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Abstract

In this paper, we investigate the use of DC (Difference of Convex functions) models and
algorithms in the application of trust-region methods to the solution of a class of nonlinear
optimization problems where the constrained set is closed and convex (and, from a practical
point of view, where projecting onto the feasible region is computationally affordable). We
consider DC local models for the quadratic model of the objective function used to compute
the trust-region step, and apply a primal-dual subgradient method to the solution of the
corresponding trust-region subproblems.

One is able to prove that the resulting scheme is globally convergent for first-order sta-
tionary points. The theory requires the use of exact second-order derivatives but, in turn,
the computation of the trust-region step asks only for one projection onto the feasible region
(in comparison to the calculation of the generalized Cauchy point which may require more).

The numerical efficiency and robustness of the proposed new scheme when applied to
bound-constrained problems is measured by comparing its performance against some of the
current state-of-the-art nonlinear programming solvers on a vast collection of test problems.

Keywords: Trust-region methods, DC algorithm, global convergence, bound constraints.

1 Introduction

Consider the constrained nonlinear programming problem

min f(x) subject to x ∈ C, (1)
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where C ⊆ Rn is a nonempty closed convex set and f : Rn → R is a twice continuously differen-
tiable function. We have in mind a constraint set C over which projections are computationally
affordable (like a set defined by bounds on the variables or other simpler settings such as the
one considered in [9]). However, the algorithms and theory proposed in this paper apply to any
closed convex set C.

Trust-region methods are widely acknowledged to be among the most efficient and robust
methods for solving nonlinear optimization problems (see [8, 26]). A trust-region step results
from the approximate solution of the trust-region subproblem, where a quadratic model of f
is minimized over a trust-region ball of pre-specified size, possibly intersected with the feasible
region C in the constrained case. When constraints of the form x ∈ C are of polyhedral type,
they can be naturally added to the trust-region subproblem (which would then consist of a
quadratic program if the norm used in the trust-region ball is the `∞ one). Most trust-region
methods compute the trust-region step in a way that the decrease produced in the quadratic
model is a fraction of what is obtained by the so-called generalized Cauchy point, computed by
determining the gradient-projected path (see [8, Chapter 12]).

The purpose of this paper is to integrate the DC Algorithm (DCA) in a trust-region frame-
work for the solution of problem (1). DCA is a primal-dual subgradient method designed for
solving a general DC program, i.e., an optimization problem where one minimizes the difference
of convex functions on the whole space. Note that minimizing a DC function over a convext set
C can be restated as a general DC program by using the indicator function χC of C. We apply
DCA to the approximate solution of the trust-region subproblems, exploring specific DC decom-
positions of the quadratic models. The overall approach is shown to be globally convergent to
first-order critical points (when the second-order information used in the quadratic model DC
decompositions is exact). We will see that the theory requires only one DCA iteration to solve
the trust-region subproblem, which amounts to only one projection onto the feasible region (and
here we recall that the computation of the generalized Cauchy point may take more than one
projection).

Our numerical experiments are focused entirely on the solution of bound-constrained prob-
lems. The numerical tests reported in this paper showed us that a few (cheap) DCA steps suffice
to compute decently accurate trust-region steps, resulting in an efficient and reasonably robust
algorithm. The minimization of a nonlinear function subject to bounds on the variables has been
the subject of intense previous work, along many possible avenues. Major classes of algorithms
for bound-constrained problems include the ones based on: active or ε-active set methods (see,
e.g., [1, 13, 32] and more recently [18] for a short review on active set methods); trust-region
methods (see, e.g., [6, 7, 14, 22, 24]); interior-point methods (see, e.g., [5, 10, 19]); line-search
projected gradient methods (see, e.g., [2] and the references therein; see also [3, 25, 35] for a
limited memory BFGS method); and filter type methods (see [31]). The approach proposed and
analyzed in this paper belongs to the trust-region class but also shares the flavor of projected
gradient methods.

We organize our contribution in the following way. In Section 2 we provide some background
on the DC Algorithm. Our DC trust-region method is introduced and analyzed in Section 3.
The two following sections are devoted to present our numerical findings. First we provide in
Section 4 practical details of the implementation of the DC trust-region method, as well as
information on how the numerical experiments were done and compared. The numerical results
are then presented and commented on in Section 5. Some final conclusions are reported in
Section 6. The norms and inner products used in the paper are the Euclidian ones.
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2 DC programming, algorithm, and models

Let us start by recalling some basic notions from Convex Analysis and Nonsmooth Calculus
which will be needed afterwards (see [4, 29, 30]). In the sequel, the space Rn is equipped with
the Euclidean inner product 〈·, ·〉. Let Γ0(Rn) be the ‘convex cone’ of all the lower semicontinuous
proper (i.e., not identically equal to +∞) convex functions defined on Rn and taking values in
R ∪ {+∞}.

