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Abstract

Surrogate models are frequently used in the optimization engi-
neering community as convenient approaches to deal with functions
for which evaluations are expensive or noisy, or lack convexity. These
methodologies do not typically guarantee any type of convergence un-
der reasonable assumptions.

In this paper we will show how to incorporate the use of surro-
gate models, heuristics, or any other process of attempting a function
value decrease in trust-region algorithms for unconstrained derivative-
free optimization, in a way that global convergence of the latter al-
gorithms to stationary points is retained. Our approach follows the
lines of search/poll direct-search methods and corresponding surro-
gate management frameworks, both in algorithmic design and in the
form of organizing the convergence theory.

Keywords: Surrogate modeling, trust-region methods, search step,
global convergence.

1 Introduction

Engineers frequently consider (surrogate) models of the objective function
to take its place for the purposes of its optimization. A surrogate model is
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typically less accurate or has less quality than the corresponding function,
but is cheaper to evaluate or consumes fewer computing resources. Surrogate
models can be classified (see [17, 18]) as functional (when models are alge-
braic representations of the function, built from a class of basis functions, a
procedure for sampling the function, and a regression or fitting criterion) or
physical (when models are built from a physical or numerical simplification
of the function or involve some form of correction, scaling or alignment using
its information). Reviews of surrogate modeling can be found in [7, 10, 18].

Booker et al. [4] introduced in 1998 an algorithmic framework to incorpo-
rate the use of surrogates in direct-search methods, which can also accommo-
date the use of heuristics. Since then this approach has been popular among
optimizers and practitioners (see [1, 2, 4, 8, 12, 15, 19, 20, 22]).

Part of the success of this approach relies on its simplicity. The itera-
tions of direct-search methods (of directional type) have been organized in [4]
around two major steps, a search step and a poll step. The search step is
optional and not responsible for the main convergence properties of the over-
all direct-search method. It is required to evaluate the objective function
at a finite number of points and the criterion to declare its success is sim-
ple. In fact, if global convergence of the direct-search method is ensured by
using integer lattices and simple decrease, the search step is successful if it
generates a point in the underlying mesh for which the objective function
value is lower than the one at the current iterate [4]. If, on the other hand,
global convergence is guaranteed by imposing a sufficient decrease condition
based on a forcing function, all it is required from the search step is then
to yield a sufficient decrease [11]. When the search step in unsuccessful,
the method reverts to the poll step which can be viewed as a rigorous step,
i.e., a step which must ensure some form of decrease for small step sizes at
non-stationary points.

The purpose of this paper is to introduce a similar framework but when
the rigorous steps are the trust-region ones, thus replacing the use of direct-
search methods by trust-region ones in the surrogate management frame-
work. We will consider unconstrained optimization problems of the form
minx∈Rn f(x). Given the type of scheme that ensures global convergence for
trust regions, where no underlying mesh is available, the search step must
be based on some form of sufficient decrease. In the search step one can fit
a surrogate or use some heuristic procedure. As in the search/poll direct-
search methods, the method reverts to the rigorous step (now a trust-region
one) if the search step in not successful.

Another contribution of this paper is to rewrite the convergence of the
overall trust-region method as a direct-search one, by showing first that there
is a subsequence of non successful iterates where the step size (in our case the
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trust-region radius) tends to zero, when f is bounded from below. Such iter-
ates correspond to non successful rigorous trust-region steps, where the size
of the gradient of f is of the order of the trust-region radius. Convergence of a
subsequence of iterates to a stationary point can then be easily guaranteed by
taking the limit when the trust-region radius goes to zero, when f is continu-
ously differentiable with Lipschitz continuous gradient. We also study under
what conditions can one establish that all limit points are stationary. It is
important to note that such a rewriting of the convergence theory of trust-
region methods is not allowed in derivative-based methods, where, in fact, it
is possible to show under appropriate conditions that the trust-region radius
is bounded away from zero. In (interpolation-based) trust-region methods
for derivative-free optimization (DFO), the presence of the so-called critical-
ity step (taken when the model gradient is sufficiently small, and where the
models are improved in a ball of appropriate radius) is essential to drive the
trust-region radius to zero.

