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Abstract. In this paper a family of trust-region interior—point SQP algorithms for the solution of a class of
minimization problems with nonlinear equality constraints and simple bounds on some of the variables is described and
analyzed. Such nonlinear programs arise e.g. from the discretization of optimal control problems. The algorithms
treat states and controls as independent variables. They are designed to take advantage of the structure of the
problem. In particular they do not rely on matrix factorizations of the linearized constraints, but use solutions of the
linearized state equation and the adjoint equation. They are well suited for large scale problems arising from optimal
control problems governed by partial differential equations.

The algorithms keep strict feasibility with respect to the bound constraints by using an affine scaling method
proposed for a different class of problems by Coleman and Li and they exploit trust-region techniques for equality—
constrained optimization. Thus, they allow the computation of the steps using a variety of methods, including many
iterative techniques.

Global convergence of these algorithms to a first—order KKT limit point is proved under very mild conditions on
the trial steps. Under reasonable, but more stringent conditions on the quadratic model and on the trial steps, the
sequence of iterates generated by the algorithms is shown to have a limit point satisfying the second—order necessary
KKT conditions. The local rate of convergence to a nondegenerate strict local minimizer is q—quadratic. The results
given here include as special cases current results for only equality constraints and for only simple bounds.

Numerical results for the solution of an optimal control problem governed by a nonlinear heat equation are
reported.

Keywords. Nonlinear programming, SQP methods, trust-region methods, interior—point algorithms, Dikin—
Karmarkar ellipsoid, Coleman—Li affine scaling, simple bounds, optimal control problems.

AMS subject classifications. 49M37, 90C06, 90C30

1. Introduction. In this paper we introduce and analyze a family of algorithms for the so-
lution of an important class of minimization problems which often arise from the discretization of
optimal control problems. These problems are specially structured nonlinear programming prob-
lems of the following form:

minimize fly,u)
(1.1) subject to  C(y,u) =0,
weB=Au: a<u<b},

where y € R, u € R"™™, a € (RU{-00})""™, and b € (RU {+00})""™. The functions
f:IR" — IR and C': R" — IR™, m < n, are assumed to be at least continuously differentiable.
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As indicated above, minimization problems of the form (1.1) often arise from the discretization of
optimal control problems. In this case y is the vector of state variables, u is the vector of control
variables, and C(y,u) = 0 is the discretized state equation. Other applications, which might be
viewed as special optimal control problems include optimal design and parameter identification
problems. Minimization problems (1.1) originating from optimal control problems governed by
large systems of ordinary differential equations, or partial differential equations are the targets of
the algorithms in this paper.

Although there are algorithms available for the solution of nonlinear programming problems
that are more general than (1.1), the family of algorithms presented in this paper is unique in
the consequent use of structure inherent in many optimal control problems, the use of optimiza-
tion techniques successfully applied in other contexts of nonlinear programming, and the rigorous
theoretical justification.

Our algorithms are based on sequential quadratic programming (SQP) methods and use trust—
region interior—point techniques to guarantee global convergence and to handle the bound con-
straints on the controls. SQP methods find a solution of the nonlinear programming problem
(1.1) by solving a sequence of quadratic programming problems. It is known, see e.g. [37], [38],
that the structure of optimal control problems can be used to implement and analyze SQP meth-
ods. In particular, to implement SQP methods, it is sufficient to compute quantities of the form
Cyly, w)vy, Cyly, u)Tv,, Cu(y, w)vy, Culy,u)Tv,, and to compute solutions of the linearized state
equation C,(y,u)v, = r, and of the “adjoint equation” C,(y,u) v, = r. Here C, and C, denotes
the derivatives of C' with respect to y and w. This is an important observation, because these are
tasks that arise naturally in the context of optimal control problems. All of the early SQP algo-
rithms, and many of the recent ones rely on matrix factorizations, like sparse LU decompositions,
of the Jacobian J(z) of C'(z). For the applications we have in mind this is not feasible. Often,
the involved matrices are too large to perform such computations and very often these matrices
are not even available in explicit form. On the other hand, matrix—vector multiplications Cy(z)v,,
Cy(2) vy, Cu(z)vy, Cu(z)Tv, can be performed and efficient solvers for the linearized state equa-
tion Cy(z)v, = r, and the adjoint equation Cy(z)Tv, = r often are available. For example, the
partial Jacobian Cy(z) in the application treated in Section 11 has a block bidiagonal structure
with diagonal matrices being tridiagonal. Thus, while the Jacobian is large, the solution of the
linearized state equation or the adjoint equation can be done by block forward substitution or
block backward substitution, respectively. In each substitution step, only a relatively small system
with tridiagonal system has to be solved. This is typical for many applications, in particular those
in dynamical systems. Many SQP based codes for optimal control problems governed by ODEs
or DAEs exploit this structure efficiently in their numerical linear algebra. See, e.g., [1], [2], [42],
[58], [62] and the references therein. For many applications, in particular those governed by PDEs,
such factorizations of the Jacobian J(z) of C(z) are not feasible from a practical point of view,
but solution techniques for Cyy(y,u)v, = r and C,(y,u) v, = r are available. This has motivated
us to require only this information and to design a practicable algorithm that disjoins the partic-
ular equation solver from the optimization algorithm. In the presence of bound constraints, this
task goes well beyond the mere replacement of matrix factorizations by black-box solvers. The
implementation of our algorithm is given in [16].