For g ∈ Γ0(Rn), the subdifferential ∂g(z) of g at a point z in its effective domain {z ∈ Rn :
g(z) < +∞} is defined by

∂g(z) = {w ∈ Rn : 〈w, d〉 ≤ g(z + d)− g(z), ∀d ∈ Rn}

(by convention ∂g(z) = ∅ if z is not in the effective domain of g). The indicator function χC of a
nonempty set C is defined by χC(z) = 0 if z ∈ C, +∞ otherwise. The normal cone N(C, z) of a
nonempty, closed, convex set C at z ∈ C (the polar of the tangent cone) coincides with ∂χC(z),
i.e.,

N(C, z) = {u ∈ Rn : 〈u,w − z〉 ≤ 0, ∀w ∈ C} = ∂χC(z).

For ϕ ∈ Γ0(Rn), its conjugate ϕ∗ is defined by

ϕ∗(w) = sup{〈z, w〉 − ϕ(z) : z ∈ Rn}

and it holds ϕ∗ ∈ Γ0(Rn) and (ϕ∗)∗ = ϕ. The latter relation provides the crucial characterization
of ϕ ∈ Γ0(Rn) as a pointwise supremum of a collection of its affine minorants:

ϕ(z) = sup{〈z, w〉 − ϕ∗(w) : w ∈ Rn}. (2)

A standard DC program is of the form (with the usual convention (+∞)− (+∞) = +∞)

inf{f(z) := g(z)− h(z) : z ∈ Rn}, (3)

where g, h ∈ Γ0(Rn). DC programming deals with the vector space DC(Rn) = Γ0(Rn)−Γ0(Rn).
Such a function f is called a DC function, and g−h a DC decomposition of f , while the convex
functions g and h are the DC components of f. Note that minimizing a DC function f = g − h
on a nonempty closed convex C set can be recast into the standard form (3) by changing g to
g + χC .

Using (2), the DC duality [21, 27, 28] associates a primal DC program with its dual defined
as

inf{h∗(w)− g∗(w) : w ∈ Rn},

which is also a DC program with the same optimal value.
The DC Algorithm (DCA) is based on local optimality and DC duality, and has been intro-

duced by Pham Dinh Tao in 1986 and extensively developed by Le Thi Hoai An and Pham Dinh
Tao since 1994 (see [20, 21, 27, 28], and the references therein), being successfully applied to a
number of classes of problems, including large-scale instances. DCA constructs two sequences
{zl} and {wl} (of trial solutions of the primal and dual programs, respectively) which are im-
proved at each iteration such that: (i) the sequences {g(zl)− h(zl)} and {h∗(wl)− g∗(wl)} are
decreasing; (ii) their corresponding limit points z∞ and w∞ satisfy local optimality conditions,
respectively for the primal and the dual. DCA is a descent method, without line search but
globally convergent.
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Algorithm 2.1 (DC Algorithm (DCA)) Initialization Choose z0 ∈ Rn.

For l = 0, 1, . . .

1. Compute wl ∈ ∂h(zl).

2. Compute zl+1 ∈ ∂g∗(wl), i.e., zl+1 is a solution of the convex program

min{g(z)− 〈z, wl〉 : z ∈ Rn}.

If some stopping criterion is met, then stop, otherwise go to Step 1.

Output Return zl+1 and g(zl+1)−h(zl+1) as the best known approximate solution and objective
function value, respectively.

The type of algorithms for solving problem (1) of interest to us in this paper are based on the
iterative minimization of quadratic models on the intersection of C with a trust region, and for
this purpose we want to use DC programming. Note that when the set C is defined by bounds
on the variables and we choose the `∞-norm for the trust region, the resulting trust-region
subproblems will consist of minimizing a quadratic function subject to box constraints.

In the sequel, the closed ball with center x ∈ Rn and radius ε > 0 is denoted by B(x, ε).
Given x ∈ Rn, we form a Taylor quadratic model of f around this point

m(x+ p, x) = f(x) + 〈∇f(x), p〉+
1

2
〈p,∇2f(x)p〉.

Note that when ∇2f is Lipschitz continuous with constant κ > 0 on B(x,∆), one has

|f(x+ p)−m(x+ p, x)| ≤ κ
6 ∆3, (4)

for all p ∈ B(0,∆).
The DC decomposition of m(x+ p, x) of most interest to us is

m(x+ p, x) = mg(x+ p, x)−mh(x+ p, x),

where

mg(x+ p, x) =
ρx
2
‖p‖2 + χD(p) and mh(x+ p, x) =

ρx
2
‖p‖2 −m(x+ p, x),

ρx = ‖∇2m(x+p, x)‖ = ‖∇2f(x)‖, and D = (C−{x})∩B(0,∆) is the intersection of C (shifted
by x) with the trust region B(0,∆).

3 The DC trust-region method

At the iteration k, a step pk is computed by approximately solving the trust-region subproblem

min m(xk + p, xk) subject to p ∈ Dk = (C − {xk}) ∩B(0,∆k), (5)

using the DCA (Algorithm 2.1) and the DC decomposition

m(xk + p, xk) =
(ρxk

2
‖p‖2 + χDk

(p)
)
−
(ρxk

2
‖p‖2 −m(xk + p, xk)

)
,
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with ρxk = ‖∇2f(xk)‖ + ε, where ε is a small positive quantity added to guarantee that ρxk
stays uniformly bounded away from zero.

