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Abstract

Trust-region methods are a broad class of methods for continuous optimization that found
application in a variety of problems and contexts. In particular, they have been studied and
applied for problems without using derivatives.

The analysis of trust-region derivative-free methods has focused on global convergence,
and they have been proved to generate a sequence of iterates converging to stationarity
independently of the starting point. Most of such an analysis is carried out in the smooth
case, and, moreover, little is known about the complexity or global rate of these methods.

In this paper, we start by analyzing the worst case complexity of general trust-region
derivative-free methods for smooth functions. For the non-smooth case, we propose a smooth-
ing approach, for which we prove global convergence and bound the worst case complexity
effort. For the special case of non-smooth functions that result of the composition of smooth
and non-smooth/convex components, we show how to improve the existing results of the
literature and make them applicable to the general methodology.

Keywords: Trust-region methods, derivative-free optimization (DFO), worst case complex-
ity (WCC), non-smoothness, smoothing, composite functions.

1 Introduction

1.1 Trust-region methods for DFO

Trust-region methods are iterative methods for the optimization of a function in a continuous
space, possibly subject to constraints. In these methods, to obtain a trial point, one typically
considers the minimization of a quadratic model in a region around the current iterate and
measured by a certain radius. The model serves as a local approximation of the function, in
particular of its curvature (see the extensive monograph by Conn, Gould, and Toint [11] and
the recent survey paper by Yuan [34]).
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This paper concerns trust-region methods for unconstrained derivative-free optimization
(DFO), where it is assumed that there is only access to the function values. Derivatives, if
they exist, are unavailable or little reliable to be used. DFO problems are common in Engi-
neering Optimization where the evaluation of the functions may be the output of a numerical
solution. DFO has also been relatively well studied (see the book by Conn, Scheinberg, and
Vicente [15]). In DFO trust-region methods, the models are frequently built by fitting a sample
set using interpolation or regression, and their quality is measured by the accuracy they provide
relatively to a Taylor expansion. In particular, fully linear models [13] are those as smooth and
accurate as first-order Taylor ones.

Accepting the trial point as the new iterate and updating the trust-region radius depend
on how much the function was reduced relatively to the model. If the current iterate is non-
stationary and the model has good quality, the algorithms succeed in accepting a trial point
as a new iterate in a finite number of reductions of the trust-region radius. These methods
have been shown to be convergent to first-order stationary points by Conn, Scheinberg, Toint,
and Vicente (in the papers [12, 14]) under the condition that fully linear models are available
when necessary. The strict need of controlling geometry or considering model-improvement
steps was questioned in [20], where good numerical results were reported for an interpolation-
based trust-region method which ignores the geometry of the sample sets. Scheinberg and
Toint [31] gave an example showing that geometry cannot be totally ignored and that some
form of model improvement is necessary, at least when the size of the model gradient becomes
small (a procedure known as the ‘criticality step’, which then ensures that the trust-region radius
converges to zero).

1.2 Worst case complexity in DFO

For a long while, DFO methods have been analyzed by establishing their global convergence
properties, meaning their asymptotic convergence to stationary regardless of the starting point
(see [15, 25]). More recently, there has been some interest in establishing their global rates
of convergence or, similarly, bounds on the number of iterations (and of function evaluations)
required in the worst case to achieve a certain threshold of stationarity.

In part, such a recent effort follows a similar trend occurred for the unconstrained, derivative-
based optimization of smooth functions (where the gradient exists and is Lipschitz continuous).
Nesterov [27] started by showing that the gradient or steepest descent method takes at most
O(e72) (O(e71) in the presence of convexity) iterations to drive the norm of the gradient of the
objective function below e. It is known that such a bound is sharp or tight (see the example
of Cartis, Gould, and Toint [3]). A similar worst case complexity (WCC) bound of O(¢~2) has
been proved by Gratton, Sartenaer, and Toint [24] for trust-region methods. The WCC bound
on the number of iterations can be reduced to O(e~!) for cubic overestimation methods (see
Nesterov and Polyak [29] and Cartis, Gould, and Toint [5]).

In the context of DFO, most of the WCC analysis has been carried out for direct-search
methods of directional type based on a sufficient decrease condition. The first WCC bound,
of O(e2), was derived by Vicente [32] for smooth functions, and later refined to O(¢~!) when
the function is convex by Dodangeh and Vicente [17]. Garmanjani and Vicente [21], using
a smoothing approach, have shown a WCC bound of O(|loge|e™3) in the non-smooth case.
Similar WCC bounds were derived, in expectation, by Nesterov [28] for his random Gaussian
smoothing approach. Cartis, Gould, and Toint [6] have derived a WCC bound of O(e~!?)



for their derivative-free adaptive cubic overestimation algorithm, but using finite differences to
approximate derivatives.

1.3 The contribution of this paper

In this paper we address the WCC of trust-region methods for unconstrained DFO. Our contri-
bution is threefold.

First we consider the smooth case and, as expected, derive a WCC bound of O(¢~2) for
the number of iterations and O(n?e~2) for the number of function evaluations. There were a
number of delicate issues to overcome, one of which being how to appropriately measure the
effort of the criticality step to avoid worsening the power €2 in terms of function evaluations.
It is also nontrivial to appropriately count the number of iterations that are acceptable (the
function is decreased, the trial point is accepted as the new iterate, and the radius is reduced)
or of model-improvement type (the iterate and the radius are maintained), under the general
setting in [14].

Secondly, we address the general non-smooth case, and develop a smoothing trust-region
approach in the same vein as it was first done for direct search [21] and later for sampling
methods using Monte-Carlo simulation [9]. The number of iterations required to drive the
smoothing parameter and the norm of the smoothing gradient below e will be shown to be of
O(|log €|e=3) (for function evaluations, O(n?|logele~3)). The knowledge of the contribution [21]
has provided some guidance on how to obtain this result, but a lot still had to be done, from
building all necessary blocks from the smooth case to assembling all components in the new
context of trust regions.

The third contribution addresses the analysis of WCC of derivative-free trust-region methods
for composite functions of the type h(F') where h is real, non-smooth, and convex and F is vecto-
rial and smooth (but for which derivatives are unavailable). This task was already attempted by
Grapiglia, Yuan, and Yuan [23] but under a restrictive setting (relatively to the general scenario
in [14]) and with sub-optimal results. Their complexity result is of the form O(|log e|e~2), where
ours will be just O(e~2). We were able to remove the factor |loge| precisely from the way we
count iterations in the criticality step. Further, contrary to [23], we do not impose a reduction
of the trust-region radius on model-improvement iterations. In terms of function evaluations,
our bound looks like O(¢n2e~2), where ¢ is the number of functions components in F.

We organized our paper as follows. We start by reviewing the concept of fully linear models in
Section 2. Then our three contributions are described in the following sections: Section 3 for the
smooth case, Section 4 for the non-smooth case using a smoothing approach, and Section 5 for
the non-smooth composite case. We provide a numerical illustration of the latter two approaches
for the case ||F||; in Section 6 and end the paper with some conclusions in Section 7.

The notation O(A) will mean a scalar times A, where the scalar does not depend on the
iteration counter of the method under analysis (thus depending only on the problem or on
algorithmic constants). The dependence of A on the dimension n of the problem (or on a
Lipschitz constant) will be made explicit whenever appropriated. The notation B(z;A) stands
for {y € R" : ||y — z|| < A} and by default all norms are the Euclidean ones. Finally, log(-)
stands for In(-).



