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Abstract. Solving optimal control problems for nonlinear partial differential equations repre-
sents a significant numerical challenge due to the tremendous size and possible model difficulties
(e.g., nonlinearities) of the discretized problems. In this paper, a novel space-mapping technique
for solving the aforementioned problem class is introduced, analyzed, and tested. The advantage
of the space-mapping approach compared to classical multigrid techniques lies in the flexibility of
not only using grid coarsening as a model reduction but also employing (perhaps less nonlinear)
surrogates. The space mapping is based on a regularization approach which, in contrast to other
space-mapping techniques, results in a smooth mapping and, thus, avoids certain irregular situations
at kinks. A new Broyden’s update formula for the sensitivities of the space map is also introduced.
This quasi-Newton update is motivated by the usual secant condition combined with a secant con-
dition resulting from differentiating the space-mapping surrogate. The overall algorithm employs a
trust-region framework for global convergence. Issues involved in the computations are highlighted,
and a report on a few illustrative numerical tests is given.
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1. Introduction. Let us assume that we are interested in optimizing some ob-
jective related to physical phenomena simulated by a system of differential equations.
We might be trying to determine unknown system parameters by matching observable
data, or we might want to control properties of the system so that its state matches
a given desired profile. Let us further assume that our goal is to minimize a smooth
function g : X ⊂ Rn → R, evaluated by accurately solving the discretized system
of differential equations that models the underlying physical phenomena. Given the
computational complexity involved in simulating the system, the model g might be
expensive to evaluate, and some alternative smooth function ĝ : X̂ ⊂ Rn̂ → R is
assumed available at a cheaper cost, by solving the system less accurately or by us-
ing some form of surrogate. We will call g the fine model and ĝ the coarse model.
Similarly, X and Rn will be called the fine domain and fine space, respectively, and
X̂ and Rn̂ the coarse domain and coarse space, respectively. We will assume that X
and X̂ are open domains.

The space-mapping technique provides an attractive framework to improve the
use of the coarse model ĝ as a surrogate for the optimization of the fine model g. The
space-mapping surrogate is of the form ĝ ◦ P where P , the so-called space mapping,
attempts to match, in the coarse space, the fine model values and/or their responses.

The space-mapping technique was introduced first by Bandler et al. [5] in 1994.
The idea of space mapping has been developed along different directions and general-
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ized to a number of contexts. To overcome some of its inherent difficulties, techniques
from nonlinear optimization have been incorporated. One of the problems lies in the
information necessary to compute the sensitivities (or the Jacobian) of the space map-
ping which involves, among other things, (possibly expensive) gradient information
of the fine model. Bandler et al. [6] suggested the use of Broyden’s method to con-
struct linear approximations for the space mapping. This space-mapping Broyden’s
method, also named aggressive space-mapping method, has been then enhanced by
Bakr et al. [2] with the application of trust regions for globalization. These and other
approaches are reviewed in the papers Bakr et al. [3, 4]. See also [13, 26]. The reader
is further referred to the special issue on surrogate modeling and space mapping that
has been recently edited by Bandler and Madsen [7].

In this paper we are concerned with the application of the space-mapping tech-
nique to control problems for partial differential equations (PDEs). The problem
under consideration is the following:

minimize J (y, u) over (y, u) ∈ W × U, (1.1a)
subject to A(y, u)y + C(y, u) = 0 in Ω + boundary conditions, (1.1b)

where J : W × U → R is a sufficiently smooth objective functional, A(y, u) denotes
a second order partial differential operator, C(y, u) is a possibly nonlinear mapping,
and Ω is a bounded domain in Rn. Above W , U are appropriate Hilbert spaces and
y is referred to as the state variable. The variable u is the control variable. We
assume that for every u ∈ U the state equation in (1.1b) admits a (unique) solution
y = y(u) ∈ W . Using y(u) we can consider the reduced problem

minimize Jred(u) = J (y(u), u) over u ∈ U (1.2)

instead of (1.1).
One instance of the model problem (1.1) is given by

minimize 1
2‖y − yd‖2L2(Ω) + δ

2‖u‖2L2(Ω) over (y, u) ∈ H1
0 (Ω)× L2(Ω),

subject to −∆y + f(y) = u in Ω = (0, 1)2,

where yd ∈ L2(Ω), δ > 0 is fixed, and f denotes a sufficiently smooth function; see,
e.g., [18, 19]. Obviously, we have A(y, u) = −∆ and C(y, u) = f(y)−u. Here, H1

0 (Ω)
and L2(Ω) denote Sobolev and Lebesgue spaces; see, e.g., [12].

Output least squares formulations of parameter identification problems are further
instances of the general model problem (1.1). In this case, one aims at determining a
quantity u, which is not directly accessible to measurements, by fitting the measured
data yd. Frequently, the relation between u and y can be described by a semilinear
elliptic PDE:

−div(e(u)∇y) + C(y, u) = 0 in Ω, y ∈ H1
0 (Ω).

Hence, A(y, u)y = − div(e(u)∇y), where e is a possibly nonlinear mapping.
In [21, 22, 24] a multigrid approach (algorithm MG/OPT) to discretizations of

minimization problems of type (1.1) is considered. In a two grid approach, the algo-
rithm combines a prescribed number of iterations of a minimization algorithm on the
fine grid with high accuracy solves of a slightly modified problem on the coarse grid.
Prolongation and restriction operators achieve the transport of coarse grid solutions
to the fine grid and vice versa. Our space-mapping approach, however, allows more
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flexibility in the sense that we may not only consider a coarse grid discretization of
the underlying optimization problem, but we can also use a surrogate model which
is even simpler to solve than the discretized problem on the coarse grid. This is of
particular importance in cases where the coarse grid approximation is still difficult
to handle due to, e.g., problematic nonlinearities and/or model complexities. Also,
the surrogate idea applies without grid coarsening. In fact, we may want to replace a
difficult problem by an approximating simpler one on the same (fine) grid. In addi-
tion, the trust-region based approach that we use is globally convergent in the general
nonconvex case while MG/OPT, as outlined in [21, 22, 24], requires convexification
to enforce descent. However, let us point out that in this paper we are primarily
interested in the above mentioned flexibility of space mapping of combining differ-
ent models on different levels to obtain good approximations of fine model solutions
quickly (when compared to, e.g., multigrid techniques), rather than in designing a
new fast fine model solver. As it appears (see the discussion at the end of example 2
in section 8), for the problem class considered here, the space-mapping technique ex-
hibits the potential to be at the core of a fast and flexible fine model solver. This,
however, requires a different algorithmic framework than the one introduced in the
present paper and will be reported elsewhere.

The outline of the paper is as follows. In section 2 we introduce a new smooth
space-mapping technique. The key idea is to utilize regularization techniques of
Tikhonov-type. This approach is a remedy to problematic nondifferentiabilities and
nonuniquenesses in space mapping. The motivation of our approach and its practical
appearance differ significantly from the norm-penalization technique in [6]. Section 3
gives a comparison between a nonsmooth space mapping previously suggested by
Vicente [27] and the smoothed one introduced in this paper. In section 4 the space-
mapping algorithm of Bandler et al. [2, 6] is outlined in our space-mapping context.
It is based on a Broyden-type approximation of the sensitivities of the space mapping
and on a trust-region type globalization. The focus of section 5 is on a new Broyden’s
update reflecting the approximation requirements induced by the sensitivities of the
space mapping and by its use in the gradient of the space-mapping surrogate. The
application of our new space-mapping approach to optimal control problems governed
by partial differential equations is the core of section 6. In section 7 we consider com-
putational aspects with respect to coarse and fine model derivatives. A report on
numerical test runs including a comparison with nonlinear multigrid methods is given
in section 8. We end this paper with some conclusions and prospects of future work.