After this introduction the paper continues in Section 2 with a description
of the type of surrogate management framework for trust-region methods that
fits the above requirements. In Section 3 we show that such a framework
enjoys global convergence to first-order stationary points. An example of
a search step for derivative-free trust-region methods is given in Section 4
in the context of the solution of nonlinear least-squares problems (where a
Gauss-Newton step can be attempted before the main trust-region step).
The paper ends in Section 5 with some concluding remarks.

2 Surrogate management framework

2.1 The incorporation of a search step into a general
framework

We start by describing, at an abstract level, the surrogate management frame-
work for incorporating a search step and a trust-region method. In the search
step we will refer to a real-valued function ρ(·). Later we will specify the prop-
erties which ρ(·) has to verify. For the moment one can think of something
like ρ(∆) = c∆, where c is a positive constant.

Algorithm 2.1 Surrogate Management Framework for TRM

Initialization: Choose an initial point x0 and an initial trust-region ra-
dius ∆0 > 0. Initialize all sample sets, models, constants, and toler-
ances for both the Search Step and the Rigorous TR Step. Set k = 0.
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Search Step: Try to find a point x with f(x) ≤ f(xk)− ρ(∆k) by evaluat-
ing the function f (at a finite number of points), possibly by fitting a
surrogate model to f and minimizing it.
If such a point is found, then set xk+1 = x, declare the iteration and
the Search Step successful, maintain or increase the trust-region ra-
dius (∆k+1 ≥ ∆k), increment k by one, and return to the Search Step
(skipping the Rigorous TR Step).

Rigorous Trust-Region Step: Apply a step of a trust-region method (in-
cluding setting the trust-region radius ∆k+1), increment k by one, and
return to the Search Step.

In Section 4 we give a concrete example of a search step in the context of
a trust-region method for DFO. For the sequel all we need to assume is that
the search step evaluates the objective function at a finite number of points.

2.2 The incorporation of a search step into a derivative-
free trust-region method

Now we choose the derivative-free trust-region method from [6, Section 4] (see
also [7, Section 10.3]) to concretize an example of the above surrogate man-
agement framework. This method requires the usage of fully linear models.
A rigorous definition of a fully linear model will be given later (see Defini-
tion 3.1). For the moment, one can think of a fully linear model as a model
(possibly quadratic but not necessarily) with accuracy properties similar to
those of a first-order expansion Taylor model, in the sense of approximating
the function values with an error of the order of the square of the length of
the step.

The derivative-free trust-region method in [6, 7] considers at each itera-
tion k a quadratic model of the objective function

mk(xk + s) = f(xk) + g⊤k s+
1

2
s⊤Hks,

where gk ∈ R
n and Hk ∈ R

n×n is symmetric. First one checks if the norm
of the model gradient ‖gk‖ is too small. If it is, one enters a step (called
criticality step) with the purpose of verifying if the gradient of f is also
small. The details about the criticality step are unnecessary and therefore
omitted, but essentially what it is done there is to keep reducing the trust-
region radius ∆k and computing a fully linear model in B(xk; ∆k) until this
radius is of the order of the model gradient (i.e., ∆k ≤ µ‖gk‖ with µ > 0).
At the exit of the criticality step one also has β‖gk‖ ≤ ∆k (with β < µ).
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Then one proceeds as in derivative-based trust-region methods (globally
convergent to first-order stationary points) and compute a step sk which
provides a fraction of Cauchy decrease (thus verifying (1) below). Any so-
lution of the trust-region subproblem mins∈B(0;∆k) mk(xk + s) will trivially
satisfy (1). The acceptance of the step sk and the update of the trust-region
radius ∆k will depend on how well the model predicted the function. As in
derivative-based trust-region methods, this is done by computing the ratio (2)
below. However, in the derivative-free case, the trust-region radius is only
decreased when the model is fully linear because only in such a situation one
can consider valid (up to first-order accuracy) the model prediction. If the
model did not predicted the function well and it is not fully linear, then one
enters a model improvement step with the purpose of improving the quality
of the model. The algorithm below also includes provision to accept iterates
based on a simple decrease condition (ρk ≥ η0 = 0).

Algorithm 2.2 Surrogate Management Framework for TRM (a con-
crete example)

Initialization: Choose an initial point x0 and an initial trust-region ra-
dius ∆0 ∈ (0,∆max] for some ∆max > 0. Initialize all sample sets,
models, constants, and tolerances for the Search Step.