2 Fully linear models

Let g € R™ be a starting point for the trust-region methods considered in this paper. Let
F = (Fy,...,F;) : R" — R’ be a function for which one build models to be used in such
methods. When imposing a certain smoothness on F', one needs to consider only the region
where these methods generate new iterates and trial points. Given that trust-region methods
impose some form of decrease on the acceptance of new iterates, such points are always confined
to an initial level set L(xp). Such a level set is left undefined for the moment since it will take
different forms in this paper depending on the type of problem and its smoothness. It will be of
the form {x € R™ : f(x) < f(xo)} if the goal is to minimize a function f: R"™ — R.

At each iteration of such methods, the function is sampled at the trial point xp + s, and
possibly at a certain number of sampling points in the ball B(xy; Ay), where xy is the current
iterate and Ay the current trust-region radius. It might happen, however, that some of such
points fall outside of the level set L(xzg), and thus the set in which the function is sampled is
taken as:

Lenl(xO) = U B(x;Amax)7 (1)
x€L(xo)

where A4, s chosen such that Ayuge > Ay, for all & > 0. It is in Ley(z) that F' is assumed

smooth to later derive the convergence and complexity properties for these methods.

Assumption 2.1 Suppose xg and Apq. are given. Assume that F is continuously differen-
tiable with Lipschitz continuous Jacobian (with constant Ly, ) in an open domain containing the
set Lenl(l‘O)'

To establish global convergence to first-order stationary points (and the corresponding rates
or complexity bounds), certain models of F' need to be assumed as accurate as first-order Taylor
models, in the sense of Point 1 of the definition below. It is further assumed that such models
can be made first-order accurate or fully linear in a finite number of model-improvement steps.
We reproduce below Definition 10.3 in [15] of fully linear models, adapting it for the case of
vectorial functions, where £ can be greater than 1.

Definition 2.1 Let a function F = (Fy,...,F;) : R® = RY, that satisfies Assumption 2.1, be
given. A set of model functions M = {m = (mq,...,my) : R* — R m € C'} is called a fully
linear class of models if:

1. There exist positive constants kef and Keg such that for any x € L(xg) and A € (0, Azl
there exists a model function m(z+s) in M, with Lipschitz continuous Jacobian, and such
that

e the error between the gradient of the model components and the gradient of the func-
tion components satisfies

max ||[VEj(x +s) — Vm;(z + s)|| < kegd, Vse B(0;A), (2)

1<i<t
and

e the error between the model and function components satisfies

111<13§£|E(9:+ s) —mi(z +3)| < kep A% Vs € B(0;A). (3)



Such a model m is called fully linear on B(x;A).

2. For this class M there exists an algorithm, which we will call a ‘model-improvement’
algorithm, that in a finite, uniformly bounded (with respect to x and A) number of steps
can

e cither establish that a given model m € M is fully linear on B(x; A) (we will say that
a certificate has been provided),

e or find a model m € M that is fully linear on B(x;A).

Note that when ¢ = 1, Definition 2.1 coincides with [15, Definition 10.3]. Fully linear
models are not necessarily linear, in fact they are typically quadratic in practice (see [15] for a
comprehensive coverage of the topic).

3 WCC in the smooth case

This section is devoted to establishing the WCC analysis of derivative-free trust-region methods
for the unconstrained minimization of smooth functions f : R™ — R. At each iteration k of
these methods, a quadratic model is form around the current iterate xy,

mi(zr +8) = fi + ngs + %STHkS,
where fi € R (not necessarily equal to f(zx)), gr € R™, and Hp € R"*". The model is then
minimized (possibly approximately) in a trust region, typically defined by a ball B(zy; Ag)
centered at xzp and of radius Ag. The difference relatively to derivative-based trust-region
methods is that the models are computed based on sample values of f, and thus g; is not
necessarily the gradient of f at x;, although it is a good approximation thereof if the model is
fully linear. The matrix Hj provides an approximation to the curvature of f.

For the derivation of the WCC bounds we introduce two modifications in the presentation of
the derivative-free trust-region method stated in Algorithm 4.1 in [14] (see also [15, Algorithm
10.1]).

The first modification concerns how the so-called criticality step is incorporated (see Al-
gorithm 4.2 in [14] or the presentation in [15, Algorithm 10.2]). One knows from the counter
example in [31] that such a step is indeed necessary. What the criticality step does is to improve
the accuracy of the models when the model gradient g becomes small, ensuring that at the
end of the process one has a fully linear model in a ball B(x; Ag) where Ay is of the order
of ||gk||. In this paper, for the purpose of measuring the overall effort of the trust-region method,
we consider each inner iteration of the criticality step as a regular trust-region iteration. By
doing so we avoid the use of incumbent models (as done in [14]), which had to be used when
the criticality step was invoked and changed the models coming from the previous iteration.

The second modification generalizes [14] by subtracting to the actual decrease f(zx)— f(xg+
s) a multiple of a power of the trust-region radius. The idea is that if an iteration is successful,
then the actual decrease is larger than the predicted decrease plus a term of the form c;A?,
where ¢; > 0 and p > 1. When ¢; = 0 we recover the traditional scenario. When ¢; > 0, the
additional term will allow us to derive complexity bounds dependant of p. In particular, the
choice p = 3/2 will ask more from successful steps and lead to a worse WCC bound of O(e~3),



but such a choice will be instrumental in the analysis of complexity of the smoothing trust-region
approach of Section 4.

Algorithm 3.1 Derivative-free trust-region method (for smooth functions)

Initialization: Choose an initial point zy and an initial trust-region radius Ay € (0, Aypqz] for
some A4 > 0. Choose an initial model mg(xzg+ s). The constants 19, 71, ¥, Yine, A, and
B are given and satisfy the conditions 0 < 7y < m < 1 (with 1 # 0), v € (0,1), Yine > 1,
and A > (3>0. Let ¢ >0 and p > 1. Set k =0.

Step 1 (one step of the criticality step): If Ay > A|/gx||, then set zx11 = zx. Apply the
model-improvement algorithm to compute a fully linear model mygyq1 in B(zy1;7Ak).
If the next iteration skips the criticality step (meaning vAr < A||gr+1ll), set Agy1 =
min{Ag, max{vAg, B|lgr+1]/}}- If not, set Ap11 = yAg. Increment k£ by one and restart a
new iteration in Step 1. Otherwise (A; < Allgx||) and go to Step 2.

Step 2 (step calculation): Compute a step s that sufficiently reduces the model my, in the
sense of

2
(with Kfcq € (0,1]), and such that zy + s € B(zg; Ag).

Rfed .
mk(xk)—mk(xk-i-sk) > fe H9k||mln{||’|}g£€’;‘,Ak} (4)

Step 3 (acceptance of the trial point): Compute f(xj + s;) and define

far) — flag + sp) — 1 A
my(zr) — my(zk + si)

Pk =

If pr, > m orif px, > ng and my, is fully linear, then xx 11 = xx+si and the model is updated
to take into consideration the new iterate, resulting in a new model myiq(xg11 + ).
Otherwise the model and the iterate remain unchanged (my11 = my and x4 = ).

Step 4 (model improvement): If p; < 7; use a model-improvement algorithm to

e attempt to certify that my is fully linear on B(zy; Ag),
e if such a certificate is not obtained, we say that my is not certifiably fully linear and
make one or more suitable improvement steps.
Define my1(zx + s) to be the improved model.

Step 5 (trust-region radius update): Set

[Ak7 min{'yinCAky AmaxH it pp > n1,
{vAr} if pr <m and my is fully linear,
{Ax} if pr <m and my

is not certifiably fully linear.