Notation: Throughout we use Df for the Jacobian matrix of a function f : Rn →
Rm. As usual, ∇ denotes the gradient operator. In the case where m = 1, we have
Df (x)> = ∇f(x). The partial derivatives of f w.r.t. xi are denoted by fxi(x) or
∇xif(x), where the latter notation is typically used if f : Rn → R.

2. A new smooth space mapping. We introduce in this paper a new definition
of space mapping P : X → X̂ as follows:

P (x) = argmin
{

α

2
‖r̂(x̂)− r(x)‖2M +

1
2
[ĝ(x̂)− g(x)]2 | x̂ ∈ X̂

}
, (2.1)

where α > 0 is a smoothing parameter whose role will become clear later. We assume
that the argmin operator returns a single minimizer, in other words, that P is a
point-to-point mapping. Here r and r̂ are some operators that map X and X̂ into
some common space Rp where the values of fine and coarse variables can be compared
against each other. An illustration of r and r̂ is given in section 6. In the definition
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of the space mapping, M is a p × p symmetric positive definite matrix and ‖ · ‖M is
the ellipsoidal norm defined by ‖z‖M = ‖M 1

2 z‖2.
The space mapping P defines a surrogate gP = ĝ ◦ P for the fine model g. One

of the aims of space mapping is to minimize the surrogate gP instead of minimizing
g, i.e., an approximate solution to

minimize g(x) over x ∈ X

is obtained by solving

minimize gP (x) = (ĝ ◦ P )(x) = ĝ(P (x)) over x ∈ X.

The effect of the smoothing parameter α becomes clearer by taking a close look
at the first order necessary conditions of problem (2.1):

αD>
r̂ (x̂)M(r̂(x̂)− r(x)) + [ĝ(x̂)− g(x)]∇ĝ(x̂) = 0, (2.2)

with x̂ = P (x). Now, we differentiate (2.2) with respect to x:

αDr̂(x̂)>M (Dr̂(x̂)DP (x)−Dr(x)) + αD2
r̂(x̂;M(r̂(x̂)− r(x)))DP (x)+

∇ĝ(x̂)
(∇ĝ(x̂)>DP (x)−∇g(x)>

)
+ [ĝ(x̂)− g(x)]∇2ĝ(x̂)DP (x) = 0,

where D2
r̂(x̂; z) is the derivative of Dr̂(x̂)z with respect to x̂. So, one obtains

G(x)DP (x) = αDr̂(x̂)>MDr(x) +∇ĝ(x̂)∇g(x)>,

where

G(x) = α
(
Dr̂(x̂)>MDr̂(x̂) + D2

r̂(x̂; M(r̂(x̂)− r(x)))
)
+

[ĝ(x̂)− g(x)]∇2ĝ(x̂) +∇ĝ(x̂)∇ĝ(x̂)>,

with x̂ = P (x). The following theorem summarizes the basic smoothness properties
of the surrogate gP = ĝ ◦ P .

Theorem 2.1. Let g, ĝ, r, and r̂ be continuously differentiable functions in their
domains. Assume that P is a well-defined point-to-point mapping from X to X̂.

1. Then gP is regular in X (i.e., gP has one-sided directional derivatives in X).
2. In addition, let ĝ and r̂ be twice continuously differentiable in X. If α is such

that G(x) is uniformly nonsingular in X, then gP is continuously differen-
tiable in X.

Proof. The fact stated in (1) comes directly from the properties of marginal or
value functions (see, e.g., [25]). The proof of (2) lies in the informal derivation given
before the theorem.

We point out that in practical applications, due to the existence of several local
minima, (2.1) may not yield a point-to-point mapping P . In this case, one can employ
additional selection criteria such as picking the local minimizer of (2.1) with least norm
or closest to some reference value to get a single valued P .

3. Comparing smooth and nonsmooth approaches. Let us further study
the smoothing effect of α > 0 by comparing our new approach to the approach
introduced by Vicente [27], where the space mapping P̄ is defined as

P̄ (x) = argmin
{

1
2
[ĝ(ˆ̄x)− g(x)]2 | ˆ̄x ∈ X̂

}
(3.1)
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if S(x) = {ˆ̄x ∈ X̂ | ĝ(ˆ̄x) = g(x)} is empty, and as

P̄ (x) = argmin
{

1
2
‖ˆ̄x− x‖22 s.t. ĝ(ˆ̄x) = g(x) | ˆ̄x ∈ X̂

}
(3.2)

if S(x) is nonempty. In this setting it is considered that n = n̂ = p and that r and r̂
are the identity operators. It is proved in [27] that if g and ĝ are continuously differ-
entiable functions and if P̄ is point-to-point then gP̄ = ĝ ◦ P̄ is a regular function, i.e.,
a function that has one-sided directional derivatives. The first order necessary condi-
tions for (3.2) imply, under the constraint qualification ∇ĝ(P̄ (x)) 6= 0, the existence
of a Lagrange multiplier λ(x) such that

ˆ̄x− x + λ(x)∇ĝ(ˆ̄x) = 0, (3.3)

with ˆ̄x = P̄ (x). Nondifferentiability can only occur on the boundary of the set
{x | S(x) 6= ∅}. When approaching the boundary of {x | S(x) 6= ∅} from its in-
terior, a kink occurs when ∇ĝ(P̄ (x)) is approaching zero and P̄ (x) is not becoming
close to x; in these situations |λ(x)| tends to +∞.

The analog of (2.1) in the setting considered in this section would be

P (x) = argmin
{

α

2
‖x̂− x‖22 +

1
2
[ĝ(x̂)− g(x)]2 | x̂ ∈ X̂

}
. (3.4)

A variation of this definition has been independently analyzed in [26]. In this case
G(x) would reduce to

G(x) = αI + [ĝ(x̂)− g(x)]∇2ĝ(x̂) +∇ĝ(x̂)∇ĝ(x̂)>,

with x̂ = P (x). The smoothing role of α becomes more evident in this context.
Moreover, condition (2.2) in the simpler case (3.4) reduces to

α(x̂− x) + [ĝ(x̂)− g(x)]∇ĝ(x̂) = 0, (3.5)

with x̂ = P (x).
By comparing (3.3) and (3.5) and assuming that x̂ = P (x) and ∇ĝ(P (x)) are

relatively close to ˆ̄x = P̄ (x) and ∇ĝ(P̄ (x)), respectively, we can gain some insight
into the appropriate size for α:

αλ(x) ≈ ĝ(x̂)− g(x).