For the TR step: Choose an initial model m0(x0+ s). The constants
η0, η1, γ, γinc, ǫc, µ, and β should also be chosen such that 0 ≤ η0 ≤
η1 < 1 (with η1 6= 0), 0 < γ < 1 < γinc, ǫc > 0, and µ > β > 0. Set
k = 0.

Search Step: Try to find a point x with f(x) ≤ f(xk)−ρ(∆k) by evaluating
the function f (at a finite number of points), possibly by fitting a
surrogate model to f and minimizing it.
If such a point is found, then set xk+1 = x, declare the iteration and
the Search Step successful, maintain or increase the trust-region radius
(∆k+1 ∈ [∆k,min{γinc∆k,∆max}]), increment k by one, and return to
the Search Step (skipping the Rigorous TR Step).

TR Step 1 (criticality step): Apply some procedure when ‖gk‖ ≤ ǫc yield-
ing a new model mk(xk + s) (i.e., a new gradient model gk and a
new Hessian model Hk) and a new trust-region radius ∆k such that
∆k ≤ µ‖gk‖ and mk is fully linear on B(xk; ∆k), and such that, if ∆k

is reduced, one has β‖gk‖ ≤ ∆k.
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TR Step 2 (step calculation): Compute a step sk that sufficiently re-
duces the model mk, in the sense of

mk(xk)−mk(xk + sk) ≥
κfcd

2
‖gk‖min

{

‖gk‖

‖Hk‖
,∆k

}

(1)

(with κfcd ∈ (0, 1]), and such that xk + sk ∈ B(xk; ∆k).

TR Step 3 (acceptance of the trial point): Compute f(xk+sk) and de-
fine

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
. (2)

If ρk ≥ η1 or if both ρk ≥ η0 and the model is fully linear on B(xk; ∆k),
then xk+1 = xk+sk and the model is updated to take into consideration
the new iterate, resulting in a new model mk+1(xk+1+s); otherwise the
model and the iterate remain unchanged (mk+1 = mk and xk+1 = xk).

TR Step 4 (model improvement): If ρk < η1 use a model-improvement
algorithm to attempt to certify that mk is fully linear on B(xk; ∆k)
(if such a certificate is not obtained, one makes one or more suitable
improvement steps). Define mk+1(xk+s) to be the (possibly improved)
model.

TR Step 5 (trust-region radius update): Set

∆k+1 ∈















[∆k,min{γinc∆k,∆max}] if ρk ≥ η1,
{γ∆k} if ρk < η1 and mk is fully linear,
{∆k} if ρk < η1 and mk

is not certifiably fully linear.

Increment k by one and go to the Search Step.

To avoid an infinite cycle of TR Steps 4, one has to assume that the
models can be made fully linear in a finite, uniformly bounded number of
improvement steps. Such a requirement is rigorously incorporated in Def-
inition 3.1 below and can be satisfied when using, for instance, linear or
quadratic interpolation (see [7, Chapter 6]).

The search step is either successful (and those iterations will be labeled
by indices in Ssearch) or not (in which case a rigorous TR step is executed).
Note that the rigorous TR step of Algorithm 2.2 (composed by TR Steps
1–5) gives rise to four types of trust-region iterations:

1. Successful iterations (indices in Str), when ρk ≥ η1 (the new iterate
is accepted and the trust-region radius is retained or increased).
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2. Acceptable iterations, when η1 > ρk ≥ η0 andmk is fully linear (new
iterate is accepted and the trust-region radius is decreased). Note that
there are no acceptable iterations when η0 = η1 ∈ (0, 1).

3. Model-improving, when η1 > ρk and mk is not certifiably fully linear
(the model is improved and the new point might be included in the
sample set but is not accepted as a new iterate).

4. Unsuccessful iterations, when ρk < η0 and mk is fully linear (the
trust-region radius is reduced and nothing else changes). Note that this
is the case when no (acceptable) decrease was obtained and there is no
need to improve the model.

The successful iterations of the overall algorithmic framework will be
those corresponding to either successful search steps or successful rigorous
TR steps:

S = Ssearch ∪ Str.

It is also important to note that unsuccessful iterations can only occur in the
rigorous TR step.