Ak+1 S

Increment k by one and go to Step 1.

There are essentially five types of trust-region iterations resulting from Algorithm 3.1 (crit-
ical, successful, acceptable, unsuccessful, model-improvement) but we will split the critical iter-
ations in two types depending on whether the trust-region radius is reduced or not. Below is a
description of these iterations and the symbols used to define their indices.



1. Critical iterations (C"), taken at Step 1 and where the trust-region radius is reduced.

2. Critical iterations (C""), taken at Step 1 and where the trust-region radius is not
reduced.

3. Successful iterations (S), taken at Step 3 when p; > n; (the trial point is accepted and
the trust-region radius is kept or increased).

4. Acceptable iterations (A), taken at Step 3 when pi > 79 and the model is fully linear
(the trial point is accepted and the trust-region radius is decreased).

5. Unsuccessful iterations (U/), taken at Step 3 when py < 19 and my is fully linear (the
iterate is kept and the trust-region radius is reduced).

6. Model-improving (M), taken at Step 4 when pi < 71 and my is not certifiably fully
linear (the iterate and the trust-region radius are kept but the model is improved).

Whenever there are (more than one) consecutive model-improvement steps, we count the
whole series of them as one model-improvement iteration. We know that the cost in function
evaluations of such an iteration in M (or any iteration in C) is of the order of n for a single
function (see [15, Chapter 2]).

For analyzing the algorithm, we gather all iterations that are not successful in N'=CU AU
UUM, where C =C"UC™, and all iterations where Ay is reduced in R = C" U AUU. Due to
Step 1, a reduction of the trust-region radius in the criticality step (k € C") can occur in two
forms: (i) Agy1 = vAx (when k is not the last iteration of a series of critical iterations or when
it is and B|lgk11]| < vAg), and in such a case we will say that k € CI. (i) Agy1 = Bl grl
(when k is the last iteration of a series of critical iterations and YA < S| gk+t1]| < Ag). The
trust-region radius is never increased in the criticality step, being kept constant when k is the
last iteration of a series and f||gr+1]| > Ax.

The two modifications described above do not restrict the general setting of [14]. However, a
careful reader would notice that in [14] the criticality step is only applied when ||gx|| < €., with
€. > 0. In our algorithmic presentation this would mean that a series of critical iterations is only
started under the same condition. Doing this however does not affect our theory. It certainly
does not have any impact on the analysis of global convergence. Selecting €. appropriately, e.g.,
€. > € when p = 1, where € is the threshold of stationarity, would not change the analysis of
WCC too. We will explain this in due course.

Given that substantial modifications in the presentation of the algorithm are made relatively
to the original description in [14], it becomes necessary to ensure that the global convergence
theory is still true. Part of it would have to be done anyhow for the sole purpose of analyzing
the WCC.

As in the convergence of most trust-region methods, we need to assume that the objective
function is bounded from below in the initial level set L(zo) and the model Hessians are uniformly
bounded. The function f is assumed to satisfy Assumption 2.1 (with f = F, Lyy = Lyj,, and
l=1).

Assumption 3.1 Assume f is bounded below on L(zg) = {z € R™ : f(z) < f(zo)}, that is
there exists a constant fiy, such that, for all x € L(xo), f(x) > fiow-



Assumption 3.2 There exists a constant Kppm > 0 such that, for all xp generated by the
algom'thm, HHkH < Kbhm-

We will first state that the trust-region radius converges to zero. The proof is a modification
of the proof of Lemma 5.5 in [14] (see also [15, Lemma 10.9]) and is left to the Appendix of the
paper.

Lemma 3.1 Let Assumptions 3.1 and 8.2 hold. Then lim Ay =0.
k——+o0

Having in mind the complexity results and the smoothing trust-region approach of Section 4,
we proceed by showing that the gradient of the objective function is of the order of the trust-
region radius whenever this one is reduced. The proof is left to the Appendix to let the paper

flow better, but one can see there that a big part of the argument is devoted to handle the new
way of counting critical iterations.

Lemma 3.2 Let Assumptions 2.1 and 3.2 hold. If k is an iteration for which Ay is reduced,
then
IVF(zp)ll < Cilg + CoAYT,

where
1 401
Cl = Keg + Co, Coy = , and Cy=——7-—. (5)
win {3, ) el =)
A global convergence result of the type liminfy o ||V f(zk)|| = 0 follows directly from

Lemma 3.2 and the asymptotic behavior of the trust-region radius.

We now derive the WCC analysis of Algorithm 3.1. We first need the following technical
lemma establishing a lower bound on the trust-region radius when the size of the gradient (of
the objective function) is larger than a given threshold (see the Appendix for a short proof).

Lemma 3.3 Let Assumptions 2.1 and 3.2 hold. Let e € (0,1). Let ko be the first iteration where
Ay, is reduced. For every iteration k > ko of the algorithm, if |V f(x;)|| > € for j = ko,...,k,
then .

Ai > ACyemoTT (©

_ 1
where C'3 = min (1, (C1+ Cy) "““@*1’1)), with Cy and Cy given in (5).
We are now ready to count the number of successful iterations.

Theorem 3.1 Let Assumptions 2.1, 3.1, and 3.2 hold. Let kg be the index of the first iteration
where Ay is reduced (@hich must exist from Lemma 3.1). Given any € € (0,1), assume that
IV f(zko)l| > € and let k be the first iteration after ko such that ||V f(zg)|| < €. Then, to achieve

IV f(zp)|l < e, starting from ko, Algorithm 3.1 takes at most |S(ko, k)| successful iterations,

where

2,12
mefedy C3 min
2\

where C3 is given in Lemma 3.3 and S(ko, l;:) includes ko but excludes k.

|S(ko, k)| <
with
L =

1
10+ clprp,
KbhmA } 3



Proof. When k € S, using (4), ||gk|| > Ax/A, and applying Lemma 3.3, we have

212

__2 __pr
2)\ , 1} € min(p—1,1) —+ leypc'gemin(p—l,l) .

Kbhm

We then obtain by summing up all the successful iterations starting at ko that

max(p,2)

f(xko) - f(l'];) > ’S(k(]v E)‘Lemin(p_l’1)7
and the proof is completed. m

It is in the counting of successful iterations that performing a series of criticality steps only
when || gk|| < €. could have an impact. In fact, one would have instead ||gx| > min{e., A/}
when k € §. One possibility to fix the situation would be to select

1
€c = O(em)

and that would only impact the constants in the result. An alternative would be to pick e,
constant and consider Ay, sufficiently small so that min{e., Ag/A\} = Ag/A. Such a procedure
would conflict, however, with a proper WCC analysis since we would not know how many
iterations would be required for Ay to be below € A.

The next step of the analysis is to count all iterations after kg which are not successful.