In figure 3.1 a simple model example is displayed. The fine and coarse models are
g(x) = x2 and ĝ(x̂) = (x̂ − 1)2 + 1, respectively. The upper left plot shows the fine
and coarse models together with the surrogate ĝ ◦ P̄ , where P̄ is given by (3.1)-(3.2).
In the upper right plot the new smooth surrogate is displayed in dashed lines. The
third plot focuses on the behavior near the critical kink at x = 1. From the above
relation between λ(x) and ĝ(x̂) − g(x) and the structure of (3.4) we infer that the
smaller α becomes the closer the smooth and nonsmooth surrogates are

4. Aggressive space-mapping method. As we have shown in section 2, the
computation of the sensitivities DP (x) requires first and second order derivative in-
formation of the coarse model and, more importantly, first order derivatives of the
fine model. Requiring the gradient of the fine model can pose problems in many
practical situations where the evaluation of the fine model is itself very expensive. To
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Fig. 3.1. Comparison between the nonsmooth surrogate [27] and the new smooth surrogate

overcome this difficulty Bandler et al. [6] introduced a Broyden’s approach to space
mapping, later globalized by Bakr et al. [2] with the help of the trust-region technique.
This aggressive space-mapping method using trust regions is described next for the
space-mapping definition (2.1).

The derivative DP (x) appears both in the formula for the gradient of gP given
by

∇gP (x) = DP (x)>∇ĝ(x̂) with x̂ = P (x), (4.1)

and in the local linearization of P at x, along the increment ∆x, of the form

P (x + ∆x) ≈ P (x) + DP (x)∆x. (4.2)

The Broyden’s updating formula provides a matrix B which can be used to replace
DP (x) in both (4.1) and (4.2).

Algorithm 4.1. Aggressive space-mapping method
Choose x0 ∈ Rn, ∆0 > 0, B0 ∈ Rn̂×n, and γ1, η1 ∈ (0, 1).

0. Compute P (x0) by solving (2.1) with x = x0.
For k = 0, 1, 2, . . .

1. Compute an approximated solution ∆xk for the trust-region subproblem

minimize ĝ(P (xk) + Bk∆x) subject to ‖∆x‖ ≤ ∆k,

over ∆x ∈ Rn.
6



2. Compute P (xk + ∆xk) by solving (2.1) with x = xk + ∆xk.
3. Compute the ratio between actual and predicted reductions:

ρk =
ared(xk, ∆xk)
pred(xk, ∆xk)

=
ĝ(P (xk))− ĝ(P (xk + ∆xk))

ĝ(P (xk))− ĝ(P (xk) + Bk∆xk)
.

4. If ρk ≥ η1 then xk+1 = xk + ∆xk and ∆k+1 is chosen so that ∆k+1 ≥ ∆k.
In this case, update Bk+1 using Broyden’s formula

Bk+1 = Bk +
∆Pk −Bk∆xk

‖∆xk‖22
∆x>k , (4.3)

where ∆Pk = P (xk + ∆xk)− P (xk).
5. If ρk < η1 then xk+1 = xk and ∆k+1 = γ1∆k. Keep Bk+1 = Bk.

end
The initial value for B can be given by the classical choice B0 = I if n̂ = n. In

section 6 we will introduce an appropriate choice for B0 in a problem context where
n̂ 6= n. The choice of ∆0 is discussed in [11].

The norm used to define the trust region can be chosen according to practical
considerations, but it is typically either the `2 or the `∞ norm. The mechanism given
in steps 4-5 to update the trust radius is quite elementary but it suffices to prove
global convergence of trust-region algorithms. More sophisticated strategies can be
found in [11].

The global convergence analysis is described in the next theorem, for which the
classical theory of trust regions provides a proof (see [11, Section 8.4] and the refer-
ences therein). It is not our goal to investigate this subject further but only to list
the ingredients necessary for global convergence.

Theorem 4.1. Let gP be a continuously differentiable function with uniformly
continuous gradient in X and bounded below on L(x0) = {x ∈ X | gP (x) ≤ gP (x0)}.
Consider a sequence {xk} generated by a trust-region method of the form of algo-
rithm 4.1, where the step ∆xk provides a fraction of the Cauchy decrease [11, section
6.3] and the Hessian used in the trust-region model ĝ(P (xk) + Bk∆x) is uniformly
bounded. Finally, let Bk satisfy Carter’s condition ([10] and [11, section 8.4.1]) for
all k:

‖∇gP (xk)−B>
k ∇ĝ(P (xk))‖

‖B>
k ∇ĝ(P (xk))‖ ≤ κmdc(1− η1)

2
, (4.4)

where κmdc ∈ (0, 1) is the fraction of the Cauchy decrease achieved by the step ∆xk.
Then

lim
k→+∞

‖∇gP (xk)‖ = 0.

We remark that the use of the exact sensitivities of P , in other words the use of
Bk = DP (xk), trivially satisfies (4.4).

Finally, for a practical implementation of Algorithm 4.1 a stopping rule has to be
implemented. A possible choice is to terminate the method as soon as

‖∇gP (xk)‖ ≤ εrel‖∇gP (x0)‖+ εabs,

where εabs ≤ εrel ¿ 1 with εabs a suitable small positive constant. For further safe-
guards and additional numerical considerations in the context of trust-region methods
we refer to [11].
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5. A new Broyden’s update for the aggressive space-mapping method.
The Broyden’s update (4.3) is the good Broyden’s update for solving systems of
nonlinear equations [14]. However, the goal in space mapping is not to solve the
system P (x) = 0, but rather to exploit the minimization of the surrogate gP = ĝ ◦P .
Note that the derivative DP (x) appears in the formula for the gradient of gP given
in (4.1) Our goal is to modify Broyden’s formula to better reflect the use of DP (x) in
the formula for ∇gP (x).

The good Broyden’s formula is a rank one update B of Bk that satisfies the
secant’s equation

B∆xk = ∆Pk (5.1)

The matrix B replaces the role of DP (xk) in

P (xk) + DP (xk)∆xk ≈ P (xk + ∆xk).

Now, we also want to use B to approximate the role of DP (xk) in (4.1), from
iteration k to k + 1:

ĝ(P (xk)) +
(
DP (xk)>∇ĝ(P (xk))

)>
∆xk ≈ ĝ(P (xk + ∆xk)).

This motivation leads to the new secant’s condition

∇ĝ>k B∆xk = ∆ĝk, (5.2)

where ∇ĝk = ∇ĝ(P (xk)) and ∆ĝk = ĝ(P (xk + ∆xk))− ĝ(P (xk)). The simultaneous
satisfaction of (5.1) and (5.2) is possible only if

∇ĝ>k ∆Pk = ∆ĝk,

a condition that would in turn reflect

∇ĝ(P (xk))> (P (xk + ∆xk)− P (xk)) = ĝ(P (xk + ∆xk))− ĝ(P (xk)). (5.3)

It is unlikely that (5.3) is strictly satisfied, and therefore unreasonable to compute B
based on the simultaneous satisfaction of (5.1) and (5.2).

A way to circumvent this problem is to relax (5.1), by determining B as the
optimal solution of

minimize
1
2
‖B∆xk −∆Pk‖22 subject to ∇ĝ>k B∆xk = ∆ĝk (5.4)

over B ∈ Rn̂×n. The following proposition gives a characterization of the optimal
solution of problem (5.4).

Proposition 5.1. Let ∆xk and ∇ĝk be nonzero vectors. The optimal solution
B∗ of (5.4) satisfies

B∗∆xk −∆Pk =
∆ĝk −∇ĝ>k ∆Pk

‖∇ĝk‖22
∇ĝk.