A purely local analysis for the case with no bounds constraints has being given in [34], [36],
[37], [39]. However, we consider here the much more difficult issue of incorporating all this structure
into an algorithm that converges globally and handles bound constraints on the control variables
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The global convergence of our algorithms is guaranteed by a trust-region strategy. In our
framework the trust region serves a dual purpose. Besides ensuring global convergence, trust regions
also introduce a regularization of the subproblems which is related to the Tikhonov regularization.
For the solution of optimal control problems, the partitioning of the variables into states y and
controls u motivates a partial decoupling of step components that leads to interesting alternatives
for the choice of the trust region. In Sections 5.2.1 and 5.2.2 we will introduce a decoupled and a
coupled trust-region approach. As indicated by the names, in the decoupled approach the trust
region will act on step components separately. This allows a more efficient implementation of
algorithms for the computation of these steps. However, for problems with ill-conditioned state
equations, this decoupling does not give an accurate estimate of the size of the steps and might
lead to poor performance. In this situation the coupled approach is better, and so we include both.

For the treatment of the bound constraints on « we use an affine scaling interior—point method
introduced by Coleman and Li [13] for problems with simple bounds. Interior—point approaches are
attractive for many optimization problems with a large number of bounds, including the structured
problem (1.1). In our context, the affine scaling interior—point method is also of interest, because
it does not interfere with the structure of the problem (1.1). To apply this method, no information
in addition to that needed for the case without bound constraints is required from the user. This
or similar interior-point approaches have recently also been used e.g. in [6], [14], [43], [44], [50].
The advantage of the approach in [13] is that the scaling matrix is determined by the distance of
the iterates to the bounds and by the direction of the gradient. This dependence on the direction
of the gradient is important for global convergence and its good effect can be seen in numerical
examples, see e.g. Figures 11.1 and 11.2.

Another important issue, that is addressed in the implementations of the algorithms presented
in this paper is the problem scaling inherent in optimal control problems. As we have pointed out,
the problems we are primarily interested in are discretizations of optimal control problems governed
by partial differential equations. The infinite dimensional problem structure greatly influences the
finite dimensional problem. In our implementation, we take this into account by choosing scalar
products for the states y, the controls u, and the duality pairing needed to represent /\TC(y,u)
that are discretizations of proper infinite dimensional ones. It is beyond the scope of this paper
to give a comprehensive theoretical study of these issues, but it is important to notice that the
formulation of the algorithms discussed here fully support the use of such scalar products without
any changes. This is a great advantage. In some of our numerical experiments [11], [30] this
improved the performance of our algorithms significantly, it avoided artificial ill-conditioning, and
it enhanced the quality of the solution computed for a given stopping tolerance. Moreover, our
numerical experiments also indicate the mesh independent behavior of our algorithms when this
type of scaling is used.

We believe that the features and strong theoretical properties of these algorithms make them
very attractive and powerful tools for the solution of optimal control problems. They have been
successfully applied to a boundary control problem, see Section 11, a distributed nonlinear elliptic
control problem [31], and optimal control problems arising in fluid flow [11], [30]. The software that
produced these results currently is being beta-tested with the intent of electronic distribution [16].

Before we give an outline of this paper, it is worth discussing the relationship between the
constrained minimization problem (1.1)and an equivalent reduced problem. Under the assumptions
of the Implicit Function Theorem it is possible to solve C'(y,u) = 0 for y. This defines a smooth
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function y(u) and allows us to reduce the minimization problem (1.1). The reduced problem is
given by

minimize f(u) = f(y(u),u)

(1.2)
subject to ue B={u: a <u<b}.

This leads to the so—called black box approach in which the nonlinear constraint C(y,u) = 0 is
not visible to the optimizer. Its solution is part of the evaluation of the objective function f(u)
The reduced problem can be solved by a gradient or a Newton-like method. For optimal control
problems, many algorithms follow this approach. Often, projection techniques are used to handle
the box constraints, see e.g. [28], [51].

Recently, so—called all-at-once approaches that treat both y and u as independent variables
have been proposed to solve optimal control problems, see e.g. [1], [2], [4], [29], [32], [33], [34], [35],
[36], [37], [39]. [41], [42], [57], [58], [62].