Theorem 3.2 Under the conditions of Theorem 3.1, to achieve ||V f(x3)|| < €, starting from ko,
Algorithm 3.1 takes at most |N (ko, k)| other (not successful) iterations, where

_ _ 1
N (ko, k)| < (3 +4L1)|S(ko, )| + 4 (Lg - 1og7(e)€—7mm<p_l,n) ,

where C3 is given in Lemma 3.3, L1 = —log, (Yinc), and La = log,, (%)
0

Proof. For iterations k in Ry = CJ U AUU, A1 = vAg. For successful iterations k € S,
Akt1 < YineAg. For the others (k € CI"UM, where CI" = C\C;), Agr1 < Ag. Thus, we obtain

by induction

A < Ako%{i((:ko,k)\,ﬁm(ko,k)\_

As log(vy) < 0, one can then write

T 10 mc T
Ry (ko B < — 28U g oy -

- log(y)

log(Ary) , log(Af)
log(v) log(v) -

Lemma 3.3 guarantees (6) for j = ko,...,k — 1. As A; > yA;_; and again because log(y) < 0,
we have that )

log(Ag) _ log(y°Cs) | log(emn@=1D)

log(y) = log(v) log(7)
Combining the last two inequalities, one obtains

-1
7203) log(f min(p—l,l))

Ry (kB < LalS(ho, )]+ og, (5. e

0

9



Now, using log(z) < x — 1 for > 1, we reach

R (ko, B)| < Ll S(ko, k)| + Lo — log. ()~ =11, (7)

It remains to count the iterations that are in CI" and in M. After an iteration in CJ" (a
last critical iteration in a series of them), the model is fully linear, and thus the next iteration
is either successful, acceptable, or unsuccessful, giving

ICF] < ISI+[A[+ U] < |S]+[R,].
After an iteration in M, the next one is of one of the other types, and thus
M| < IS+ R[+ICF] < 2(IS] + R4])-
Thus,
N = [RyUCT UM| < [Ry|+[CY + [M] < 3IS|+4|R,],
which combined with (7) completes the proof. m

The two last theorems show that the number of iterations, after the first iteration ky where
the trust-region radius is reduced, that are needed to drive the norm of the gradient below ¢ is

__max(p,2)
O € min(p—1,1) .

It can be easily shown that kg is also bounded by such a quantity. From what we have seen in the
proof of Theorem 3.2, since there are no iterations in R until kg, one has ky < 4|S(0, ko)|. To
count the number of successful iterations up to kg — 1, we write, as in the proof of Theorem 3.1,
for such iterations k,

MKfed . 1 2 »
1A A
o\ mm{nbhm/\, } T aldy

Summing up all these iterations up to kg, and considering A, > Ag and € < 1, we obtain

flao) — flzn) ) Flao) — f(2k) ¢ LT (8)
min{AZ,AF}Ly — min{A3, A} L

MEfed . 1
Ly = —1 .
0 2\ mm{/’ibhm)\’ }+01

To state our final complexity result, one needs to make explicit the dependence of the con-
stants appearing so far in terms of the problem dimension n and the Lipschitz constant of the
gradient. It is known that the constants s,y and K¢y in the definition of fully linear models can
meet the following assumption (see, e.g., [15, Chapter 2]).

flzr) = f(op41) =

ko < 4|S(0,ko)| < 4

with

Assumption 3.3 The constants kep and keg in the definition of fully linear models satisfy
kef = O(Vnlvyf) and keqg = O(y/nLyy), where n is the problem dimension and Lyy is the
Lipschitz constant of the gradient of the objective function f.

10



Theorems 3.1 and 3.2 and the bound on kg given above, together with Assumption 3.3, lead
to the following result

Theorem 3.3 Let Assumptions 2.1, 8.1, 3.2, and 3.3 hold. To drive the norm of the gradient
below € € (0,1), Algorithm 3.1 takes at most

max(p,2) max(p,2)
O <(va\/ﬁ) min(?*plyl) 67 min(pfl,l) >

iterations. When p = 2, this number is of O(L%fne_Q).

Proof. It suffices to observe that for the constant L appearing in Theorem 3.1 we have
max(p,2) max(p,2)
% - (C;max(pz)) -0 <(C1 +02)min(pp1,1)> ) <Klmm(pp11)> ’
with k£ = max{kef, keg} and then to apply Assumption 3.3. m

Algorithm 3.1 takes at most O(n) function evaluations at critical and model-improving it-
erations and only one function evaluation at all other iterations. It is then possible to measure
the worst case effort also in terms of function evaluations.

Corollary 3.1 Let Assumptions 2.1, 3.1, 3.2, and 3.3 hold. To drive the norm of the gradient
below € € (0,1), Algorithm 3.1 takes at most

max(p2) __max(p.2)
O n(va\/ﬁ) min(p—1,1) ¢ min(p—1,1)

function evaluations. When p = 2, this number is of O(szfnze_z).

4 Smoothing trust-region methods

In this section we consider the unconstrained minimization of functions f : R® — R that are
locally Lipschitz continuous, but not necessarily differentiable or convex.

4.1 Smoothing functions

Given our objective function f we will assume, however, the existence and knowledge of a
smoothing function (see [7, 35]):

Definition 4.1 Let f : R™ — R be a locally Lipschitz continuous function. We call f : R™ x
R* — R a smoothing function of f if, for any u >0, f(-, p) is continuously differentiable in R™
and, for any x € R",

lim f(zp) = fa).

z—x,1ul0

Under reasonable assumptions, the smoothing trust-region methods derived in this section
will generate a sequence of points and a sequence of smoothing parameters (converging to zero)
for which the gradient of the smoothing function tends to zero. In other words, we will show that
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any limit point x, of that sequence of points is a stationary point of the smoothing function f ,
in the sense that 0 € G 7(z.), with

Gilz.) = {v:3N € Noo, () — (2,0) with Vf(z, ) — v},

where N, represents the set of infinite sequences. It is known that for certain types of objective
functions and corresponding smoothing functions, co G f(zx) = 9f(x), where 0f(z.) denotes
the Clarke subdifferential of f at ., a result that has been called gradient consistency [10].
One way to guarantee gradient consistency is subdifferential regularity of f at x. (see [30,
Theorem 9.67]). Gradient consistency has also been studied in the papers [2, 8]. Thus, in
those cases, the smoothing trust-region methods are capable of generating a sequence of iterates
converging to Clarke stationary points.

The method developed in this section could be used for minimizing composite functions of
the type f = g + h(F), where h : R® — R is non-smooth with a known smoothing function
and g : R® — R and F : R” — R’ are assumed smooth (continuously differentiable). The
functions g and F' can be a black box or a zero-order oracle, in the sense that one does not
access to derivative information, only function values can be evaluated.

4.2 The algorithm

Following what has been done in [21] for direct search, we introduce a smoothing trust-region
algorithm for the unconstrained minimization of a locally Lipschitz continuous objective func-
tion f for which a smoothing function f is known. The idea is simple and consists of the
application of Algorithm 3.1 to the smoothing function for decreasing values of the smoothing
parameter p. Each outer or main iteration (Algorithm 3.1 applied to f for a fixed value of 1)
is stopped when the trust-region radius becomes smaller than a function r(u) of the smoothing
parameter.

Algorithm 4.1 (Smoothing trust-region method)
Initialization

Choose z_; with f(x_1) < 400, Ag >0, po > 0, and o € (0,1).
For k=0,1,2,...

1. Trust-region method for a fixed smoothing parameter: Apply Algorithm 3.1
to f(-, ux) (starting from yo ,, = x,_1) generating points yo k, . . ., Yj,. , until Aj, 115 <
r (k).

2. Update of the smoothing parameter: Set x;, = y;,  and decrease the smoothing
parameter: pg4+1 = oU.

As we will see next, each outer iteration is well defined (in the sense of stopping in a finite
number of inner iterations) and, moreover, Algorithm 4.1 will stop under a criterion of the form

Mk < [tol where Htol € (O’MO)'
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4.3 Global convergence

We will analyze the global convergence of the smoothing trust-region method (Algorithm 4.1)
under the following assumptions, which are the natural counterparts, for the smoothing function,
of the ones assumed in the smooth case of Section 3.