Proof. Let us rewrite problem (5.4) as

minimize
1
2
‖Vkv −∆Pk‖22 subject to ∇ĝ>k Vkv = ∆ĝk (5.5)
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over v ∈ Rn̂n, with the help of the change of variables v(i−1)n+j = Bij , i = 1, . . . , n̂,
j = 1, . . . , n. The rows of the n̂× n̂n matrix Vk are composed by the elements of ∆xk

and by (n̂− 1)n zeros. The matrix Vk has full row rank because ∆xk 6= 0.
¿From the assumptions on ∆xk and ∇ĝk we know that V >

k ∇ĝk 6= 0. The first
order necessary conditions for (5.5) can then be stated by assuming the existence of
a Lagrange multiplier λk such that

V >
k Vkv − V >

k ∆Pk + λkV >
k ∇ĝk = 0.

Since V >
k has full column rank, we obtain

Vkv −∆Pk + λk∇ĝk = 0. (5.6)

By multiplying this equation on the left by ∇ĝ>k and using the problem’s constraint
in (5.5), we get

∆ĝk −∇ĝ>k ∆Pk + λk‖∇ĝk‖22 = 0. (5.7)

Thus, (5.6) and (5.7) together imply

Vkv −∆Pk =
∆ĝk −∇ĝ>k ∆Pk

‖∇ĝk‖22
∇ĝk.

The proof is completed by returning to the formulation (5.4).
Proposition 5.1 suggests a perturbation for the right-hand side of the secant’s

equation (5.1):

B∆xk = ∆Pk +
∆ĝk −∇ĝ>k ∆Pk

‖∇ĝk‖22
∇ĝk.

For numerical purposes it might be advantageous to reduce the size of the new
term that is added to ∆Pk:

∆̃Pk = ∆Pk + σk
∆ĝk −∇ĝ>k ∆Pk

‖∇ĝk‖22
∇ĝk, (5.8)

with σk ∈ (0, 1], depending on the impact that ĝ has in the definition of the space
mapping P . The new Broyden’s update is therefore given by

Bk+1 = Bk +
∆̃Pk −Bk∆xk

‖∆xk‖22
∆x>k .

Notice that if we allow σk = 0 in (5.8), then the new Broyden’s update becomes the
classical Broyden’s update as discussed, e.g., in [14]. In section 8 we will see that, for
appropriate choices of σk ∈ (0, 1), the new Broyden’s update leads to better numerical
results than the classical one for an instance problem of optimal control of PDEs.

6. Application of the space-mapping method for optimal control of
PDEs. In this section, we apply the space-mapping approach introduced in section 2
to the reduced problem (1.2). Let h and H with H ≥ h denote mesh sizes of dis-
cretizations of (1.2) yielding the fine model space Uh = Rnh and the coarse model
space UH = RnH . We have n = nh, X = Uh, n̂ = nH , and X̂ = UH . For the ease

9



of exposition we only argue for an L2-setting with standard inner product. Thus, by
rescaling on the discrete level we essentially have to deal with `2 inner products only.

We introduce now discretized versions of the reduced problem (1.2). Let yh(uh)
denote the solution of the discretized PDE in (1.1b) with mesh size h. Moreover, let
Jh be an appropriate discretization of the cost functional J . Then

Jh
red(uh) = Jh(yh(uh), uh).

In an analogous way one obtains the coarse model JH
red:

JH
red(uH) = JH(yH(uH), uH).

In order to simplify the notation and to make it similar to the one used in section 2,
we will use J , Jred, y, and u for fine model quantities, and Ĵ , Ĵred, ŷ, and û for coarse
model quantities.

Since dim Uh and dim UH may differ, we define the linear restriction operator

Ih
H : Uh −→ UH ,

which maps a fine model quantity to a coarse model quantity. Typically, the definition
of Ih

H depends on (infinite dimensional) regularity properties of the control variable.
Here we adopt restriction operators coming from multigrid methods; see [16, 23, 28].

The introduction of Ih
H enables us to define the space mapping P : Uh → UH by

P (u) = argmin{α1
2 ‖ŷ(û)−Kh

Hy(u)‖2
M̂ŷ

+ α2
2 ‖û− Ih

Hu‖2
M̂û

+

α3
2 |Ĵred(û)− Jred(u)|2 | û ∈ UH}, (6.1)

with fixed α1, α2, α3 ≥ 0, and α1 + α2 + α3 > 0. Above, M̂ŷ represent a symmet-
ric positive definite matrix resulting from discretizing a function space norm yielding
‖ŷ‖2

M̂ŷ
= ŷT M̂ŷ ŷ; analogously for ‖ · ‖2

M̂û
. Moreover, Kh

H denotes a restriction oper-

ator, possibly different from Ih
H . Throughout the rest of this paper we assume that

P (u) is single valued for every u ∈ Uh. Instead of ŷ(û)−Kh
Hy(u) we could have used

R̂ŷ(û) −Kh
HRy(u), restricting the matching of the coarse and fine state variables to

parts of its discretized domains.
The parallel to what has been introduced in section 2 is made by setting

x = u, x̂ = û, p = nŷ
H + nH , α = α1 = α2,

r(u) =
(

Kh
Hy(u)
Ih
Hu

)
, r̂(û) =

(
ŷ(û)
û

)
, and

M =
(

Mŷ 0
0 Mû

)
,

where nŷ
H is the dimension of ŷ(û).

Following the space-mapping philosophy presented in the previous sections, we
now replace the problem of finding a solution to the fine model

minimize Jred(u) over u ∈ Uh, (6.2)
10



by finding a solution of the problem involving the surrogate JP
red = Ĵred ◦ P :

minimize JP
red(u) = Ĵred(P (u)) over u ∈ Uh. (6.3)

When solving (6.3) numerically, one has to evaluate JP
red repeatedly which, in turn,

requires repeated evaluations of the fine model and repeated solutions of the min-
imization problem (6.1). As we have seen before, given a fixed fine model point
u, the computational effort can be reduced by considering the following first order
approximation of the space mapping

P (u + s) ≈ P`(u; s) = P (u) + DP (u)s ∈ UH , (6.4)

with DP : Uh 7→ RnH×nh denoting the Jacobian of P . Consequently, JP
red is approxi-

mated around u by

Ĵred(P (u + s)) ≈ Ĵred(P`(u; s)). (6.5)

The evaluation of Ĵred(P`(u; s)) in (6.5) requires only the computation of the action
of DP (u) on s.

The calculation of the gradient of JP
red(u) in (6.3) involves DP (u) in the following

way

∇JP
red(u) = DP (u)>∇Ĵred(û) with û = P (u). (6.6)

If we use the approximation (6.4) for P centered at u as a way of computing a step
s by minimizing Ĵred(P`(u; s)) in (6.5), one also needs the evaluation of (6.6). In
fact, ∇JP

red(u) is the gradient of Ĵred(P`(u; s)) with respect to the increment s. The
evaluation of ∇JP

red(u) requires the computation of the action of DP (u)> on ∇Ĵred(û).