The following algorithm summarizes our trust-region method using DCA for the trust-region
subproblem minimization. The notation PW (z) = arg minw∈W ‖w − z‖ denotes the projection
of z onto a closed, convex set W . The algorithm is written without a stopping criterion to
generate an infinite sequence of iterates for the subsequent analysis.

Algorithm 3.1 (DC trust-region algorithm)

Step 0 (initialization):
Choose an initial point x0 ∈ C and an initial trust-region radius ∆0 > 0. Select a positive
integer l0. Choose constants η1, γ1, γ2 ∈ (0, 1). Start with k = 0 and set p−1 = 0.

Step 1 (step calculation using DCA for subproblem):
Obtain pk, with ‖pk‖ ≤ ∆k, by using DCA to approximately solve the trust-region subproblem (5),
as follows:

Set p0
k = PDk

(pk−1).

For l = 0, 1, . . . , l0 − 1

1.

2. Compute qlk = ρxkp
l
k −∇m(xk + plk, xk).

3. Set pl+1
k = PDk

(qlk/ρxk).

Set pk = pl0k .

Step 2 (acceptance of trial point):
Compute f(xk + pk) and define

τk =
f(xk)− f(xk + pk)

m(xk, xk)−m(xk + pk, xk)
.

If τk ≥ η1, then xk+1 = xk + pk. Otherwise define xk+1 = xk.

Step 3 (trust-region radius update):
If τk ≥ η1 then ∆k+1 ∈ [∆k,+∞), otherwise ∆k+1 ∈ [γ1∆k, γ2∆k].

Increment k by 1 and go to Step 1.

In fact, regarding Step 1 where DCA (Algorithm 2.1) is applied to solve the trust-region
subproblem (5), we point out that qlk corresponds to wl = ∇h(zl) in Algorithm 2.1 and that pl+1

k ,
the solution of min{mg(xk + p)− 〈p, qlk〉 : p ∈ Rn}, corresponds to zl+1 in Algorithm 2.1.

Note that the minimal effort per iteration in this algorithm (when l0 = 1) amounts to one
projection, and that this compares to the computation of a generalized Cauchy point (see [8,
Algorithm 12.2.2]) for trust-region methods when applied to general convex constrained problems
which may take more than one projection.

Another point is that when p0
k = 0 and l0 = 1, a main step of Algorithm 3.1 resembles a

DCA step applied to the original smooth problem of the form (1), since q0
k = ρxkp

0
k −∇m(xk +

p0
k, xk) = −∇f(xk). However the choice of ρxk is local and it does not render a true global DC

decomposition for the original problem.
We are now in a position to show global convergence to first-order stationary point.
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Theorem 3.1 Let {xk} be a sequence generated by Algorithm 3.1 applied to a twice continuously
differentiable function f for which ∇2f is Lipschitz continuous on C. Then the sequence {f(xk)}
is decreasing and limk→+∞ ‖xk+1−xk‖ = 0. Moreover, every limit point x∞ of the sequence {xk}
is a first-order critical point of problem (1), that is, 0 ∈ ∇f(x∞) +N(C, x∞), where N(C, x∞)
stands for the normal cone of the convex set C at the point x∞.

Proof. Consider first the convex quadratic function in p ∈ Rn given by mh(xk + p, xk) =
ρxk
2 ‖p‖

2 −m(xk + p, xk). Hence, for every k and l = 0, 1, . . . , l0 − 1, one has directly from the
first-order characterization of convexity of mh(xk + p, xk)

〈qlk, pl+1
k − plk〉 ≤ mh(xk + pl+1

k , xk)−mh(xk + plk, xk), (6)

where qlk = ∇mh(xk + plk, xk) = ρxkp
l
k − ∇m(xk + plk, xk). On the other hand, since pl+1

k =
PDk

(qlk/ρxk), from the definition of projection one has

ρxk〈q
l
k/ρxk − p

l+1
k , plk − pl+1

k 〉 ≤ 0,

which is equivalent to

〈qlk, plk − pl+1
k 〉 ≤

ρxk
2
‖plk‖2 −

ρxk
2
‖pl+1
k ‖

2 − ρxk
2
‖plk − pl+1

k ‖
2. (7)

From inequalities (6) and (7), one then obtains

m(xk + plk, xk)−m(xk + pl+1
k , xk) ≥

ρxk
2
‖plk − pl+1

k ‖
2

and therefore

m(xk, xk)−m(xk + pk, xk) =
∑l0−1

l=0 [m(xk + plk, xk)−m(xk + pl+1
k , xk)]

≥ ρxk
2

∑l0−1
l=0 ‖plk − p

l+1
k ‖

2 ≥ ρxk
2l0
‖pk‖2.

