2S() 12kx̂� xk2s.t. (x̂) = f(x) : (18)If S(x) def= fx̂ 2 S() : ̂(x̂) = f(x)g 6= ;, one ould de�ne P (x) as the (uniquely assumed) solutionof (18). Otherwise, P (x) would be the (uniquely assumed) least-squares solution of the onstraintsin (18), already de�ned in (1). Suh de�nition does not lead to a smooth mapping, even when themodels f and  are smooth. In the next setion, we will disuss spae mapping using salar-valuedmodels, where we will onsider a spae mapping given by a problem of the form (18) with only oneonstraint. It will beome lear from the ontext of the next setion what type of nondi�erentiabilityarises when spae mapping is based on (18).3 Spae mapping using salar-valued modelsLet us onsider a oarse model ĝ : X̂ � IRn ! IR of a �ne model g : X � IRn ! IR. A parallel tothe previous notation an be drawn by onsidering ĝ = H = H Æ , S() = X̂, g = Hf = H Æ f ,and S(f) = X. The goal is to minimize the �ne model g(x) in X.3.1 The spae-mapping de�nitionLet us assume that X and X̂ are open sets of IRn. IfS(x) def= fx̂ 2 X̂ : ĝ(x̂) = g(x)g 6= ; (19)then, assuming that the problem minx̂2X̂ 12kx̂� xk2s.t. ĝ(x̂) = g(x) (20)has an unique solution, we de�ne P (x) asP (x) def= argminx̂2X̂ 12kx̂� xk2 s.t. ĝ(x̂) = g(x) : (21)If the set S(x) given in (19) is empty then P (x) is given by the solution, assumed unique, of theunonstrained problem that onsists of the minimization of the least-squares norm of the onstraintĝ(x̂) = g(x): P (x) def= argminx̂2X̂ 12 (ĝ(x̂)� g(x))2 : (22)10



ĝ(x̂)gP (x)g(x) ĝ(x̂)gP (x)g(x)Figure 1: The surrogate gP = ĝ Æ P is the same in both examples.3.2 The surrogate gPThe spae mapping provides a surrogate model gP def= ĝ Æ P for the �ne model. The next stepinvolves solving minx2X gP (x) = ĝ(P (x)) :We analyze now the di�erentiability properties of the surrogate gP . We show �rst that gP is aregular funtion, i.e., that it has diretional (or Gâteaux) derivatives along any diretion and at anypoint in X. The proof of the next theorem is itself an introdution to the shape of the surrogategP . For a better understanding of the proof let us �rst introdue a simple example. Let X = X̂ = IR,g(x) = x2, and ĝ(x̂) = (x̂ � 1)2 + 1. In this example, P (x) = 1 and gP (x) = ĝ(P (x)) = 1 forx 2 [�1; 1℄. Outside [�1; 1℄, the �ne model g and the surrogate gP = ĝ Æ P oinide. This exampleis depited in �gure 1 (left).Theorem 3.1 Let g and ĝ be ontinuously di�erentiable funtions in X and X̂, respetively. Letus assume also that P is a well de�ned point-to-point map from X to X̂.Then gP is regular.Proof: We will show that gP has diretional derivatives for every x in X. The proof is dividedin three parts: in the �rst part we deal with the ase where gP oinides with g; in the seond wewill look at the ase where gP is at; the last part analyzes the kinks.Part 1.In a neighborhood N1 of X where for all x 2 N1 one has S(x) 6= ; and rĝ(P (x)) 6= 0, P (x) mustsatisfy the �rst-order neessary onditions for (20):P (x)� x+ �(x)rĝ(P (x)) = 0 ; (23)ĝ(P (x)) = g(x) ; (24)where �(x) is the multiplier orresponding to the onstraint ĝ(x̂) = g(x). The fat that rĝ(P (x)) 6=0 ats like the onstraint quali�ation needed for the neessary onditions. Thus, inN1, gP oinideswith g, and gP is di�erentiable with a gradient given byrgP (y) = rg(y) :11



Part 2.If for a given x we have that S(x) = ;, then P (x) must verify the �rst-order neessary onditionsfor (22): [ĝ(P (x))� g(x)℄rĝ(P (x)) = 0 :Sine ĝ(P (x)) 6= g(x) we obtain rĝ(P (x)) = 0 ;i.e., P (x) is a stationary point for the oarse model ĝ. Moreover, we an easily prove by ontraditionthat P (x) is either a loal minimizer of ĝ (when ĝ(P (x)) > g(x)) or a loal maximizer of ĝ (whenĝ(P (x)) < g(x)). A ontinuity argument shows that there exists a neighborhood N2 of x whereS(y) = ;, P (y) = P (x), and rĝ(P (y)) = 0 for all y 2 N2. Thus, P and gP are onstant in N2. Asa onsequene, gP is di�erentiable in N2, and its gradient is given byrgP (y) = 0 :Part 3.We are left with situations haraterized by the existene of points z 2 X where one hasrĝ(P (z)) = 0 ; (25)ĝ(P (z)) = g(z) : (26)In this situation one annot appeal to (23)-(24) due to the apparent absene of a onstraint quali-�ation. Two ases an our here and we analyze them separately.The �rst ase is when S(�) is still nonempty in a neighborhood of z. In this ase we fall in theN1-neighborhood situation desribed above, where g and gP oinide, with the partiularity thatrg(z) = 0, i.e., z is a stationary point for the �ne model g.The seond ase is when there is no neighborhood of z where the set S(�) is nonempty. Onean also show here by ontradition that P (z) is either a loal minimizer or a loal maximizer ofĝ. Furthermore, for any diretion d eitherg0P (z; d) = hrg(z); di(when hrg(z); di � 0 and P (z) is a loal minimizer of ĝ or when hrg(z); di < 0 and P (z) is a loalmaximizer of ĝ), or g0P (z; d) = 0(when hrg(z); di < 0 and P (z) is a loal minimizer of ĝ or when hrg(z); di � 0 and P (z) is a loalmaximizer of ĝ). We onlude that the diretional derivative g0P (z; d) exists for all diretions d. Weremark that when P (z) is a loal minimizer of ĝ, we have0 2 �gP (z) def= �r 2 IRn : hr; di � g0P (z; d) for all d 2 IRn	 ;i.e., z is a stationary point for the surrogate funtion gP . It an be proved here that z is a loalminimizer of gP , although not unique, sine gP is at along diretions d for whih hrg(z); di < 0.Æ In the example where X = X̂ = IR, g(x) = x2, and ĝ(x̂) = (x̂ � 1)2 + 1, there are two kinks,�1 and 1. We have that P (�1) = 1 and the gradient of ĝ at P (�1) is zero: there is no Lagrange12