6.1. Computation of the sensitivities of the space mapping. In order to
characterize DP (u) or DP (u)s we need to consider the first order necessary conditions
of (6.1), given by

α1Dŷ(û)>M̂ŷ

(
ŷ(û)−Kh

Hy(u)
)

+ α2M̂û

(
û− Ih

Hu
)
+

α3[Ĵred(û)− Jred(u)]∇Ĵred(û) = 0, (6.7)

with û = P (u). Above Dŷ(û) denotes the Jacobian of ŷ(û) with respect to û. We
obtain the characterizing equation for the sensitivities of the space mapping P by
differentiation of (6.7) with respect to u. This results in

α1Dŷ(û)>M̂ŷ

(
Dŷ(û)DP (u)−Kh

HDy(u)
)
+

α1Hŷ(û; M̂ŷ(ŷ(û)−Kh
Hy(u)))DP (u)+

α2M̂û

(
DP (u)− Ih

H

)
+ (6.8)

α3∇Ĵred(û)
(
∇Ĵred(û)>DP (u)−∇Jred(u)>

)
+

α3[Ĵred(û)− Jred(u)]HĴred
(û)DP (u) = 0,

with û = P (u). In the above equation Hŷ(û; z) denotes the derivative of Dŷ(û)z with
respect to û, Dy(u) represents the Jacobian of y(u) with respect to u, and HĴred

is
the Hessian of Ĵred. Let

GP (u) = α1Dŷ(û)>M̂ŷDŷ(û) + α1Hŷ(û; M̂ŷ(ŷ(û)−Kh
Hy(u)))+

α2M̂û+

α3[Ĵred(û)− Jred(u)]HĴred
(û) + α3∇Ĵred(û)∇Ĵred(û)>,

11



with û = P (u), and

rP (u) = α1Dŷ(û)>M̂ŷKh
HDy(u) + α2M̂ûIh

H+

α3∇Ĵred(û)∇Jred(u)>,

also with û = P (u). This notation allows us to write (6.8) in a more compact way as

GP (u)DP (u) = rP (u).

For given s ∈ Uh let us define

sP (u) = DP (u)s and rs
P (u) = rP (u)s.

Then, the action of DP (u) on s, given by sP (u) = DP (u)s, satisfies

GP (u)sP (u) = rs
P (u) in UH .

We point out that in the case where the PDE on the coarse level is linear, one
has Hŷ = 0 and the expression for GP (u) simplifies considerably.

6.2. A practical aggressive space-mapping method for optimal control
of PDEs. Now we adapt the aggressive space-mapping method, introduced in [2, 6]
and described in algorithm 4.1, to optimal control of partial differential equations
using the setting and notation chosen in this paper for these problems.

Before we describe the algorithm, we need to adapt some of the notation of
sections 4 and 5 to the optimal control framework. In fact, let

∇Ĵk
red = ∇Ĵred(P (uk)),

and

∆Ĵk
red = Ĵred(P (uk + ∆uk))− Ĵred(P (uk)).

As before, we have ∆Pk = P (uk + ∆uk) − P (uk), and we use the new Broyden’s
update introduced in section 5 with σk ∈ (0, 1]:

∆̃Pk = ∆Pk + σk
∆Ĵk

red − (∇Ĵk
red)>∆Pk

‖∇Ĵk
red‖22

∇Ĵk
red. (6.9)

Algorithm 6.1. Aggressive space-mapping method for optimal control of PDEs

Choose u0 ∈ Rn = Rnh , ∆0 > 0, B0 ∈ Rn̂×n = RnH×nh , and γ1, η1 ∈ (0, 1).
0. Compute P (u0) by solving (6.1) with u = u0.

For k = 0, 1, 2, . . .
1. Compute an approximated solution ∆uk for the trust-region subproblem

minimize ĝ(P (uk) + Bk∆u) subject to ‖∆u‖ ≤ ∆k, (6.10)

over ∆u ∈ Rn = Rnh .
2. Compute P (uk + ∆uk) by solving (6.1) with u = uk + ∆uk.
3. Compute the ratio between actual and predicted reductions:

ρk =
ared(uk, ∆uk)
pred(uk, ∆uk)

=
ĝ(P (uk))− ĝ(P (uk + ∆uk))

ĝ(P (uk))− ĝ(P (uk) + Bk∆uk)
.
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4. If ρk ≥ η1 then uk+1 = uk + ∆uk and ∆k+1 is chosen so that ∆k+1 ≥ ∆k.
In this case, update Bk+1 using Broyden’s formula

Bk+1 = Bk +
∆̃Pk −Bk∆uk

‖∆uk‖22
∆u>k , (6.11)

where ∆̃Pk is given by (6.9) with ∆Pk = P (uk +∆uk)−P (uk) and σk ∈ (0, 1]
Put P (uk+1) = P (uk + ∆uk).

5. If ρk < η1 then uk+1 = uk and ∆k+1 = γ1∆k. Keep Bk+1 = Bk and
P (uk+1) = P (uk).

end
The comments made about the norm used to shape the trust region and about

the mechanisms to manage the size of the trust radius remain pertinent here. When
H = h the initial value for B can be given by the classical choice B0 = Inh

, with Inh

the nh × nh identity matrix. When H > h we can choose B0 = Ih
H .

In analogy to the aggressive space-mapping method of section 4 one would expect
that

ĝ(P (uk)) = Ĵred(P (uk)) (6.12)

and

ĝ(P (uk) + Bk∆u) = Ĵred(P (uk) + Bk∆u). (6.13)

However, in the case where H > h, this last choice would result in an under-
determined problem in step 1 of the algorithm, in the sense that ∆u ∈ Rnh is a
fine grid quantity whereas ĝ is defined in the coarse grid setting (yielding a singu-
lar Hessian in Ĵred(P (uk) + Bk∆u)). There exist two immediate remedies to this
situation.

(i) One possibility is to use

ĝ(P (uk) + Bk∆u) = Ĵred(P (uk) + Bk∆u) +
γ

2
‖uk + ∆u− ud‖2Mu

(6.14)

and

ĝ(P (uk)) = Ĵred(P (uk)) +
γ

2
‖uk − ud‖2Mu

, (6.15)

where γ > 0 and ud denotes some reference value for the expected optimal control.
For instance, ud can be obtained by prolongating coarse grid solutions (easy to obtain)
to the fine grid. The parameter γ plays the role of a regularization parameter which
penalizes deviations of uk +∆u from ud. In our numerical tests, γ is chosen according
to the mesh sizes H and h in the following way:

γ = cγ(1− h/H) with 0 < cγ ¿ 1.

Note that when H = h we have γ = 0 and no regularization takes place (and the
coarse model in step 1 is likely not under-determined in the sense discussed above).

(ii) An alternative remedy, using the original choices (6.12)-(6.13), is given by
solving an approximate problem of the type

minimize ĝ(P (uk) + BkIH
h ∆û) subject to ‖∆û‖ ≤ ∆k (6.16)
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instead of problem (6.10) in step 1. By using a restriction operator, the independent
variable ∆û is mapped to a fine grid quantity and the new problem is usually well-
determined. Again, whenever h = H we may choose IH

h = Inh
, and problem (6.16)

becomes the original problem (6.10).
Both remedies have additional costs. The first one requires the computation of the

reference value ud and the second one the application of the restriction operator IH
h .

However, in the latter case only a nH -dimensional problem has to be solved.