(8)

Now denote by κ the Lipschitz constant of ∇2f on C. By the definition of τk and by applying
a Taylor expansion [11, Lemma 4.1.14] (in the numerator below), one has

|τk − 1| =

∣∣∣∣m(xk + pk, xk)− f(xk + pk)

m(xk, xk)−m(xk + pk, xk)

∣∣∣∣ ≤ (κ/6)‖pk‖3

ρxk‖pk‖2/2l0
=

κl0
3ρxk

‖pk‖.

Thus, since ρxk ≥ ε and ‖pk‖ ≤ ∆k, if

∆k ≤
3(1− η1)ε

κl0
,

then the iteration is successful. One can conclude that there is an infinity of successful iterations.
Moreover, from the trust-region update of the algorithm, one has that

∆k ≥ ∆min =
3(1− η1)εγ1

κl0
for all k.

Furthermore, ignoring the unsuccessful iterations where there is no displacement, one obtains

f(xk)− f(xk+1) = τk [m(xk, xk)−m(xk+1, xk)] ≥
ρxkη1

2l0
‖xk − xk+1‖2. (9)
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Consequently, f(xk) is a monotonically decreasing sequence. Since f is bounded from below,
f(xk) converges. As a result one has that limk→+∞ ‖xk+1 − xk‖ = 0.

Let x∞ be a limit point of the sequence {xk}, say, limi→+∞ xki = x∞ for some subsequence
{xki} of {xk}. Since we proved above that there is an infinity of successful iterations, for all
i = 1, 2, . . . there exists an index ji ≥ 1 such that

xki = xki+1 = · · · = xki+ji−1 6= xki+ji .

One knows from (9) that limi→+∞ ‖pl0ki+ji−1‖ = ‖pki+ji−1‖ = 0, and by using this and taking

limits in (8), we obtain limi→+∞ ‖p1
ki+ji−1‖ = 0. Since

xki+ji−1 + p1
ki+ji−1

= PC∩B(xki+ji−1,∆ki+ji−1)

(
xki+ji−1 −∇f(xki+ji−1)/ρxki+ji−1

−∇2f(xki)p
1
ki+ji−1/ρxki

)
,

we have

〈−∇f(xki)/ρxki −∇
2f(xki)p

1
ki+ji−1/ρxki − p

1
ki+ji−1, x− xki − p

1
ki+ji−1〉 ≤ 0

for all x ∈ C ∩ B(xki ,∆ki+ji−1). By taking the limits xki → x∞, p1
ki+ji−1 → 0, and ρxki →

‖∇2f(x∞)‖+ ε, one obtains

〈−∇f(x∞)/(‖∇2f(x∞)‖+ ε), x− x∞〉 ≤ 0.

Recalling that ∆k ≥ ∆min > 0 for all k, one obtains the desired conclusion −∇f(x∞) ∈
N(C, x∞). �

Interestingly, it is possible to replace τk by

τnewk =
2l0(f(xk)− f(xk + pk))

ρxk‖pk‖2
(10)

and obtain a similar result.

Corollary 3.1 Let {xk} be a sequence generated by Algorithm 3.1, under the modification (10),
applied to a twice continuously differentiable function f for which ∇2f is Lipschitz continuous
on C. Then the sequence {f(xk)} is decreasing and limk→+∞ ‖xk+1 − xk‖ = 0. Moreover,
every limit point x∞ of the sequence {xk} is a first-order critical point of problem (P), that is,
0 ∈ ∇f(x∞) +N(C, x∞).

Proof. From (8) one obtains that τk ≥ η implies τnewk ≥ η. Thus, if an iteration is successful
for Algorithm 3.1 so it is for the modified version of the algorithm. The rest of the proof is exactly
as in the one of Theorem 3.1. �

The search direction pk could have also been computed by solving approximately the trust-
region subproblem (5) using the DCA (Algorithm 2.1) and the DC decomposition

m(xk + p, xk) =
(
m(xk + p, xk) +

ρxk
2
‖p‖2 + χDk

(p)
)
−
(ρxk

2
‖p‖2

)
,

with ρxk = max{−λmin(∇2f(xk)), 0} + ε, where λmin(·) denotes the smallest eigenvalue of a
matrix. The authors believe that it is possible to obtain the same convergent result for this
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decomposition as the one described in Theorem 3.1. However, each internal iteration of DCA
would have then required the solution of an auxiliary problem of the form

min m(xk + p, xk) +
ρxk
2
‖p‖2 − 〈p, qlk〉 subject to p ∈ Dk,

which would have been more expensive when compared to what happens in Algorithm 3.1, where
the bulk of the work per one internal iteration of DCA amounts to one projection onto Dk.