multiplier �(�1) that solves (23). At the other kink, we observe that P (1) = 1, but the gradientof ĝ at P (1) is also zero. Despite the lak of the linear independene onstraint quali�ation, anyreal multiplier �(1) solves ondition (23).The proof provides signi�ant insight about the surrogate gP . There is however one point thathas not been analyzed expliitely in the proof and that is relevant for the numerial minimizationof gP . Consider a sequene of points in a N1-neighborhood that is onverging to a kink pointz 2 l(N1), where z satis�es (25){(26). We have thatlimk!+1 krĝ(P (yk))k = 0 :In suh a situation, two ases an happen. The �rst ase is whenlimk!+1 kP (yk)� ykk = 0 ;and in this ase the behavior of �(yk) is not relevant, providedlimk!+1�(yk)rĝ(P (yk)) = 0 :(In the example analyzed in this setion this ase orresponds to z = 1.) The seond ase orre-sponds to limk!+1 kP (yk)� ykk 6= 0 ; (27)where we must have limk!+1�(yk) = +1 :(In the example analyzed in this setion this ase orresponds to z = �1.)Thus, the sizes of the multiplier �(yk) and of the distane kP (yk) � ykk are an indiation ofthe onvergene to a kink point z, where 0 2 �gP (z) and z is a loal minimizer of gP or where0 2 ��gP (z) and z is a loal maximizer of gP .In the example that we have been onsidering, if we hange the oarse model to ĝ(x) = (x̂�2)2+1then we an see that P (x) = 2 for x 2 [�1; 1℄ but gP = ĝ Æ P does not hange. The kinks �1 and1 are now both of the seond ase (27). There is now a point x = 5=4 in a N1-neighborhood forwhih P (5=4) = 5=4, rĝ(P (5=4)) 6= 0, and �(5=4) = 0. This example is depited in �gure 1 (right).We illustrate also, in �gure 2, a situation where the �ne model has no minimizer but where thesurrogate gP an be suessfully minimized.Another relevant aspet is that ondition (23) provides a loal linear model for P around x:P app` (y) = y � �(x)rĝ(P (x)) ;that might be useful to build a new (loal) surrogate ĝ Æ P app` .3.3 Disussion and extensionsThe results of setion 3 an be generalized in various ways. The approah is not restrited to IRn andould be easily developed in in�nite dimensional spaes (Banah reexive or Hilbert), by requiringFr�ehet di�erentiability of the models g and ĝ and by assuming the same type of well-de�nitenessfor the spae mapping. The norm used in (21) should be smooth to allow di�erentiability. Theapproah desribed here for IRn also works with ellipsoidal norms of the form kxk = kQ1=2xk, whereQ is a symmetri positive de�nite matrix. 13



ĝ(x̂) gP (x)
g(x)Figure 2: The surrogate gP = ĝ Æ P is bounded below despite the fat that the �ne model g isunbounded.Assuming that P : X ! X̂ is point-to-point is ertainly strong, problem dependent, and onlyguaranteed under speial onvexity assumptions. But suh assumption allowed us to study themain properties of gP = ĝ Æ P (see the last paragraph in this setion) whose avor is also presentwhen P : X ! X̂ is point-to-set.The regularity of gP allows the appliation of the approah and global onvergene results ofDennis, Li, and Tapia [10℄. This paper onsiders a trust-region step that is an optimal solution ofthe trust-region subproblem. Conn, Gould, and Toint [8, hapter 11℄ generalized their approahfor the ase where the trust-region steps satisfy only a fration of Cauhy derease ondition.The analysis of setion 3 for salar-valued models has shown that the surrogate gP = ĝ ÆP maybe at when the image of P is lose to a minimizer of ĝ. Thus, spae-mapping tehniques solelybased on the minimization of gP should be applied with aution and abandoned when atness isenountered. The same omment applies to spae-mapping tehniques for vetor-valued modelswhen m � n, as disussed in setion 2.5.AknowledgmentsThe author would like to thank John E. Dennis (Rie University, Houston, USA) and Kaj Madsenand Jaob S�ndergaard (Tehnial University of Denmark) for their omments and suggestions onan earlier draft of this paper.Referenes[1℄ N. M. Alexandrov, J. E. Dennis, R. M. Lewis, and V. Torzon, A trust region frame-work for managing the use of approximation models in optimization, Strutural Optimization,15 (1998), pp. 16{23. 14
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