7. Computation of coarse and fine model derivatives.

7.1. Adjoint calculation of the coarse model gradient and Hessian. The
computation of the gradient ∇Ĵred(û) can be carried out by the so-called adjoint
technique. In the sequel we briefly explain some of the details.

Let Ê(ŷ, û) = 0 denote the discretized PDE on the coarse grid. Further let Êŷ,
Êû denote the partial Jacobians of Ê with respect to ŷ and û, respectively. From
the assumption that the state equation admits a unique solution y(u) for u ∈ U , we
infer that there exists a unique ŷ(û) such that Ê(ŷ(û), û) = 0 and that Êŷ(ŷ(û), û)
is invertible (at least for sufficiently small H). Differentiation of Ê(ŷ(û), û) = 0 with
respect to û yields

Êŷ(ŷ(û), û)Dŷ(û) + Êû(ŷ(û), û) = 0. (7.1)

Hence, we obtain from (7.1)

Dŷ(û) = −Êŷ(ŷ(û), û)−1Êû(ŷ(û), û). (7.2)

From the definition of Ĵred we deduce that

∇Ĵred(û) = ∇ûĴ(ŷ(û), û) + Dŷ(û)>∇ŷĴ(ŷ(û), û), (7.3)

where ∇ŷĴ , ∇ûĴ represent the partial derivatives of Ĵ with respect to the first and
second argument, evaluated in (7.3) at (ŷ(û), û). Utilizing (7.2) in (7.3) yields

∇Ĵred(û) = ∇ûĴ(ŷ(û), û) + Êû(ŷ(û), û)>p̂(û) (7.4)

with

Êŷ(ŷ(û), û)>p̂(û) = −∇ŷĴ(ŷ(û), û). (7.5)

Equation (7.5) is the so-called (discrete) adjoint equation. For computing ∇Ĵred(û)
one can proceed as follows: Given û solve the state equation for ŷ(û), then solve the
adjoint equation (7.5) for p̂(û), and finally compute the gradient according to (7.4).

By using the definition

Ŵ (ŷ(û), û) =
(

Dŷ(û)
InH

)
,

it is possible to rewrite (7.3) as

∇Ĵred(û) = Ŵ (ŷ(û), û)>∇Ĵ(ŷ(û), û).

Also, it is possible to show (see, e.g., [17]) that the Hessian of the coarse model Ĵred(û)
is given by

HĴred
(û) = Hŷ(û;∇ŷĴ(ŷ(û), û)) + Ŵ (ŷ(û), û)>HĴ(ŷ(û), û)Ŵ (ŷ(û), û).
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When the state equation in (1.1b) is linear, i.e., when Ê(ŷ, û) = L̂ŷ + M̂û − f̂ ,
where M̂ and L̂ are suitable matrices with L̂ invertible and f̂ a coarse model vector,
and when the cross derivatives Ĵŷû(·) and Ĵûŷ(·) are zero, one can simplify considerably
the expression for the Hessian of the coarse model Ĵred(û). The assumption Ĵŷû(·) =
Ĵûŷ(·) = 0 is satisfied for the commonly used objective functional of tracking type,
i.e., for

J (y, u) = 1
2‖y − yd‖2L2(Ω) + δ

2‖u‖2L2(Ω),

with yd ∈ L2(Ω) and δ > 0 fixed. Under the simplified assumptions of this paragraph,
the model Hessian becomes

HĴred
(û) = L̂−>Ĵŷŷ(L̂−1(f̂ − M̂û), û)L̂−1 + Ĵûû(L̂−1(f̂ − M̂û), û).

7.2. Approximation of the fine model gradient. The gradient ∇Jred of the
fine model can be computed also by using the adjoint technique of section 7.1. Per
each gradient evaluation, this technique requires one solve for the (possibly nonlinear)
state equation and one for the (linear) adjoint equation.

Since we are working on the fine model these evaluations might be extremely
costly. One way to reduce or avoid fine model solves is based on restriction operators
Ih
H and their analogues, prolongation operators IH

h .
Alternatively, each fine model gradient evaluation can be calculated by a hybrid

approach based on a fine model adjoint solve and a coarse model solve of the state
equation.

In the sequel we describe these techniques for computing ∇Jred depending on
whether H > h (and both fine and coarse models are nonlinear) or H = h (and
the coarse model is linear). We present this material because of its relevance in the
context of this paper despite the fact that we do not make use of any approximation
to the gradient of the fine model in our numerical testing.

7.2.1. The case H > h (fine and coarse models are nonlinear). Let IH
h

denote the (linear) prolongation operator from UH to Uh. Analogously, one also
introduces KH

h . In the case where the fine and the coarse models of the PDE are
nonlinear, a suitable approximation of the gradient is given by

∇Japp
red (u) = IH

h ∇Ĵred(Ih
Hu), (7.6)

i.e., we restrict the fine model point u ∈ Uh to the coarse setting UH by using Ih
H ,

evaluate the gradient on the coarse level by means of the adjoint technique, and then
we prolongate the coarse model gradient back to the fine model setting with the help
of IH

h .
Alternatively, one can use a hybrid approach which combines coarse and fine

model solves and which is still numerically less expensive than the full fine model
approach. The hybrid technique is particularly useful when the fine model involves
nonlinearities. In fact, we can compute

∇Japp
red (u) = ∇uJ(KH

h ŷ(Ih
Hu), u) + Eu(KH

h ŷ(Ih
Hu), u)>p(u) (7.7)

with

Ey(KH
h ŷ(Ih

Hu), u)>p(u) = −∇yJ(KH
h ŷ(Ih

Hu), u). (7.8)
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The advantage of this strategy is related to the fact that the nonlinear state equation
must be solved only on the coarse grid for a given Ih

Hu. On the fine grid, one has to
solve the (linear) adjoint equation. Typically, solving linear equations is significantly
less expensive than computing solutions to nonlinear ones. Thus, the hybrid approach
is less expensive than computing ∇Jred by the adjoint technique on the fine grid.

Using (7.6), or the hybrid approach in (7.7) and (7.8), yields the approximate
sensitivity Dapp

P (u) and the approximate action sapp
P (u). We remark that the accuracies

of these approximations can by controlled by tuning the mesh size H. In fact, in the
extreme case H = h with Ih

H = IH
h = Inh

(Inh
the nh×nh identity matrix) only exact

quantities are computed.

7.2.2. The case H = h (coarse model is linear). In this case (7.7) would
require the full adjoint technique on the fine grid. In order to reduce the computa-
tional burden, one may consider as the coarse model a linear approximation of the
discretized PDE. If the linear equation can be solved efficiently (e.g., by fast Fourier
transformation techniques), then a suitable approximate gradient is given by

∇Japp
red (u) = ∇uJ(ŷL(u), u) + Eu(ŷL(u), u)>p(u)

with

Ey(ŷL(u), u)>p(u) = −∇yJ(ŷL(u), u)

and ŷL(u) denoting the solution of the linear coarse model Ê(ŷ, u) = 0. Here we
assume û = u. Clearly, the approximation properties depend now on the error between
the linear coarse model and the nonlinear fine model.