Since they move towards optimality and feasibility at the same time, they offer significant ad-
vantages. SQP methods are of particular interest. They do not require the possibly very expensive
solution of the nonlinear state equation in every step, but as indicated above allow use of the struc-
ture of optimal control problems. In addition, SQP methods have proven to be very successful for
the solution of other nonlinear programming problems. See e.g. [5], [9], [23], [24], [40], [47], [48],
[50], [56].

As outlined before, we use SQP based methods for the solution of (1.1), i.e., the all-at-once
approach. However, the reduced problem (1.2) is important to us for two reasons. Firstly, the
relation between the full problem (1.1) and the reduced problem (1.2) gives important insight
into the structure of (1.1) and allows us to extend techniques successfully applied to problems
of the form (1.2). Secondly, black box approaches are used very often to solve the problems we
have in mind. We want to use this expertise in designing more efficient codes. Specifically, our
consequent use of the structure of the optimal control problems leads to our family of trust-region
interior—point SQP algorithms. These algorithms only require information that the user has to
provide anyway if a black—box approach is used with a Newton—like method for the solution of the
nonlinear state equation and adjoint equations techniques for the computation of gradients. Thus
we combine the possible implementational advantages of a black—box approach with the generally
more efficient all-at—once approach. It will be seen that in our algorithms the step s is decomposed
into two components: s = s" 4 st, where s" is called the quasi-normal component and st is called
the tangential component. The role of quasi-normal component s" is to move towards feasibility.
It is of the form s" = ((s])T 07)T, where s}) is essentially a Newton step for the solution of
the nonlinear state equation C(y,u) = 0 for given w. For most problems of interest here, the
computation of a “true” normal component is not practical. The tangential component st moves
towards optimality. This component is in the null-space of the linearized constraints and it is of
the form st = ((—=Cy(y,w) ' Cou(y, u)s,)T sI)T, where s, is essentially a Newton—like step for the
reduced problem (1.2).

This paper is organized as follows: In Section 2 we discuss the structure of the problem and
motivate our SQP approach. We study the relationship between the all-at—once approach based on
(1.1) and the black box approach for (1.2) and the relationship between SQP methods for (1.1) and
Newton methods for (1.2). For problems without box—constraints, these connections are known,
but for problems with box—constraints this will reveal useful new information. The first and second
order Karush-Kuhn-Tucker (KKT) conditions for (1.1) are stated in Section 3. We will state them
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in a nonstandard form that will lead to the scaling matrix used in the affine scaling interior—point
approach. In Section 4 we will discuss the application of Newton’s method to the system of nonlinear
equations arising from the first—order KKT conditions. This will be important for the derivation
of our SQP method. In Section 5 we describe our trust-region interior—point SQP algorithms.
Sections 5.1 and 5.2 contain a description of the quasi-normal component and of the tangential
component. Using the derivations in Sections 2 and 4 the connections between the quasi-normal
component s" and the Newton step for the solution of the nonlinear state equation C(y,u) = 0
for given u and the relations between the tangential component st and Newton-like steps for the
reduced problem (1.2) will be made precise. As noticed previously, the partial decoupling of the
step components motivated by the partitioning of the variables into states y and controls v and the
roles of the decoupled and coupled trust-region approaches will be exposed in Sections 5.2.1 and
5.2.2. A complete statement of the trust—region interior—point SQP algorithms is given in Section
5.4.

The convergence theory for these algorithms is given in Sections 6, 7, 8, and 9. Section 6
contains some technical results. In Section 7 we establish the existence of an accumulation point
of the iterates which satisfies the first-order Karush-Kuhn-Tucker (KKT) conditions (Corollary
7.1). This result is established under very mild assumptions on the steps and on the Lagrange
multipliers. It simultaneously extends the results presented recently by Coleman and Li [13] for
simple bounds and those by Dennis, El-Alem, and Maciel [15] for equality constraints. Under
additional conditions on the steps and on the quadratic model, we show that the accumulation
point satisfying the first—order necessary KKT conditions also solves the second—order necessary
KKT conditions (Theorem 8.2). This latter result simultaneously extends those by Coleman and
Li [13] for simple bounds and those by Dennis and Vicente [19] for equality constraints. (See also
[65].) Finally, we prove that if the sequence converges to a nondegenerate point satisfying the
sufficient second-order KKT conditions, then the rate of convergence is q-quadratic (Corollary
9.1). Our analysis allows the application of a variety of methods for the computation of the step
components s" and st. In Section 10 we discuss practical algorithms for the computation of trial
steps and the multiplier estimates that are currently used in our implementation. Numerical results
obtained with our implementation of these algorithms, called TRICE (trust-region interior—point
SQP algorithms for optimal control and engineering design problems) [16], are reported in Section
11. Section 12 contains conclusions and a discussion of future work.