4 Implementation issues, test problems, and profiles

4.1 Implementation issues

To provide an assessment of the proposed methodology we developed an implementation for
Algorithm 3.1, called TRDC (Trust Region Difference of Convex). As already mentioned in the
introduction, our implementation only addresses bound-constrained problems, i.e., problems of
the form (1) where C = {x ∈ Rn : ` ≤ x ≤ u}, with ` ∈ (R∪{−∞})n and u ∈ (R∪{+∞})n. To
make projections onto (C −{xk})∩B(0,∆k) fast, see (5), we considered B(0,∆k) defined using
the `∞-norm. Since the solvers that we are using later for the numerical results are implemented
in C++ (IPOPT) and Fortran (Lancelot B and TRON), and in order to provide a fair comparison,
our implementation of TRDC was made in C.

While Algorithm 3.1 requests a positive integer l0 (the number of internal DCA iterations),
performing more internal iterations than needed to solve the trust-region subproblem (5) will
lead to inefficiency. Also, considering ρxk = ‖∇2f(xk)‖ + ε may also lead to a high number of
DCA internal iterations. Therefore, we consider an adaptive strategy for updating ρxk , making
it also dependent on the DCA internal loop counter l. Thus, ρxk will be hereafter denoted by ρlxk .
We start with a smaller value ρ0

xk
(set to 2−2

(
‖∇2f(xk)‖+ ε

)
, ε = 0.1, in our implementation),

and multiply it by a factor of ρfactor = 2 in each inner iteration l. We then stop the DCA internal
loop if m(xk, xk) − m(xk + pl+1

k , xk) ≥ C‖pl+1
k ‖

2, with C = 103. Such a stopping criterion is
totally consistent with our theory, even when ρlxk is still below ‖∇2f(xk)‖ + ε, since we can
see from the subsequent use of the lower bound (8) that all it is required is a reduction in the
predicted decrease of the order of the square of the step (being irrelevant the size of the constant
multiplying it). Finally, a maximum number of l0 = 300 DCA inner iterations is also considered.

As in TRON, which is also a bound-constrained type solver, we stop the external iterations,
declaring success, whenever the absolute error in the objective function is small, |f(xk)−f(xk+
pk)| < εtol, and the predicted reduction is small, m(xk, xk)−m(xk + pk, xk) < εtol, with εtol set
to 10−12 as in TRON. A run of TRDC is stopped unsuccessfully if it exceeds a maximum number of
external iterations (maxiter), a maximum of total internal DCA iterations (maxiterDCA), or a
maximum of objective function evaluations (maxfeval), with maxiterDCA = 107, maxfeval =
1000, and maxiter = 1000.

To improve numerical performance, and as in IPOPT, we considered instead a scaled objective
function f∗, given by f∗(x) = ζf(x), with

ζ = min

(
1,

100

‖∇f(x0)‖

)
,

where x0 is the projection onto the feasible region of the user provided initial guess (e.g., given
by CUTEr [15]). The scaling parameter ζ is computed at the algorithm initialization and kept
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fixed for the remaining procedure. When x0 is not provided, we compute a feasible initial guess
in the following componentwise fashion: the middle value of the bounds when both are finite,
the finite bound when one of the bounds is finite, or 0 whenever the variable is free.

A final implementation issue is related to the update of the trust-region radius ∆k, described
in Step 3 of Algorithm 3.1. We provide the details of the updating scheme for ∆k in the following
algorithm.

Trust-region radius update

• If τk > η3,

– then increase the trust-region radius by setting ∆k+1 = min(γ̄3∆k, 1000),

– otherwise, if τk < η1

∗ then set ∆k+1 = γ̄1∆k

∗ otherwise if τk < η2,

· then set ∆k+1 = γ̄2∆k

· otherwise set ∆k+1 = ∆k.

By taking 0 < η1 ≤ η2 ≤ η3 < 1 and 0 < γ̄1 ≤ γ̄2 < 1, γ̄3 ≥ 1, this scheme satisfies the
conditions required in Step 3 of Algorithm 3.1. In practice, we started with ∆0 = 1 and used
η1 = 10−3, η2 = 0.25, η3 = 0.75, γ̄1 = 0.5, γ̄2 = 0.5, and γ̄3 = 2.

4.2 Test problems

In order to insure a proper comparison of the implemented solver with state-of-the-art optimiza-
tion solvers, we decided to consider the CUTEr [15] test problems collection. From the complete
test set there available, we selected all the unconstrained and bound-constrained problems, re-
sulting in the 271 test problems reported in Table 1.

4.3 Profiles

Using a large number of test problems demands for an aggregated way to show the numerical
results. For a better visualization and brevity in the presentation of the numerical results, we are
providing performance profiles obtained by using the procedure described in [12]. We consider
also the modification made in [33] for the case where the metric used for performance does not
always return a strictly positive value, as required in the original performance profiles. The
major advantage of performance profiles is that they can be presented in one figure, by plotting,
for the different solvers, a cumulative distribution function υ(π) representing a performance
ratio.