8. Numerical experiments. Let us now report some numerical results attained
by the aggressive space-mapping method for the optimal control of PDEs. Our test
examples are of the following type:

minimize 1
2‖y − yd‖2L2(Ω) + δ

2‖u‖2L2(Ω) over (y, u) ∈ H1
0 (Ω)× L2(Ω), (8.1a)

subject to − ν∆y + f(y) = u in Ω = (0, 1)2, (8.1b)

with yd ∈ L2(Ω) and ν, δ > 0. Here f denotes some nonlinear mapping in y. Note that
the parameter ν > 0 allows us to emphasize the nonlinear term f(y) by considering
0 < ν ¿ 1.

We use a standard five point stencil for discretizing the Laplacian with homoge-
neous Dirichlet boundary conditions. The prolongation operators IH

h ,KH
h and restric-

tion operators Ih
H ,Kh

H are chosen as follows: Motivated by an a posteriori analysis (in
function spaces) of a solution (y, u) to our control problem, see, e.g., [1], we choose
KH

h = IH
h and Kh

H = Ih
H . The interpolation from the coarse to the fine grid, i.e., IH

h ,
is achieved by a nine point prolongation. Its stencil is symbolized by




1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4


 .

The restriction Ih
H is the adjoint of the nine point prolongation with symbol

1
16




1 2 1
2 4 2
1 2 1


 .
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For more details on prolongation and restriction operators of the above kind we refer
the reader to, e.g., [16].

For the numerical solution of the discretized counterpart of the nonlinear partial
differential equation involved in (8.1b) we use the Newton-CG method [20]. The
discrete linearized PDE as well as the discrete adjoint equation are solved by means
of the CG method.

In the aggressive space-mapping method for optimal control, i.e., algorithm 6.1,
we use the following adjustment strategy for the trust radius ∆k: Let 0 < η1 ≤ η2 < 1,
γ1 ∈ (0, 1), and ξ1 > 1 be given. If ρk ≥ η2, then accept the current step and enlarge
the trust radius by ∆k+1 = ξ1∆k. If η1 ≤ ρk < η2, then the current step is accepted
and the trust radius is kept, i.e., ∆k+1 = ∆k. Finally, whenever ρk < η1, then the
trust radius is reduced by ∆k+1 = γ1∆k without accepting the current step. In the
examples reported below we used η1 = 10−5, η2 = 10−1, γ1 = 0.25, and ξ1 = 2. We
initialize the trust radius as ∆0 = 50.

The Broyden’s update procedure of algorithm 6.1 is based on a full limited mem-
ory version of Broyden’s method [9]. In fact, since nh is typically very large, and
Bk tends to be a dense matrix, storing Bk is infeasible in the context of optimal
control problems for PDEs. Rather we store the vectors {∆ui}k

i=0 and {∆̃Pi}k
i=0 and

perform the product Bkv of the Broyden’s matrix Bk by a vector v ∈ Rnh using
vector×vector-multiplications only. We initialize the Broyden’s matrix as B0 = Ih

H .
In the examples below the fine model consists of the fully nonlinear PDE dis-

cretized uniformly on the fine grid with mesh size h, resulting in nh unknowns in the
reduced fine model problem (6.2) with Uh = Rnh . This PDE has to be solved once
per iteration of algorithm 6.1. In order to reduce the computational cost we use an
inexact iterative solution technique, i.e., the stopping rule for the iterative solver for
the fine model nonlinear PDE becomes increasingly stringent as the iterates of algo-
rithm 6.1 approach the solution. The coarse model is given by the discretization of the
linearized PDE on the coarse grid with mesh size H. The linearization is performed
with respect to ŷ†k which results in

νÂŷ + Df̂ (ŷ†k)ŷ = û− f̂(ŷ†k) + Df̂ (ŷ†k)ŷ†k,

with û, ŷ, ŷ†k ∈ RnH . Above, the nH × nH -matrix Â represents the discretization of
the operator −∆ with homogeneous Dirichlet boundary conditions on the (uniform)
coarse grid with mesh size H. In all test runs reported below, we chose u0 = 0, ŷ†0 = 0,
and ŷ†k = Ih

Hyk, where yk solves the discretized nonlinear PDE for u = uk on the fine
grid.

We use (6.14)-(6.15) for ĝ in the trust-region subproblem in algorithm 6.1. Unless
otherwise specified, the reference value ud is chosen as ud = 0 in all iterations. The
corresponding regularization parameter γ is reported in the examples below. The
norm used to define the trust region is the `∞ one.

Algorithm 6.1 was stopped when

max{|pred(uk, ∆uk)|,H‖∇Ĵred(P (uk))‖2, h‖∆uk‖2} ≤ tol,

where tol= ε1H‖∇Ĵred(P (u0))‖2 + ε2, with 0 < ε2 ¿ ε1. Unless otherwise specified,
we chose ε1 = 10−5 and ε2 = 10−14.

We used a globalized semi-smooth Newton method [15] for the solution of the
minimization problem subject to bounds on the variables, namely problem (6.10),
which is a quadratic programming problem with simple bounds. The unconstrained
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problem (6.1) is solved by an inexact Newton method. We made a modification in
the Hessian of the objective in (6.1) that consisted of neglecting the term involving
the Hessian of Ĵred(û). As a result we obtained a positive definite approximation of
the Hessian in all iterations.

In the examples below we also report on results obtained by a genuine nonlinear
multigrid method applied to the first order optimality system for the discrete analogue
of (8.1):

νAy + fh(y)− u = 0, (8.2a)
y + δf ′h(y)u + νδAu = yd, (8.2b)

where A denotes the discrete Laplacian on the fine grid, and fh(y), y, u, f ′h(y)u and
yd are vectors in Rnh . We implemented the FAS-scheme [8, 16] with a balanced non-
linear Gauss-Seidel smoother which approximates the solution of the scalar nonlinear
equations (one per grid point) by applying one Newton step. Below we use the short
cut NMG_OC for our nonlinear multigrid solver.

8.1. Example 1. The first example is related to a simplified Ginzburg-Landau
model for superconductivity [18, 19]. The data are as follows:

yd = 1
6 sin(2πx1) sin(2πx2) exp(2x1), f(y) = y3 + y,

and δ = ν = 10−3. Figure 8.1 shows the optimal control and the optimal state of
(8.1), with data as specified before, computed on a 255× 255 grid.

Fig. 8.1. Optimal control (left) and optimal state (right) for the simplified Ginzburg-Landau
model on a 255× 255 grid.

In table 8.1 we report the results obtained from our space-mapping algorithm 6.1
with α1 = α2 = 100, α3 = 10−5, and γ = 10−3(1 − h/H). The parameter σk (see
(6.9)) was set to σk = 0.1 for all k. By level we denote the number of grid coarsenings,
i.e., H = 2levelh. Furthermore, #it denotes the number of iterations until successful
termination, and CPU-ratio represents the ratio between the CPU-time required by
the space-mapping method vs. the CPU-time elapsed by NMG_OC when applied to
the fine model problem and stopped as soon as it reaches the norm for the residual
in (8.2) of the space-mapping solution. Finally, res-ratio is the ratio between the
residual in (8.2) of the space-mapping solution and the one of the prolongated coarse
grid solution (computed by NMG_OC).
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nh level nH # it CPU-ratio res-ratio
2552 4 152 4 0.089 0.0443
2552 3 312 4 0.105 0.0269
2552 2 632 4 0.307 0.0110
2552 1 1272 4 1.040 0.0206

Table 8.1
Results of space mapping vs. fine model solution and prolongated coarse model solutions for

example 1.