Assumption 4.1 For all k: f(-, i) has a Lipschitz continuous gradient with constant va(,uk)
on an open set containing Leni(yo k), see (1), with L(yor) = {y € R™ : f(y, ux) < f(yok, ix) }-
Assumption 4.2 For all k: the functions f(-, ug) are bounded below in L(yo ).

Each inner iteration of Algorithm 4.1 consists of one iteration of Algorithm 3.1 using a
quadratic model now written as

- ~ N 1 ~

My k(Uik+ 5 k) = Fik+3 ks + §STHJ,I<:S-
As in Section 3, we will require all these model Hessians to be uniformly bounded.
Assumption 4.3 There exists a constant Rppm > 0 such that, for all j,k, HﬁkH < Rbhm-

One can immediately deduce that the smoothing parameter converges to zero.

Theorem 4.1 Let Assumptions 4.2 and 4.3 hold. Then klim wr = 0.

—+00

Proof. For each k, one knows, from Lemma 3.1, that lim; , o A;; = 0. Thus, one always
reaches the stopping criterion for every k and uy is reduced an infinite number of times, which
completes the proof. m

The above result triggers the following one. Note that () is part of the algorithmic design
and can be chosen in whatever most appropriate way.

Theorem 4.2 Let Assumptions 4.2 and 4.8 hold. If lim,or(u) =0, then k;hT Ay r=0.
—+4-00

Proof. The proof results from Theorem 4.1 and the fact that r(ug) > Aj 416 = YA, k- W

Global convergence of Algorithm 4.1 requires that r(u) goes to zero faster than the way
that the Lipschitz constant L f(u) of the gradient of the smoothing function goes to infinity
(see the theorem below). Later we will see that the optimal complexity bound asks for a
Lipschitz constant Ly 7(u) that does not go to infinity faster than 1/pu, in other words that
Lg¢(1) = O(1/p). There are smoothing functions satisfying this property as well as gradient
consistency, such as the smoothing function for the absolute value defined by Chen and Zhou [10]
and composite functions of the type ||F'||; where F is smooth [21].

Theorem 4.3 Consider the application of Algorithm 4.1 and suppose that f s a smoothing
function for f. Let Assumptions 4.1, 4.2, and 4.3 hold. Under these conditions, if lim, o r(p) =
0 and lim,yo Ly 7(1)r(p) = 0, then

Jim |V F )] = 0 )

and any accumulation point x. of {z} is a stationary point associated with the smoothing
function f.
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Proof. For each k, x; = y;, r, where j; is an iteration such that the trust-region radius is
reduced. Thus, in view of Lemma 3.2, we have

IV F (2 )| < Crlpn)Ajy e + CaA7

where now €y = C1(pk) depends on piy, through the dependence of Ly #(pk). Since C1(pk) =
O(Feg) = O(Lyg f(1k)), where Feg is the constant in the error bound (2) for the gradient of the

model of the smoothing function f, and r(ur) > Aj, 41,6 = 7Aj, k, one obtains

IV F @y )| < O(Lg i) )r (i) + Co AL
Then, due to Theorems 4.1 and 4.2, we obtain (9) and the proof is completed. m

If one considers a smoothing function f for which Lg#(n) = O(1/p), it suffices to choose
r(pn) = pl, with ¢ > 1, to successfully apply Theorem 4.3.

As a consequence of the above result, when the smoothing function of f satisfies the above
mentioned gradient consistency property at an accumulation point z,, one knows that z, is a
Clarke stationary point of the function f (since 0 € G j(x+) C co G j(x+) = 0 f(2+)).

4.4 Worst case complexity

We also follow here the same steps as in [21] and start by first counting the number of inner
iterations of Algorithm 4.1 to drive the smoothing parameter below a given threshold.

Theorem 4.4 Consider the application of Algorithm 4.1 using the term ci AP when calling
Algorithm 3.1 and r(t) = cot?, with p,q > 1 and c¢1,co > 0. Suppose that f is a smoothing
function for f. Let Assumptions 4.1, 4.2, and 4.3 hold.

Given any & € (0,1) such that € < g, let k be the first outer iteration such that P < €.
Under these assumptions, Algorithm 4.1 takes at most O (| log(§)|£~P9) inner iterations to reduce
the smoothing parameter below &, i.e., to have ug,; <§.

Proof. First let us consider each inner loop of Algorithm 4.1 where a trust-region method
is applied for a fixed uy > £. This loop is repeated until there is an iteration (ji, k) for which
the trust-region radius is reduced and Aj, 11 < r(ug) = capi.

For each k, the number of inner iterations needed to reach the first iteration (jox, k) where
the trust-region radius is reduced is of the O(1) (see (8)).

One has, for a successful iteration (7, k), since A > CQ/.LZ, that

5 < K fed . 9jk
FWjer 1) = F (Y1 1) = m%\\gxk\l min {L;LH Aj,k} +aldl, = adu.
m
The number of inner successful iterations | Sk (jo.k, jr)| from (jo, k) until (ji, k) is then bounded
by

fN(ijkkvﬂk) _.]Elowk 1
Skljors jr)| < b k1

Similar to the first part of the proof of Theorem 3.2, the number of the other inner iterations
is bounded as follows (remember that 0 <y < 1)

IRi(jo k> Jr)| < L1lSk(Joks i)l —1og (Ajy . k) +log, (Aj, k)
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The initial trust-region radii Ajo,k,k are considered constants. To bound the third term, recall
that Aj, x> 7(uk) = capj > 289, and thus, since p > 1, log, (A, x) = O (£777). We conclude
that the maximum number of iterations needed in each inner loop minimization is O ({779).

Finally, let us count the number of outer loops. From the updating scheme of the smoothing
parameter, one has 11 < o%ug. Thus, the number of outer iterations required to reach
ipyr < € satisfies k > [log(€) — log(ko)]/ log(o), and the proof is completed. m

There are situations where the Lipschitz constant of the gradient of the smoothing function
is of the order of 1/u: see [10] for the absolute value |-|, [21] for the composite function || F||; with
F smooth, and [28] for smoothing functions using Gaussian densities. Under such an assumption
on Lg f(,“) it is possible to bound the gradient of f at the end of the last outer loop.

Theorem 4.5 Let all the assumptions of Theorem 4.4 hold and assume also that va(ﬂk) =
O(1/pk). Suppose also that the constant k = max{Rcf, Reg} in the bounds of the fully linear
models of f satisfies Assumption 3.5.

Given any & € (0,1) such that & < pg, let k be the first iteration such that M1 <& Under
these conditions, one has

IVF@gmll = O (Vagr™" +¢7).
Proof. From Lemma 3.2 and Aj, = Aj, 115/7 < (c2/7)u}, one has
IVF(p mll < Cridj, + CaA"Y < Culea/y)ul + Colea/y )P u V1.

The proof is completed by noting that C1 = O(k) = O(y/nLgf) = O(y/n/p) and that, from
Wiy1 = Optf, one has uz < /0. =

This result suggests that p = 3/2 and ¢ = 2 are the optimal choices in the sense that
|V f(zz, p7) || becomes O(y/n€). We are thus finally ready to state a WCC bound for driving both
the norm of the smoothing gradient and the smoothing parameter below a common threshold.