3 Convergence to first-order stationarity

As is mentioned in [7, Chapter 10], it might be possible (especially at the
early iterations) that the function f is evaluated outside L(x0) = {x ∈ R

n :
f(x) ≤ f(x0)} when considering sampling techniques used for modeling. If
we assume that sampling is restricted to sets of the form B(xk; ∆k) and that
∆k never exceeds the given positive constant ∆max, then the enlarged region
where f is sampled can be rigorously described as

Lenl(x0) =
⋃

x∈L(x0)

B(x; ∆max).

The derivation of convergence results for trust-region methods typically
requires some form of continuous differentiability of the objective function.
In the DFO context, one requires Lipschitz continuity of the gradient to be
able to work with models which are fully linear.

Assumption 3.1 Suppose x0 and ∆max are given. Assume that f is contin-
uously differentiable with Lipschitz continuous gradient in an open domain
containing the set Lenl(x0).
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The following definition of fully linear models is taken verbatim from [6,
Definition 3.1] (see also [7, Definition 10.3]).

Definition 3.1 Let a function f : Rn → R, that satisfies Assumption 3.1,
be given. A set of model functions M = {m : Rn → R, m ∈ C1} is called a
fully linear class of models if:

1. There exist positive constants κef , κeg, and νm
1 such that for any x ∈

L(x0) and ∆ ∈ (0,∆max] there exists a model function m(x+ s) in M,
with Lipschitz continuous gradient and corresponding Lipschitz constant
bounded by νm

1 , and such that

• the error between the gradient of the model and the gradient of the
function satisfies

‖∇f(x+ s)−∇m(x+ s)‖ ≤ κeg ∆, ∀s ∈ B(0;∆), (3)

and

• the error between the model and the function satisfies

|f(x+ s)−m(x+ s)| ≤ κef ∆
2, ∀s ∈ B(0;∆). (4)

(Such a model m is called fully linear on B(x; ∆).)

2. For this class M there exists an algorithm, which we will call a ‘model-
improvement’ algorithm, that in a finite, uniformly bounded (with re-
spect to x and ∆) number of steps can

• either establish that a given model m ∈ M is fully linear on
B(x; ∆) (we will say that a certificate has been provided),

• or find a model m̃ ∈ M that is fully linear on B(x; ∆).

As in the convergence of most trust-region methods, we need to assume
that the objective function is bounded from below and the model Hessians
are uniformly bounded.

Assumption 3.2 Assume that f is bounded below on L(x0), that is there
exists a constant κ∗ such that, for all x ∈ L(x0), f(x) ≥ κ∗.

Assumption 3.3 There exists a constant κbhm > 0 such that, for all xk

generated by the algorithm in the rigorous TR steps,

‖Hk‖ ≤ κbhm.
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The first piece of the convergence theory concerns only the rigorous TR
step, and is a restatement of [6, Lemma 5.2] (see also [7, Lemma 10.6]).

Lemma 3.1 Let Assumptions 3.1 and 3.3 hold. Consider an iteration k
corresponding to a rigorous TR step. If mk is fully linear on B(xk; ∆k) and
the iteration is not successful (i.e. if it is acceptable or unsuccessful), then

‖gk‖ ≤ C1∆k,

where

C1 =
1

min
{

1
κbhm

,
κfcd(1−η1)

4κef

} .

We will now show that the trust-region radius converges to zero (this
requires some modifications from [6, Lemma 5.5], see also [7, Lemma 10.9],
to accommodate the search step).

Lemma 3.2 Under Assumptions 3.2 and 3.3, if ρ(·) is chosen in such a way
that ρ(∆) → 0 implies ∆ → 0, then

lim
k→+∞

∆k = 0. (5)

Proof. The proof follows from known arguments when the number of
successful iterations is finite (see, e.g, the proof of [7, Lemma 10.8]). In this
case, without loss of generality one can consider only iterations acceptable,
model improvement or unsuccessful, where the trust-region radius is not in-
creased. We then know that we can have only a finite (uniformly bounded,
say by N) number of model-improvement iterations before the model be-
comes fully linear, which shows that there is an infinite number of iterations
that are either acceptable or unsuccessful (and in either case a reduction
occurs in the trust-region radius). Moreover, ∆k is decreased at least once
every N iterations by a factor of γ. As a result, ∆k converges to zero.