The performance ratio is defined by setting rp,s =
tp,s

min{tp,z :z∈S} , p ∈ P, s ∈ S, where P is

the test set, S is the set of solvers, and tp,s is a measure of performance of the application of
solver s on test problem p. Then, one defines υs(π) = 1

|P|size{p ∈ P : rp,s ≤ π}, where |P| is the

number of test problems. The value of υs(1) is then the percentage of times that the solver s
wins over the remaining ones (or ties the best solver). If we are only interested in determining
which solver is the best (in the sense that wins the most), we compare the values of υs(1) for all
the solvers. At the other end, υs(π) for large values of π indicates the percentage of problems
solved successfully by solver s, and thus serves as a measure of robustness.
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Problem n Problem n Problem n Problem n Problem n

BQP1VAR 1 KOEBHELB 3 PALMER5A 8 EXPLIN 1200 SBRYBND 5000

AKIVA 2 MEYER3 3 PALMER5D 8 EXPLIN2 1200 SCHMVETT 5000

BEALE 2 PFIT1LS 3 PALMER5E 8 EXPQUAD 1200 SCOSINE 5000

BRKMCC 2 PFIT2LS 3 PALMER6C 8 LINVERSE 1999 SINQUAD 5000

BROWNBS 2 PFIT3LS 3 PALMER6E 8 EDENSCH 2000 SPARSINE 5000

CAMEL6 2 PFIT4LS 3 PALMER7C 8 RAYBENDL 2050 SROSENBR 5000

CLIFF 2 WEEDS 3 PALMER7E 8 RAYBENDS 2050 TESTQUAD 5000

CUBE 2 YFIT 3 PALMER8C 8 DIXMAANA 3000 TOINTGSS 5000

DENSCHNA 2 YFITU 3 PALMER8E 8 DIXMAANB 3000 TQUARTIC 5000

DENSCHNB 2 ALLINIT 4 S368 8 DIXMAANC 3000 TRIDIA 5000

DENSCHNC 2 ALLINITU 4 VIBRBEAM 8 DIXMAAND 3000 SCOND1LS 5002

DENSCHNF 2 BROWNDEN 4 PALMER5B 9 DIXMAANE 3000 BRATU1D 5003

DJTL 2 HATFLDA 4 SPARSQUR 9 DIXMAANF 3000 CLPLATEA 5041

EXPFIT 2 HATFLDB 4 SPECAN 9 DIXMAANG 3000 CLPLATEB 5041

HAIRY 2 HIMMELBF 4 HILBERTB 10 DIXMAANH 3000 CLPLATEC 5041

HILBERTA 2 HS38 4 HS110 10 DIXMAANI 3000 ODC 5184

HIMMELBB 2 KOWOSB 4 OSCIPATH 10 DIXMAANJ 3000 SSC 5184

HIMMELBG 2 PALMER1 4 OSBORNEB 11 DIXMAANL 3000 MINSURFO 5306

HIMMELBH 2 PALMER1B 4 WATSON 12 CHAINWOO 4000 NOBNDTOR 5476

HIMMELP1 2 PALMER2 4 DIXMAANK 15 WOODS 4000 TORSION1 5476

HS1 2 PALMER2B 4 HATFLDC 25 DRCAV1LQ 4489 TORSION2 5476

HS2 2 PALMER3 4 3PK 30 DRCAV2LQ 4489 TORSION3 5476

HS3 2 PALMER3B 4 BQPGABIM 50 DRCAV3LQ 4489 TORSION4 5476

HS3MOD 2 PALMER4 4 BQPGASIM 50 SPMSRTLS 4999 TORSION5 5476

HS4 2 PALMER4B 4 CHNROSNB 50 ARWHEAD 5000 TORSION6 5476

HS5 2 PSPDOC 4 ERRINROS 50 BDEXP 5000 TORSIONA 5476

HUMPS 2 HS45 5 TOINTGOR 50 BDQRTIC 5000 TORSIONB 5476

JENSMP 2 OSBORNEA 5 TOINTPSP 50 BIGGSB1 5000 TORSIONC 5476

LOGHAIRY 2 BIGGS3 6 TOINTQOR 50 BROYDN7D 5000 TORSIOND 5476

LOGROS 2 BIGGS5 6 VAREIGVL 50 BRYBND 5000 TORSIONE 5476

MARATOSB 2 BIGGS6 6 DECONVB 61 CHENHARK 5000 TORSIONF 5476

MDHOLE 2 HART6 6 DECONVU 61 CRAGGLVY 5000 FMINSRF2 5625

MEXHAT 2 HEART6LS 6 MINSURF 64 DQDRTIC 5000 LMINSURF 5625

ROSENBR 2 PALMER1A 6 HYDC20LS 99 DQRTIC 5000 NLMSURF 5625

S308 2 PALMER2A 6 CHEBYQAD 100 ENGVAL1 5000 GRIDGENA 6218

SIM2BQP 2 PALMER3A 6 MANCINO 100 FLETCBV2 5000 COSINE 10000

SIMBQP 2 PALMER4A 6 SENSORS 100 FLETCBV3 5000 CURLY10 10000

SINEVAL 2 PALMER5C 6 ARGLINA 200 FLETCHBV 5000 CURLY20 10000

SISSER 2 PALMER6A 6 ARGLINB 200 FREUROTH 5000 CVXBQP1 10000

SNAIL 2 PALMER7A 6 ARGLINC 200 GENHUMPS 5000 DIXON3DQ 10000

ZANGWIL2 2 PALMER8A 6 BROWNAL 200 INDEF 5000 JNLBRNG1 10000

BARD 3 PALMER1D 7 PENALTY2 200 LIARWHD 5000 JNLBRNG2 10000

BOX2 3 AIRCRFTB 8 VARDIM 200 MCCORMCK 5000 JNLBRNGA 10000

BOX3 3 HEART8LS 8 HADAMALS 400 MOREBV 5000 JNLBRNGB 10000

DENSCHND 3 MAXLIKA 8 GENROSE 500 NONCVXU2 5000 NCVXBQP1 10000

DENSCHNE 3 OSLBQP 8 PROBPENL 500 NONCVXUN 5000 NCVXBQP2 10000

EG1 3 PALMER1C 8 QR3DLS 610 NONDIA 5000 NCVXBQP3 10000

ENGVAL2 3 PALMER1E 8 EG2 1000 NONDQUAR 5000 OBSTCLAE 10000

GROWTHLS 3 PALMER2C 8 EXTROSNB 1000 NONSCOMP 5000 OBSTCLAL 10000

GULF 3 PALMER2E 8 FLETCHCR 1000 PENTDI 5000 OBSTCLBL 10000