Corollary 4.1 Under the assumptions of Theorem 4.5 and when ¢ = 2 andp = %, Algorithm 4.1
takes at most O (|log(€)|¢73) iterations (and at most O (n|log(€)[£™?) function evaluations) to
reduce the smoothing parameter below & € (0, 1), ending such process with

IV f (g, 1) | = O(Vnf). (10)

Equivalently, the number of iterations needed to reach ||V f(xg, uz)|| < € and pz < € =
¢/(yv/nC), where C' > 0 is the constant that multiplies \/n in the right hand side of (10), is

O (n?[|Tog(€)| +log(n)]e™*)
leading to the following overall WCC bound in terms of the number of function evaluations

O (| 10g(e)] + log(m)]e ™).
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5 Trust-region methods for composite functions

In this section we consider the unconstrained minimization of composite functions of the type
f = h(F), where h : R® — R is a convex, possibly non-smooth function that is at least globally
Lipschitz continuous (with constant L; > 0). The vectorial function F : R® — R’ is assumed
smooth (continuously differentiable) but it is considered that only function values can be com-
puted, not derivatives. The setting can be easily extended to f = g+h(F') aslong as g : R" — R
is smooth and one can build convex and fully linear models of it.

Given x € R™ and A > 0, if the Jacobian J(z) of F' was known, we could consider the trust-
region subproblem min < ( (x,s), where [(x, s) is the following approximation of f around x
(composition of h with a linear approximation of F'):

l(x,s) = h(F(z)+ J(x)s).
The decrease predicted by the step would then be

U(z,A) [(x,0) ||£1|r|11SnAl(x, s).
U(x,1) was used in [4] as a criticality measure for f. In fact, x, is a critical point of f if and
only if (x4, 1) =0 (and ¥(x,1) is non-negative and continuous for all z), see [33, Lemma 2.1].

In this paper, since we assume that the Jacobian of F' is not available, we replace I(z, s)
by a composite model of the form "™ (z,s) = h(m(z + s)), where m(z + s) = F(z) + J™(z)s
is a fully linear model of F' (in the sense of Definition 2.1). One possibility to compute such
a model is to set the lines of the matrix J™(x) to the transposes of the simplex gradients of
the components of F' at = (see [15, Chapter 2]). The decrease predicted by the solution of the
trust-region subproblem miny<a I"(, s) is then

m _ m : m
U™ (z, A) I"™(z,0) ”g'uSnAl (z,s),
and ¥ (x, 1) is our model of criticality measure. In practice, and when h has a piecewise linear
structure such as the one given by the ¢; or /o, norms, the model m(z + s) will be considered
linear to render easy the solution of the trust-region subproblem.

In the following we will show that the difference between the true and the model criticality
measures is of the order of the trust-region radius. This result was proved originally in [23,
Theorem 1] assuming linearity of the model m(z+s) in s, but it can be made simpler as we show
below if we only use the fully linearity of the models. Let t € B(0; A), s¢ = argmin < [(z+, s),
and sy = argmin <, " (2 + ¢, ). Consider first the case V™ (z +¢,1) < ¥(z +¢,1). Since
(x4 t,s7") <1I™(z +t,s), using (3),

U(x+t,1)—9"(x+t,1) < l(x+t0)—l(x+ts)—[1"(x+t0) —1"(zx+1t,s)]
= hMF(z+t)+J™(x+t)s) —h(F(z+1t)+ J(z+1)s)
< LulJ(@+8) = I @+ Dl < (Liieg) A,

In the case ¥(z+t,1) < U™ (x+t, 1), it can be proved similarly that U™ (z+1¢,1) —¥(x+1¢,1) <
(Lpkeg)A. Therefore, we have

W(x+t,1)—¥"(x+1t1)] < koA, VteB(0;A), with Ky = Lpkeg. (11)
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5.1 The algorithm

A derivative-free trust region algorithm for composite functions can be stated in the same vein as
it was done in Algorithm 3.1 for smooth functions. The differences lie uniquely in the definition
of the criticality measure, in the trust-region subproblem, in the definition of the predicted
decrease, and in the fact that m models F' in f = h(F) (instead of modeling f directly as
in Algorithm 3.1). There is no need now to consider the term ¢;A} in pg, as its inclusion in
Algorithm 3.1 was primarily done for deriving the complexity bounds for the smoothing trust-
region approach of Section 4.

Algorithm 5.1 Derivative-free trust-region method (for composite functions)
Initialization: Same as in Algorithm 3.1 but setting ¢; = 0.
Step 1 (criticality step): Same as in Algorithm 3.1 but with ||gx|| replaced by ¥ (xg,1).

Step 2 (step calculation): Compute the step s by solving

min " (x, s).
s <A (@,

Step 3 (acceptance of the trial point): Same as in Algorithm 3.1 with my(zx) —mg(zk+sk)
replaced by ¥ (g, Ag).

Step 4 (model improvement): Same as in Algorithm 3.1.

Step 5 (trust-region radius update): Same as in Algorithm 3.1.

Similar to Algorithm 3.1, there are six types of iterations and we will use the same notation
as in Section 3. For the rest of the current section, we use ¥ and ¥} instead of W¥(xy,1) and
U™z, 1), respectively.

5.2 Global convergence

As we said before we will require h to satisfy the following assumption.

Assumption 5.1 The function h : R¢ — R is convez, globally Lipschitz continuous, with Lips-
chitz constant Ly > 0, and bounded from below.

The following lemma and its proof are an adaptation of Lemma 2.1 in [4].
Lemma 5.1 Let Assumption 5.1 hold. Then W™ (zy, Ap) > min{Ay, 1} ¥}

Proof. When Ay > 1, from min g <; I"™ (7, s) > minjg<a I™ (7, ), we have U™ (z, Ag) >
Ut When Ay < 1, consider sy, = argmin <; I™ (2, s). Then,

\I/m(xk,Ak) Z lm(xk,O)—lm(wk,AksZ) Z Ak[lm(ack,O)—lm(xk,SZ)] = Ak\I/m,

where the first inequality holds due to I"*(xy, si) < I (2, Agsj) and the second inequality holds
due to the convexity of ["™. m

In our derivation of the WCC bounds we need to make sure that there exists at least one
iteration for which the corresponding trust-region radius is reduced. This is guaranteed by the
following lemma.
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Lemma 5.2 Let Assumption 5.1 hold. Then lim Ay =0.
k—4o00

Proof. The only differences from the proof of Lemma 3.1 lie in the use of the predicted
decrease. Now, when k € S, we have f(xg)— f(zr11) > mY™(zk, Ax). Then by using Lemma 5.1
and ¥}" > Ag /X (since the iteration is not in C)

f(@r) = f(@rg1) = mmin{Ag, TIATTA.

In the following lemma, which can be seen as a combination of Lemma 3.2 and Lemma 2.2
in [4], we bound the criticality measure by a constant multiple of the trust-region radius.

Lemma 5.3 Let Assumptions 2.1 and 5.1 hold. If k is an iteration for which Ay is reduced,
then

1
-
a = mind i@, c, )

-m
2L hKef’

where Cy = and ky comes from (11).

Proof. Let us suppose first that £k € AUU. To later arrive at a contradiction, suppose that

AL < min{\/o4\l’;€n,04\l’;€n}. (12)
Using (3) and Lemma 5.1, we have

|A(F (2k)) = h(m(zr)) — [P(F (zk + sx)) = h(m(@r + sl __ (2Lnkes) Af
Um(zg, Ag) ~ min{Ag, 1}‘1121

ok — 1| =

If Ax <1, then, from Ay < Cy¥7,

(2th€ef)Ak < (2Lh/<;ef)04\1171;”

I — 1] < v < v = 1—-mn.