Let us now consider the case where there are infinitely many successful
iterations (i.e., S is infinite). Two types of successful iterations are possible
(depending if they occur in the search step or in the rigorous TR one). In
the former case, when k ∈ Ssearch, we obtain

f(xk)− f(xk+1) ≥ ρ(∆k). (6)

In the latter case, when k ∈ Str we have

f(xk)− f(xk+1) ≥ η1[mk(xk)−mk(xk + sk)].
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By using the bound on the fraction of Cauchy decrease (1), we have that

f(xk)− f(xk+1) ≥ η1
κfcd

2
‖gk‖min

{

‖gk‖

‖Hk‖
,∆k

}

.

Due to either performing or not the TR Step 1 of Algorithm 2.2 we have that
‖gk‖ ≥ min{ǫc, µ

−1∆k}, hence

f(xk)−f(xk+1) ≥ η1
κfcd

2
min{ǫc, µ

−1∆k}min

{

min{ǫc, µ
−1∆k}

‖Hk‖
,∆k

}

. (7)

Since S is infinite and f is bounded from below, and by using Assump-
tion 3.3 and the property assumed for ρ(·), the right-hand sides of the
above expressions (6) and (7) have to converge to zero, for k ∈ Ssearch and
k ∈ Str, respectively (whenever they occur an infinite number of times).
Hence limk∈S ∆k = 0, and nothing else would remain to be proved if all
iterations are successful. However, the trust-region radius can only be in-
creased during a successful iteration, and it can only be increased by a ratio
of at most γinc, which then completes the proof.

Now we can state that there is a subsequence of iterates along which the
gradient of f goes to zero. The proof of this fact follows a new insight given
by the fact that the trust-region radius is converging to zero. In fact, this
behavior of the trust-region radius necessarily implies that there is an infinite
number of iterations where it must be reduced. Also, the trust-region radius
cannot possibly be reduced at search steps and thus we can focus on what
happens in the rigorous TR ones. In more classical trust-region methods, one
would immediately conclude that there is an infinite number of unsuccessful
iterations. However, because of the more complex DFO setting, in particular
the presence of the criticality step (main contributor for the convergence
to zero of the trust-region radius) and the way in which simple decrease
is handled (acceptable iterations), one has three rather than one type of
situation responsible for a decrease in the trust-region radius. Fortunately,
in all cases one has ‖gk‖ = O(∆k), allowing one to drive a subsequence
of model gradients to zero, from which then the result stated below easily
follows.

Theorem 3.1 Let Assumptions 3.1, 3.2, and 3.3 hold. If ρ(·) is chosen in
a way that ρ(∆) → 0 implies ∆ → 0, then

lim inf
k→+∞

‖∇f(xk)‖ = 0.
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Proof. From Lemma 3.2, we know that there must exist an infinite num-
ber of iterations where the trust-region radius is reduced (which must occur
at rigorous TR steps). Thus, there is either an infinite number of critical-
ity steps where the trust-region radius is reduced (and ‖gk‖ ≤ ∆k/β holds)
or an infinite number of either acceptable or unsuccessful iterations (where
Lemma 3.1 applies), and let us denote all these iterations by the index se-
quence {ℓi}. In any of these three cases, one has ‖gℓi‖ = O(∆ℓi) and by
taking limits when ∆ℓi goes to zero, one obtains

lim
i→+∞

‖gℓi‖ = 0. (8)

Also, in any of the cases, one has

‖∇f(xℓi)− gℓi‖ ≤ κeg∆ℓi ,

and, from (8) and ∆ℓi → 0, we derive ‖∇f(xℓi)‖ → 0.

It is possible to extend this result to the whole sequence of iterates, es-
tablishing a result of the lim-type given in [6, Theorem 5.9] (see also [7,
Theorem 10.13]). To do so, we need to impose that the search step x− xk =
xk+1 − xk stays in a trust region of radius proportional to ∆k and to com-
pute at this step a model which is fully linear in such a trust region. This
observation is aligned with the generalization of liminf to lim in direct-search
methods which requires the search step to essentially be empty (or to coincide
with a complete poll step which in turn can be seen as a way of implicitly
building a fully linear model); see [11] and also [7, Pages 131–132].