HATFLDD 3 PALMER3C 8 PENALTY1 1000 POWELLSG 5000 OBSTCLBM 10000

HATFLDE 3 PALMER3E 8 SINEALI 1000 QRTQUAD 5000 OBSTCLBU 10000

HATFLDFL 3 PALMER4C 8 MSQRTALS 1024 QUARTC 5000 SCURLY10 10000

HELIX 3 PALMER4E 8 MSQRTBLS 1024 QUDLIN 5000 SCURLY20 10000

HS25 3

Table 1: CUTEr test problems used in the numerical results.
10



Clearly, when for a certain problem p ∈ P one has min{tp,z : z ∈ S} ≤ 0, the value rp,s
becomes meaningless or undefined for all s ∈ S. We considered two possibilities to overcome
this problem in our numerical results. One is to simply exclude all problems where such a
situation happens, reducing the number of test problems to be included and then using the
original performance profiles [12]. The second one is to keep all problems and to choose a
way to deal with problems where tp,s ≤ 0 happens for at least one solver s. We considered
rp,s = tp,s + 1 − min{tp,z : z ∈ S} whenever min{tp,z : z ∈ S} < 0.0001 to overcome the
possibility of rp,s being meaningless or undefined (see [33] for further details).

5 Numerical results

Since our proposed method uses second order derivatives we decided to compare it against
TRON [23, 24], IPOPT [34], and Lancelot B [16] (available under the GALAHAD library [17]),
which represent well the state-of-the-art optimization solvers where second order derivatives are
used. TRON was specially developed to address bound-constrained optimization problems, while
IPOPT and Lancelot B can handle more general constrained optimization problems.

Since the computational effort made per iteration of IPOPT, Lancelot B, TRDC, and TRON

is substantial different, we chose to compare the overall CPU time taken by the solvers. As it
was said before, TRDC and TRON have similar stopping criteria, being the one for TRON slightly
more advantageous for declaring success since it uses either the relative or the absolute error in
function values. IPOPT and Lancelot B were run using a tolerance of 10−5 (the default value
for Lancelot B) in their stopping criteria: Lancelot B uses the norm of the projected gradient
while IPOPT uses the maximum between a scaled norm of the gradient of the Lagrangian and
the complementarity residual.

The numerical experiments were made in an Intel(R) Core(TM) Duo CPU computer, running
at 2.66GHz, under a Linux operating system, using recent versions for all the solvers (TRON
version 1.2, IPOPT version 3.10.1, and GALAHAD version dated of February 2011). The same
exact CUTEr collection (version date CUTEr: Mon Jan 8 15:36:20 EST 2007) was used by
the four solvers, and for each problem the same CUTEr initial point was considered. For each
problem, a maximum running time of 3600 seconds was imposed to all solvers (i.e., a failure is
declared for a solver on a problem if it is unable to provide an answer in less than 3600 seconds).
The considered CPU time corresponds to the CPU time taken by the solver (excluding the
CUTEr setup time) measured in seconds with two decimal places. Due to this limitation in
measuring the solver CPU time, one can easily obtain tp,s = 0 for many ‘easy’ problems.

A first set of performance profiles is provided in Figures 1 and 2, where all the test problems
were considered and then the performance profiles from [33] were used. For a matter of visibility
around υs(1) and along υs(π) for large values of π, we considered two subfigures in each figure.
These profiles were depicted trusting the exit flag produced by each solver in order to check
if success was attained on solving a given problem. From these performance profiles one can
conclude that the TRDC solver is competitive in both efficiency and robustness, when compared
to the other solvers, specially for problems with less than 2000 variables.