If Ap > 1, then, from Ay < /Cy¥7"

(2Lnkc) AR (2Lnkies)Ca¥y

ok — 1] < < = 1-—mn.
vy v

We then obtain py > n; implying k& € S, which contradicts k € AUU. Thus, (12) is not true.
Now, from (11) and the fact that & is not in C,

U < W = W[+ 07" < kol + 03 < (ked +1)
and thus, ¥} > W /(kyA + 1). Hence, since Ay > min{,/C4 ¥}, C4¥}"}, we have

AL > min{\/C4\I/k,C4\I/k}
ko= Ko+ 1 '

If the reduction in the trust-region radius occurs in the criticality step, then similarly to the
last part of the proof of Lemma 3.2 (with ||V f(zg)|l, |gx|, and keq replaced by Wy, U7, and
Kw, respectively), it can be shown that Ap > Uy /(ky +1/8). =

A global convergence result can then be easily proved at this point of the analysis.
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Theorem 5.1 Let Assumptions 2.1 and 5.1 hold. Then lkim inf Uy, = 0.

—+00

Proof. By Lemma 5.2, there is an infinite subsequence of iterations where the trust-region
radius is reduced, to which then we can apply Lemma 5.3. =

5.3 Worst case complexity

We proceed by stating the analog of Lemma 3.3.

Lemma 5.4 Let Assumptions 2.1 and 5.1 hold. Let e € (0,1). Let ko be the first iteration
where Ay is reduced. For every iteration k > ko of the algorithm, if ¥; > € for j = ko,...,k,
then

Ap > Cse.

min{\/ C4,C4} 1
kg A+1 ' ky+1/8

where Cs = min{ } and Cy is given in Lemma 5.3.

Proof. When k € R, it follows directly from Lemma 5.3, U, > ¢, and € < 1, that Ay > Cse.
When k ¢ R, the argument is the same as in the last paragraph of the proof of Lemma 3.3. m

Again, to count the total number of iterations first we start by counting the number of
successful iterations.

Theorem 5.2 Let Assumptions 2.1 and 5.1 hold. Let ko be the index of the first iteration where
Ay is reduced (which must exist from Lemma 5.2). Given any € € (0,1), assume that ¥, > €
and let k be the first iteration after ko such that Vi < e. Then, to achieve ¥i < €, starting
from ko, Algorithm 5.1 takes at most |S(ko, k)| successful iterations, where

_ )\(f(xko) - flow) -2
[Stho K)o T Ca

Cs is given in Lemma 5.4, and S(ko, k) includes ko but excludes k.

Proof. Let k > ko be the index of a successful iteration. Using Lemma 5.1, UJ* > Ay/A,
Lemma 5.4, and € € (0, 1), we obtain

flxr) = f(wpg1) = mY™ (zg, Ap) > mmin{Ag, 13"

A
m min{Ak,l}Tk > %min{*yC%e,l}vC%e

v

v

% min{yCj, 1}7Cse>.
We then obtain by summing up all the successful iterations starting at ko that
F@r) = flag) = |S(ho, B)|% min{yCs, 17 Cse?,

and the proof is completed. ®

Now, we count the number of iterations after ky that are not successful.
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Theorem 5.3 Let Assumptions 2.1 and 5.1 hold. Let kg be the index of the first iteration where
Ay is reduced (which must exist from Lemma 5.2). Given any € € (0,1), assume that ¥y, > €
and let k be the first iteration after ko such that Ui < e. Then, to achieve ¥ < ¢, starting
from ko, Algorithm 5.1 takes at most |N (ko, k)| other (not successful) iterations, where

N (ko, k)| < (3+ 4L3)[S(ko, k)| + 4 (Ls — log, (e)e ™),

where Cs is given in Lemma 5.4, Ly = —log, (YVinc), and Ly = log,, (Wiifse)
0

Proof. The proof, except using Lemma 5.4 instead of Lemma 3.3, follows along the lines of
that of Theorem 3.2. m

The number of iterations necessary to achieve the first iteration kg (where the trust-region
radius is reduced) is O(1), and thus k is of the order of O (¢7?), and the explanation is similar
to the one for the smooth case discussed after Theorem 3.2. Again, as we saw in previous
sections, some of the constants appearing in the bound on the number of iterations depend on
the dimension of the problem space and on Lipschitz constants of first-order derivatives. In the
case of this section we frame this dependence in the following assumption, which can be easily
met if the model of F' is formed by F(xy) + J™(x)s where the transposed rows of J™(xy) are
computed as simplex gradients for the entries of F' centered at xy.

Assumption 5.2 The constants Kep and keg in the definition of fully linear models satisfy
kef = O(VnLy,) and keg = O(\/nL;.), where n is the problem dimension and L, is the
largest of the Lipschitz constants of F;, i =1,...,£.

Theorem 5.4 Let Assumptions 2.1, 5.1, and 5.2 hold. To drive V(-,1) below € € (0,1), Algo-
rithm 5.1 takes at most O (ne_Q) iterations.

Proof. The proof is similar to that of Theorem 3.3. =

The dependence of the bound on L ;, was omitted but is L%F as in Theorem 3.3 when p = 2.

Corollary 5.1 Let Assumptions 2.1, 5.1, and 5.2 hold. To drive U(-,1) below € € (0,1), Algo-
rithm 5.1 takes at most O (€n2e_2) function evaluations.

It can then be seen that, in terms of e, the bound on the number of function evaluations
derived in this paper is better by a factor of |log ¢| than the bound O(|log e|e~2) derived in [23].

6 A numerical illustration

We have compared the numerical behavior of Algorithm 4.1 (smoothing trust-region approach)
and a variant of Algorithm 5.1 (composite trust-region approach) on a test set suggested in [26]
consisting of 53 problems of the form mingegn f(z) = [[F(x)|l1. In this test set, F' varies
among 22 nonlinear vector functions of the CUTEr collection [22] with 2 < n < 12 and different
initial points.

In the smoothing approach (Sdfo-tr) we used the trust-region implementation described
in [1] for each smooth outer iteration. Algorithm 4.1 was run using po = 104, 7(x) = min(1075, 1?),
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and the update 1 = px/100. The algorithm was stopped when iy reaches 10~%, which, given
the initial value for pg, resulted in doing five outer iterations (k =0, 1,2,3,4). The final iterate
and trust-region radius of the previous outer iteration were provided as the starting one for the
next.

The same code from [1] was then adapted as the composite approach (Cdfo-tr), by changing
the criticality measure and the trust-region subproblem. We used as models of F' the linear ones
mi(zr + s) = F(zk) + J™(zk)s, where the transposed rows of J™(zy) were regression simplex
gradients computed using the 2n points xj4e; min(1072, A},) (with e; the ith coordinate vector).
Since these models are always fully linear, no critical or model-improvement iterations were
considered. The trust-region ball was defined using the f,.-norm so that the resulting trust-
region subproblem was an LP (which was solved using the routine linprog.m from the Matlab
Optimization Toolbox).

For both methods, we set the common initial parameters as Agg = 1 (Sdfo-tr), Ay =1
(Cdfo-tr), mo = 1073, m = 0.25, v = 0.5, Vine = 1 except when pp > 0.75 where 7p. = 2 and
Apaz = 103, For Sdfo-tr, we set p = 1.5, ¢; = 1 and for Cdfo-tr we set ¢; = 0.

A data profile [26] is given in Figure 1(a), indicating the percentage of problems solved by
the two methods under consideration as function of a budget of objective function evaluations
(scaled by n+1). A problem is considered solved when

f(wo) = f(z) = (1 =0)[f(wo) = fil,

where 6 € (0,1) is a level of accuracy, o is the initial iterate, and f7, is the best objective value
found by the two methods for a budget of 1500 function evaluations. The value of 8 was set
to 1077.