Theorem 3.2 Let Assumptions 3.1, 3.2, and 3.3 hold, and γfac, γρ > 0 be
constants independent of the iteration counter. If ρ(∆) = γρ∆, and if in the
search step xk+1 ∈ B(xk; γfac∆k) and a model mk(xk + s) is formed, fully
linear in B(xk; γfac∆k), then

lim
k→+∞

∇f(xk) = 0.

Proof. The proof is classical and only requires a few adjustments. We
will follow closely the presentation in [7, Theorem 10.13].

We have seen from Lemma 3.2 and Theorem 3.1 that in the case when
S is finite the theorem holds. Hence, we will assume that S is infinite.
Suppose, for the purpose of establishing a contradiction, that there exists a
subsequence {ki} of successful iterations such that

‖∇f(xki)‖ ≥ ǫ0 > 0, (9)
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for some ǫ0 > 0 and for all i (we can ignore model-improving iterations, since
xk does not change during such iterations). Then, we obtain that

‖gki‖ ≥ ǫ > 0,

for some ǫ > 0 and for all i sufficiently large. The explanation for this is
twofold. In the search step it results from Lemma 3.2 and the fact that the
models are required to be fully linear. The explanation for a TR step comes
from the fact that the gradient of f goes to zero whenever the model one
does (which can be seen from the proof of Theorem 3.1). Without loss of
generality, we pick ǫ such that

ǫ ≤ min

{

ǫ0
2(2 + κegµ)

, ǫc

}

. (10)

Property (8) ensures the existence, for each ki in the subsequence, of a
first iteration ℓi > ki such that ‖gℓi‖ < ǫ. By removing elements from {ki},
without loss of generality and without a change of notation, we thus obtain
that there exists another subsequence indexed by {ℓi} such that

‖gk‖ ≥ ǫ for ki ≤ k < ℓi and ‖gℓi‖ < ǫ, (11)

for sufficiently large i.
We now restrict our attention to the set K corresponding to the subse-

quence of iterations whose indices are in the set

∪i∈N0
{k ∈ N0 : ki ≤ k < ℓi},

where ki and ℓi belong to the two subsequences defined above in (11).
We know that ‖gk‖ ≥ ǫ for k ∈ K. From limk→+∞∆k = 0 and Lemma 3.1

we conclude that for any large enough k ∈ K the iteration k is either suc-
cessful or model improving.

Moreover, for each k ∈ K ∩ S we have that either (TR step)

f(xk)−f(xk+1) ≥ η1[mk(xk)−mk(xk+sk)] ≥ η1
κfcd

2
‖gk‖min

{

‖gk‖

κbhm

,∆k

}

(12)
and for any such k large enough, ∆k ≤

ǫ
κbhm

, or (search step)

f(xk)− f(xk+1) ≥ ρ(∆k) = γρ∆k. (13)

Hence, we have for k ∈ K ∩ S sufficiently large,

∆k ≤ max

(

2

η1κfcdǫ
,
1

γρ

)

[f(xk)− f(xk+1)] := C2[f(xk)− f(xk+1)].
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Since for any k ∈ K large enough the iteration is either successful or model
improving and since for a model improving iteration xk = xk+1 we have, for
all i sufficiently large,

‖xki − xℓi‖ ≤

ℓi−1
∑

j=ki
j∈K∩S

‖xj − xj+1‖ ≤

ℓi−1
∑

j=ki
j∈K∩S

∆j ≤ C2[f(xki)− f(xℓi)].

Since the sequence {f(xk)} is bounded below (Assumption 3.2) and mono-
tonic decreasing, we see that the right-hand side of this inequality must
converge to zero, and we therefore obtain that limi→+∞ ‖xki − xℓi‖ = 0.

Finally,

‖∇f(xki)‖ ≤ ‖∇f(xki)−∇f(xℓi)‖+ ‖∇f(xℓi)− gℓi‖+ ‖gℓi‖.