From table 8.1 we can see that the new space-mapping method produces more
accurate approximations in a significantly smaller amount of CPU-time than NMG_OC if
nH ¿ nh. We further point out that res-ratio=0.185 if we compare the space-mapping
solution for nH = 152, nh = 2552 with the prolongated solution on a 127 × 127-
grid. This shows that the space mapping P contains a substantial amount of fine grid
information. As one would expect, if the level of coarsening is decreased, the accuracy
as well as the computation time for the space-mapping method are increased. In our
tests it turns out that there is a trade-off coarse mesh size H at which CPU-ratio ≈ 1,
but still we have res-ratio ¿ 1. However, let us re-emphasize that in this paper, space
mapping is not designed to be a new fast fine grid solver. Rather it is a tool which,
in contrast to classical multigrid techniques, allows to combine different models on
different levels for a fast computation of approximate solutions.

In figure 8.2 we display the controls obtained by the space-mapping method for
nH = 152, nh = 1272 (left graph) and nh = 2552 (right graph), respectively. Fur-
thermore, in figure 8.2, we plot the difference in absolute value between the optimal
controls obtained from the fine model and from our space-mapping technique. The
graphs in the second row of figure 8.2 show that the error between the space-mapping
solution and the true solution of the fine model behaves rather stably with respect to
the coarse level. Indeed, the coarse level for both results is H = 1/16 while the fine
levels are h = 1/128 and h = 1/256, respectively. In figure 8.3 we further investigate
the dependence of the error on the levels of coarsening. Now we use h = 1/128 and
H = 1/32 which corresponds to level = 2 (compared to level = 3 previously). From
the graphs in figure 8.3 we conclude that the error is significantly reduced. Also, the
graph of the space-mapping solution appears to be smoother compared to the ones in
figure 8.2. This is related to the fact that the restriction and prolongation operators
approach the unit matrix as the level of coarsening decreases.

In the following we briefly comment on the effect of the new Broyden’s up-
date (6.11) In table 8.2 we compare the new Broyden’s update with σk = 0.1 to the
classical Broyden’s update, i.e., σk = 0 for all k. The results in table 8.2 indicate that

σk nh level nH # it CPU-ratio
0.1 2552 4 152 4 0.072
0.0 2552 4 152 4 0.089

Table 8.2
Comparison between the new and the classical Broyden’s update for example 1.

the new Broyden’s update reduces the computation time and, according to our nu-
merical experience, sometimes also the number of iterations of the new space-mapping
algorithm. In general, we found that the behavior of the new method depends on the
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Fig. 8.2. Optimal controls obtained by algorithm 6.1 (upper plots) and differences to the fine
model solutions (lower plots) for nh = 1272 (left column), nh = 2552 (right column), and nH = 152,
respectively.

Fig. 8.3. Optimal control obtained by algorithm 6.1 for h = 1/128 (left plot) and the difference
to the fine model solution (right plot) for level = 2.

choice of σk. In our test runs for example 1, the choices σk ∈ [0.1, 0.001) yielded results
comparable to σk = 0.1 for all k. For σk < 0.001 there was no significant difference
between the new and the classical Broyden’s update. The choice σk > 0.1 typically
degraded the performance of the method when compared to runs with σk = 0.1.
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8.2. Example 2. The following example shows that the space-mapping method
benefits from eventual evaluations of the fine model and the possibility to specify ud

in step 1. In fact, when considering steps 2 and 4 of algorithm 6.1 we find that every
computation of the space mapping P is based on the matching of fine model solves.
This fact is highlighted in our definition (6.1) of P , where u and y(u) are fine model
quantities. As a consequence, we expect that the space-mapping solution yields a
better approximation to the fine model solution than, e.g., prolongated coarse model
solutions. This is also true when the coarse mesh does not capture oscillations which
exist on the fine mesh.

The data for example 2 are like for example 1 except for f . Now we have

f(y) = y3 + y + f0, with f0(x) = 1
6 sin(20πx1) sin(20πx2) exp(2x1).

The zero order term f0 induces oscillations to the optimal control as it can be seen
from figure 8.4, which displays the optimal control and the corresponding optimal
state for the fine model problem on a 127×127-grid. We ran algorithm 6.1 with

Fig. 8.4. Optimal control (left) and optimal state (right) for example 2 on a 127× 127 grid.

α1 = 75.0, α2 = 0.5, α3 = 10−5, γ = 2.25 · 10−1(1 − h/H), σk = 10−3 for all k, and
level = 3 for h = 1/128. Further, we set ud = f0 in all iterations.

Figure 8.5 shows (in the upper left part) the prolongated coarse grid optimal
control, i.e., upro = KH

h ū, where ū is the optimal solution of the nonlinear optimal
control problem on the coarse grid, as well as the space-mapping solution (in the
upper right part). The figures in the lower part show the top view of both solutions
(left for prolongated and right for space mapping). First of all, we point out that
there is a significant difference in the scale of both solutions, as it can be seen from
the graphs in the first row of figure 8.5. The space-mapping scaling is significantly
closer to the fine model one. The lower plots show that the space-mapping solution
identified more of the fine model resolution. This is a clear indication of what we
mentioned before, in the sense that fine model information has a beneficial impact on
the quality of the solution obtained by space mapping.

Finally we mention that we also tested the following variant of algorithm 6.1:
Similar to the nested iteration concept we start at a coarse-fine grid pair with coarse
mesh size H = 1/2i, a fine mesh size h = 1/2i+1 and i = 2. Algorithm 6.1 was ran
until its stopping rule was satisfied. Then the solution was prolongated to the next
finer grid, and i was increased by 1, and this prolongated solution was used as the
starting point for the run of Algorithm 6.1 on the finer grid. As soon as the coarse

21



Fig. 8.5. Prolongated optimal control (left column) and space-mapping solution (right column)
for example 2.

grid mesh size reached the specified value, only the fine mesh was further refined until
its mesh size reached its specified value. For each grid pair algorithm 6.1 was ran
until convergence and then the solution was prolongated to the next finer level. This
procedure typically decreased slightly both the overall runtime and res-ratio.

9. Conclusions and future work. In this paper we have investigated the use
of the space-mapping technique in the numerical solution of optimal control problems
governed by partial differential equations. We have identified a space-mapping frame-
work for this purpose that allows the integration of different coarse models, arising
from linearizing and/or coarsening the fine model. The new definition for the space
mapping that we introduced uses the concept of Tikhonov-type regularization as a
way of finding the coarse (control and state) variables closest to some corresponding
fine model values. We have also suggested a new Broyden’s update to approximate
the derivatives of the space mapping, with broad applicability to most of the existent
space-mapping approaches.

A number of issues need to be further investigated. In this paper we have not
considered, for instance, optimal control problems with constraints on the control
variables like simple bounds. Adapting our approach to cover this case is relatively
straightforward but it would add another layer of complexity in the numerical com-
putations.

A topic for future research is the use of more than one coarse model in the space-
mapping approach. The existence of, say, two coarse models with increasing level of
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accuracy and cost of evaluation is an appealing idea in some application problems.
Another aspect that has not been considered in this paper is the appropriate use
of different optimization algorithms for coarse and fine models along the spirit of
multigrid methods.
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