Data Profile for piecewise smooth problems, 8= 1e-7 Performance Profile for piecewise smooth problems,8= 1e-4
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(a) Data profiles. (b) Performance profiles in a logarithmic scale.

Figure 1: Performance and data profiles computed for a set of piecewise smooth problems,
comparing the smoothing and composite trust-region methods.

A performance profile [18] is then given in Figure 1(b), depicting how well a method per-
formed relatively to the other in reaching the same (scale invariant) convergence test [19], in our
case chosen as

f(x) = fo < O(fl +1]),

where 0 is the accuracy level and f, is an approximation for the optimal value of the problem
being tested. Each method curve describes (at 7 = 1) the fraction of problems for which the
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method performs the best (efficiency) and (for 7 sufficiently large) the fraction of problems
solved by the method (robustness). The value of § was set to 10~% and the budget of function
evaluations to 1500. The value of f, was selected as the best value attained by these two methods
and by those also tested in [16], to ensure that we indeed measure the real ability to solve the
problems.

Despite the fact of exhibiting a worse WCC bound, the smoothing approach worked much
better than the composite one, which does not come as a surprise given the absence of curvature
exploration in the latter one. We then compared our smoothing trust-region approach with the
smoothing direct search introduced in [21], on the same set of problems. Data and performance
profiles are given in Figures 2(a) and 2(b), respectively, using the same levels of accuracy and
budget of evaluations. It can be seen that the smoothing trust-region approach worked better,
both in terms of efficiency and robustness.

Data Profile for piecewise smooth problems, 8= 1e-7 Performance Profile for piecewise smooth problems,6 = 1e-4
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Scaled budget of function evaluations 7 (log scaled)

(a) Data profiles. (b) Performance profiles in a logarithmic scale.

Figure 2: Performance and data profiles computed for a set of piecewise smooth problems
comparing the smoothing trust-region and direct-search methods.

7 Conclusions

This paper presented a unified coverage of the worst case complexity (WCC) of derivative-free
trust-region methods for unconstrained optimization, from the case where the function is smooth
to the case where it is non-smooth. In the non-smooth setting, we considered the general case of
Lipschitz continuity and the case of a composite type structure. The WCC bounds established
in the various cases were the expected ones, matching existent bounds for derivative-free or
derivative-based optimization. The novelty of the paper consisted of the way under which the
trust-region algorithms were analyzed, individually and all together.

The analysis of WCC of this paper can be refined along several ways. One possibility would
be to establish a power of —1 in € when f is convex and smooth. Another possibility is to
measure the effort in approaching second-order stationary points (which has already been done
in the Ph.D. thesis of the second author). Some extensions to constraints may be doable using
the methodology of this paper.
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Appendix

Proof of Lemma 3.1: First we assume that the number of successful iterations is finite.
Suppose that the number of iterations in Ry = C;UAUU is also finite. Then we would have an
infinite number of iterations either in C3" = C \ Cl, or in M. In the first case, a contradiction
would be reached since after each iteration in CJ" (a last in a series of critical ones) the model
18 fully linear and we would either have an iteration in S, A, or inU. In the second case, since
after a model-improvement iteration we have an iteration of different type, this would imply an
infinite number of iterations in CS, CJ", S, A, or U, which is not possible. Thus, there is an
infinite number of iterations in Ry = C5,UAUU. Hence, Ay is decreased an infinite number of
times by a factor of v, which leads to the convergence of Ay to zero.

Let us assume now that S is infinite. When k is in S, using the bound on the fraction of
Cauchy decrease (4), Assumption 3.2, and ||gk|| > Ax/A (since k is not critical),

ME fed . Ay,
o) = fonn) = Pt amin {2 A aal (13)
Given that S is considered infinite and f is assumed bounded from below, the right-hand side
of (13) has to converge to zero for k € S. Hence limges Ax, = 0, and the proof is completed
when there are only successful iterations. The proof can be easily concluded as in the proof of
Lemma 5.5 in [14).

Proof of Lemma 3.2: By assumption we have that either k is in R, = C; UAUU or
k ey =C\Cj and vAg < Bllgr+1]l < Ag.

Let us suppose that k € AUU. We will show first that ||gr|| < CoAx + CgAg_l. For that,
suppose by contradiction that this inequality is false, i.e., that

lgrll > CoAy +C2A£71- (14)
Using (4) and Cy > Kppm, one has
R fed . KRfed
mp(x) — mi(xg + sg) > %Hgkﬂ mln{ lox | ,Ak} > ) g | Ag. (15)
Kbhm 2

Hence, we have

s — 1] = fxg) = flzg + sk) — a A _1'

mg(wr) — my(Tr + si)
fzg) = flzg + si) — a A — my(xr) + mi(xr + sk)
mk(xk) — mk(xk + Sk)
f(zk + sk) — my(xp + si) f(zr) — my(xg)
my(xg) — mg(zx + sg) my(zx) — my(zk + sk)
ClAi
mp(wx) — my(Tr + Si)
4I€efAk ClAi_l

Kfcd

— Kredllgrll =5 gkl

IN

S 1_7717

where the second inequality holds because of the fully linearity of the model (3) and of inequal-
ity (15), and the third inequality comes from (14) and Co > 8kcf/kfeca(l —m). Therefore, we
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have p > m1, implying that the iteration is successful and contradicting the fact that k € AUU.
We have thus proved that (14) is false. To establish the result of the lemma when k € AUU, it
remains to use (2) and write (adding and subtracting g )

IVF@i)ll < kegAk + Colg + CoAL™H = CLAL + CoAY

It remains to consider the case where the reduction occurs in the criticality step. If k is not
the last critical iteration in a series of them, then Apy1 = yAy (k € C}) and Agy1 > M| gri1l]-
Thus (adding and subtracting now gg11),

IVl = IV (@re)ll < FegBArir + [[grrall

Ay 1 _
< "'feg’YAk + 7T < <"‘feg + 5) YA < C1Ag + C2AZ 1-
If k is the last critical iteration in a series of them, then due to Apy; = min{Aj; max{yAg,
Bllgk+1ll}} and the assumed reduction in the trust-region radius, either Agi1 = YA > Bl gr+1]|
(k €Cl) or yAr < Agy1 = Bllges1ll < Ax. In the first case we have |gr1l| < vAR/B < Ag/f
and in the second case we have ||gp+1|| < Ar/B. Thus, again,

A

IVF @)l = IV f@rn)ll < ke + 55
Ak o 1 pfl
S K}egAk‘F? = K}eg‘i—g Ak S C]_Ak"‘CQAk .

Proof of Lemma 3.3: Let k > kg be an iteration where Ay is reduced. When Ap < 1, by
applying Lemma 3.2,

e < (C1+ C2) max{Ayg, Aﬁ_l} < (Cr+ CQ)Azﬂin(p—l,l).

If A > 1, then Ay > €. Hence, considering both cases of A < 1 and A > 1, and the fact that
e < 1, we have A, > Csel/™n®=1Y  The lemma is proved for all iterations k € R such that
k> ko.

At iterations in R = C"UAUU, Ay is decreased by a factor of at most y. At iterations in
C"USUM, Ay is not decreased. Thus, we can backtrack from any iteration k in C™ US UM,
to the previous iteration in R, say ki (possibly ki = ko), and obtain Ay > vAy, .
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