The first term of the right-hand side tends to zero because of the Lipschitz
continuity of the gradient of f (Assumption 3.1), and is thus bounded by ǫ
for i sufficiently large. The explanation for the second term is twofold. For a
TR step, we use the fact that from (10) and the mechanism of the criticality
step (TR Step 1) at iteration ℓi, the modelmℓi is fully linear on B(xℓi ;µ‖gℓi‖).
So, using this property and (11), we deduce for this step that the second term
is bounded by κσµǫ (for i sufficiently large). In the search step, this term
is also bounded by κegµǫ for i sufficiently large since the models are always
fully linear and the trust-region radius converges to zero. The third term
is bounded by ǫ by (11). As a consequence, we obtain from these bounds
and (10) that

‖∇f(xki)‖ ≤ (2 + κegµ)ǫ ≤
1

2
ǫ0

for i large enough, which contradicts (9). Hence our initial assumption must
be false and the theorem follows.

4 A numerical experiment

A simple example of a search step arises in the context of the derivative-free
solution of unconstrained nonlinear least squares problems of the form

min
x∈Rn

‖F (x)‖2 = ‖F (x)‖22,

where F = (F1, . . . , Fm) : R
n → R

m. In fact, before the main rigorous
trust-region step of a derivative-free trust-region method (based on interpo-
lation models) and given its current sample set, one can first calculate an
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approximation Jk for the Jacobian of F at xk. Then, a search step pk can be
calculated by minimizing the linearization of F at xk in a trust region

min
p∈Rn

‖Jkp+ F (xk)‖
2
2 s.t. ‖p‖ ≤ θ∆k, (14)

where θ ≥ 1. The solution of (14) is denoted by pk, and xk + pk refers to the
trial point x in the notation of Algorithms 2.1 and 2.2.

In our experiment we set θ = 2 and accepted the search step pk if f(xk +
pk) ≤ f(xk)−10−5∆2

k. In such a case we doubled the trust-region radius. We
used the MATLAB routine trust.m (see [13]) to solve (14). The search step
was always attempted when there were more than n points in the sample
set, and in such cases we used the n closest points y1k, . . . , y

n
k to xk. The

sample set Yk = {xk, y
1
k, . . . , y

n
k} was first shifted to {0, y1k − xk, . . . , y

n
k − xk}

and then scaled to {0, (y1k−xk)/∆(Yk), . . . , (y
n
k −xk)/∆(Yk)} where ∆(Yk) =

max1≤j≤n ‖y
j
k − xk‖ (see [7, Section 2.4]). We then calculated m simplex

gradients (see, e.g., [7, Section 2.6]), one for each function in Fi, i = 1, . . . ,m,
by solving







(y1k − xk)
⊤/∆(Yk)
...

(ynk − xk)
⊤/∆(Yk)






ĝik =







Fi(y
1
k)− Fi(xk)

...
Fi(y

n
k )− Fi(xk)






(15)

and scaling back to gik = ĝik/∆(Yk). The i-th row of Jk is formed by (gik)
⊤.

Each simplex gradient gik is the vector of the linear model Fi(xk)+ (gik)
⊤(y−

xk) that interpolates Fi in {y1k, . . . , y
n
k}. Thus, the Gauss-Newton model

Jkp + F (xk) in (14) approximates F (x) around xk with an accuracy of the
order a multiple of ∆2

k, with a factor depending on the Lipschitz constants of
the gradients of the Fi’s and the conditioning of the matrix in the left-hand
side of (15).

The practical derivative-free trust-region method used for the illustration
of this search step was the one developed and tested in [3] based on quadratic
interpolation. It is a quite simple but effective method that replaces one point
in the sample set by the one defined by the trust-region step, without any
geometry precautions (as suggested in [9]). The method starts from a sample
set of 2n+1 points and uses minimum Frobenius norm interpolation models
until the cardinality of the sample set reaches (n + 1)(n + 2)/2 points (and
until then no points are discarded and new trial points are always added
independently of whether or not they are accepted as new iterates). Points
that are too far from the current iterate when the trust-region radius becomes
small are discarded. Such a procedure can be seen as having some of the effect
of a criticality step since the next iterations are expected to refill the sample
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set. The trust-region radius is never reduced when there are less than n+ 1
points.