A closer look at these numerical results reveals that for problems FLETCBV3, FLETCHBV, INDEF,
QRTQUAD, SCURLY10, and SCURLY20 all the solvers were unable to converge. These problems
seem to have an unbounded objective function and therefore were removed in the next round of
profiles. Additionally, we list, on Table 2, the problems where a solver reported an unsuccessful
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Figure 1: Performance profiles [33] for CPU time used by IPOPT, Lancelot B, TRDC, and TRON.
Problems with n ≤ 2000.
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Figure 2: Performance profiles [33] for CPU time used by IPOPT, Lancelot B, TRDC, and TRON.
All problems.
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IPOPT Lancelot B TRDC

OSCIPATH ARGLINB CURLY20

PALMER5A ARGLINC EXPLIN

BIGGSB1 EXPLIN2

DJTL EXPQUAD

HEART6LS FREUROTH

LOGHAIRY NCVXBQP1

OSCIPATH NCVXBQP2

PALMER5A NCVXBQP3

PALMER7A PENALTY2

QUDLIN

RAYBENDL

RAYBENDS

SINQUAD

Table 2: Test problems considered as successfully solved despite un unsuccessful exit flag.

exitflag, but the final objective function value is close to the one reported by the other solvers.
For these problems we will now consider the run to be successful and use the corresponding
CPU time. (To be more rigorous, suppose solver B solved problem p successfully. A solver A is
considered to have solved problem p successfully, even when reporting an unsuccessful error flag,

in the situations where either (i) fp,A ≤ fp,B or (ii)
|fp,A−fp,B |

max(1,min(|fp,A|,|fp,B |)) ≤ 10−3, where fp,A and

fp,B represent the final objective function values of the two solvers for problem p.) We point out
that TRON always reports a successful exit flag (equal to zero), i.e., the only unsuccessful cases
are due to exceeding the 3600 seconds running time limit.

The new performance profiles for the restricted test set are depicted in Figures 3 and 4. The
relative position of each solver is similar, but these new profiles reassure the robustness of the
TRDC solver, as it was able to solve more than 90% of the problems.

We have also built other performance profiles, namely for the cases where the considered
problems had dimensions n ≤ 10, 50, 100, 500, 1000, 3000, 5000. We also plotted the performance
profiles for each type of constraints available in the problems: unconstrained problems (` =
(−∞)n and u = (+∞)n), bound-constrained problems with at least one finite bound and one
infinite bound, and bound-constrained problems with ` ∈ Rn and u ∈ Rn. Since we observed no
major differences between these performance profiles and the ones reported before, we decided
not to present them here for sake of brevity.

For a matter of completeness we also report our numerical findings using the original perfor-
mance profiles [12]. In order to be able to plot these profiles we exclude from the test set all ‘easy’
problems for which min{tp,z : z ∈ S} = 0 (i.e., all problems where at least one solver terminated
using tp,s = 0). This technique is the same as the one used in [18], where numerical results were
restricted to problems with a running time of the fastest solver exceeding .01 seconds. These
new performance profiles (for the restricted test set previously described) are presented in Fig-
ures 5 and 6. The number of problems is reduced from 167 to 30 (when n ≤ 2000) and from
265 to 124 (all dimensions considered). While these new performance profiles are in accordance
with the original ones in [12], the number of problems considered is considerably smaller and
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Figure 3: Performance profiles [33] for CPU time used by IPOPT, Lancelot B, TRDC, and TRON.
Restricted test set, problems with n ≤ 2000.
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Figure 4: Performance profiles [33] for CPU time used by IPOPT, Lancelot B, TRDC, and TRON.
All problems in the restricted test set.
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Figure 5: Performance profiles [12] for CPU time used by IPOPT, Lancelot B, TRDC, and TRON.
Restricted test set, problems with n ≤ 2000 except the ‘easy’ ones.

the best solvers are likely to be in disadvantage since problems where a solver attains tp,s = 0
are removed from the analysis (disregardless of other solvers having or not tp,s � 0).

From the depicted profiles for n ≤ 2000, one can observe that Lancelot B is the most
efficient solver, while IPOPT, Lancelot B, and TRON are the most robust. TRDC presents a
similar performance in terms of efficiency and attains a robustness of about 90%. When all the
problems in the restricted test set are considered we observe a slight advantage for the TRDC

solver.

6 Conclusions

A trust-region type method has been proposed, analyzed, and implemented, involving a new
minimum requirement, from the solution of the trust-region subproblems, for achieving global
convergence to first-order stationary points. Such a requirement, different from Cauchy or gen-
eralized Cauchy points, is related to the application of a first step of a primal-dual subgradient
method (the DC algorithm), and it necessarily involves the knowledge of second-order deriva-
tives, although it only requires one projection onto the feasible set. One is able to prove, in a
relatively short and clean argument, that all limit points of the sequence of iterates are first-
order critical. The numerical experiments reported show that the new approach is competitive
with state-of-the-art solvers for problems with bounds on the variables.
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All problems in the restricted test set, except the ‘easy’ ones.
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