To compare the interpolation-based trust-region algorithm of [3] with
and without the above-mentioned Gauss-Newton type search step, we used
data profiles on the test set suggested by [14], which gathers 53 smooth
unconstrained (mostly nonlinear) least squares problems. For each method
or solver, a data profile [14] consists of a plot of the percentage of problems
that are solved for a given budget of function evaluations. For explaining
more precisely data profiles, let P be the set of problems and S the set of
solvers. A problem is solved (up to some level τ of accuracy) when

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL), (16)

where x0 is the initial guess and fL is the best obtained objective function
value among all the solvers. The value of fL is first computed by letting the
solvers run for a large number of functions evaluations. Then the data profile
is computed, for each solver s ∈ S, as the percentage of the problems that
can be solved within κ function evaluations:

ds(κ) =
1

|P|
size

{

p ∈ P :
tp,s

np + 1
≤ κ

}

, (17)

where np is the number of variables of problem p ∈ P , and tp,s is the number
of function evaluations required by solver s ∈ S on problem p to satisfy (16)
for a given tolerance τ (tp,s = +∞ if the convergence test (16) is not satisfied
after the maximum budget N of function evaluations). As suggested in [14],
the budget is measured in terms of units of np + 1 function evaluations to
account for the fact that the problems have different dimensions (and having
in mind that np + 1 is the minimum number of points necessary to compute
a fully linear model when using interpolation) — this is reflected by the
division by np + 1 in (17).

In our case we have two solvers, the interpolation-based trust-region al-
gorithm [3] without a search step (referred to as dfo-tr) and with the above
mentioned Gauss-Newton search step (referred to as dfo-tr (search)). In
the context of our experiment, since some of the problems are small and
the algorithm [3] is quite rapid on many of them, we have tried a maximum
number of N = 100 (Figure 1) and N = 200 (Figure 2) function evaluations.
We selected two levels of accuracy in (16), τ = 10−1, 10−5.

In any of the experiments reported one can realize the advantage of trying
such a search step. It is natural to observe no effect for very small values of
the budget since part of it corresponds to the evaluation of the initial sample
set of 2n + 1 points. If one had started the trust-region method with only
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Figure 1: Data profiles comparing the effect of a search step in an
interpolation-based trust-region algorithm for two levels of accuracy (10−1

above and 10−5 below). The value of fL in (16) was calculated based on a
maximum of N = 100 function evaluations.

n+1 points, the benefits of the search step would even be more noticed, but
we did not want to tailor the underlying method to the benefit of this step.

Taking advantage of the structure of the objective function is part of the
reason for the success of this search step. Another reason lies in the fact that
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Figure 2: Data profiles comparing the effect of a search step in an
interpolation-based trust-region algorithm for two levels of accuracy (10−1

above and 10−5 below). The value of fL in (16) was calculated based on a
maximum of N = 200 function evaluations.

a number of these problems have a small residual ‖F (x∗)‖ at the solution, or a
contribution of the Gauss-Newton part 2J(x∗)

⊤J(x∗) of the Hessian matrix
significantly larger compared to the neglected part

∑m

i=1 2Fi(x∗)∇
2Fi(x∗).

Also, we should point out here that there are other ways to take advantage
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of the structure of nonlinear least squares for derivative-free optimization,
one being clearly the separate modeling of the individual functions Fi(x)
(see [21]).

5 Concluding remarks

Surrogate models can be used and managed in a variety of forms in the search
step of the framework described in this paper, in particular using any of the
ideas in Booker et al. [4] or in the review [7, Section 12.2]. Given a type
of sample-based surrogate models chosen for the search step, it will then be
of particular interest to consider the communication between this step and
the TR rigorous one. In fact, not only could the rigorous TR step benefit
from any new function evaluations made in the search step (as long as they
correspond to points not too far from the current trust region), but the same
could happen the other way round, in particular since the models used in
the search step could certainly be less locally based. The specifics of such a
sample set communication are application dependent and out of the scope of
this paper.

We have chosen as a rigorous trust-region method the one from Conn,
Scheinberg, and Vicente [6] due to its high level of abstraction and appli-
cability, but our choice could have also contemplated the more recent self-
correcting geometry method of Scheinberg and Toint [16], which dispenses
with the model-improving iterations by judiciously updating the sample set
with the incoming solution of the trust-region subproblem. It is also impor-
tant to remark that such a form of surrogate management framework using
rigorous trust-regions steps is not at all restricted to optimization without
derivatives. In fact, the principle of a search or oracle step can also be applied
to most derivative-based trust-region methods described in [5].
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