We review the notation used in this paper. The vector z is given by

x:(z).

The Jacobian matrix of C'(z) is denoted by J(z). We use subscripted indices to represent the
evaluation of a function at a particular point of the sequences {z;} and {\;}. For instance, fi
represents f(xy), and (; is the same as {(x, Ar). The vector and matrix norms used are the (5
norms, and [; represents the identity matrix of order . Also (z), and (2), represent the subvectors
of z € R™ corresponding to the y and » components, respectively.

2. The structure of the minimization problem. The purpose of this section is to discuss
some of the basic relationships between the problem (1.1) and its reduction (1.2). This will introduce
fundamental quantities that are needed subsequently and it will support our claim that the basic
quantities needed to implement our SQP approach are already available if one uses a gradient or
Newton-like method for the solution of the reduced problem (1.2).
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The Lagrange function ¢ : IR"*™ — IR" associated with the objective function f(z) and the
equality constraint C(z) = (¢1(2), ..., em(2))’ = 0is given by

(e, 0) = f(a)+ AT C(a),

where A € IR™ are the Lagrange multipliers.
The linearized constraints are given by J(z)s = —C(2) or equivalently by

(2.1) (Cy(x) Cula)) ( %y ) = —C(2).

We say that

s
SI( y), sy € R™, s, e R"™™,

Su

satisfies the linearized state equation if it is a solution to (2.1). If C(2) is invertible, the solutions
of the linearized state equation are of the form

(2.2) s= 8"+ W(x)sy,

where
o oo ()

is a particular solution and

W(z) = ( _Cy(iz:;cu(ﬂﬁ) )

is a matrix whose columns form a basis for the null space N (J(2)) of J(z). One can see that
matrix—vector multiplications of the form W(z)Ts and W (z)s, involve only the solution of linear
systems with the matrices C,(2) and Cy(2)T. Moreover, the y component of the particular solution
s" is just the step that one would compute if one would apply Newton’s method for the solution of
the nonlinear equation C(y,u) = 0 for given u.

The point we want to convey in this section has nothing to do with the presence or absence
of the bound constraints a < u < b. Therefore, for the remainder of this section, we consider the
simpler case where there are no bound constraints, i.e., where 5 = R"™". If we solve (1.1) with
B =IR"™ by an SQP method, then the quadratic programming subproblem we have to solve at
every iteration is of the form

minimize Vf(z)Ts + 1sTV2 ((2,)) s

2.4
24) subject to  Cy(z)sy + Cyu(x)s, + C(z) = 0.

If the reduced Hessian W(w)TVQQMK(x, M)W (z) is nonsingular, the solution of (2.4) is given by (2.2)
with

-1

(2.5) su=—(W(@) V2 0@, ) W(x)) W) (VI@)+ V20, 0)s").
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In practice the Hessian V2 {(x, A) or the reduced Hessian W (2)T V2 ((z,\) W(z) are often approx-
imated using quasi-Newton updates. In the latter case, when an approximation to VZ_{(x,\) is
not available, then the “cross—term” W (z)TV?2_ ((x,))s" has also to be approximated. This term
can be approximated by zero, by finite differences, or by other quasi—-Newton approximations, see
e.g. [3]. In the case where this cross term is approximated by zero, the right hand side of the linear
system (2.5) defining s, can be written as

W)V ()= —Cu(2)TCy(x) TV, f(2) + Vi f(2).
Thus, if the Lagrange multiplier is computed by the adjoint formula
(2.6) A= =Cy(2)7"V, f(a),
then
W(2)TV f(z) = Cu(2)TA+ Vo f(z) = Vul(z,\).

Now we turn to the reduced problem with B = IR"™". Suppose there exists an open set i/
such that for all u € U there exists a solution y of C'(y,u) = 0 and such that the matrix Cy(z)
is invertible for all # = (y,u) with v € & and C(y,u) = 0. Then the Implicit Function Theorem
guarantees the existence of a differentiable function

y:U —R™
defined by
Cy(u),u)=0

and the problem (1.1) can be reduced to (1.2). Since y(-) is differentiable, the function f is
differentiable and its gradient is given by

Vf(u) = W(y(u),w)'Vf(y(u), ),

cf. [29]. Moreover, it can be shown that the Hessian of f is equal to the reduced Hessian
V2 f(u) = W(y(u),u) V2 y(u), u, A) W(y(u), w),

provided that the Lagrange multiplier is computed from (2.6).

One can see that the gradient and the Hessian information in the SQP method for (1.1) and
in the Newton method for (1.2) are the same if (y,u) solves C'(y,u) = 0. Thus, if Newton-like
methods are applied for the solution of (1.2), then one has all the ingredients available necessary to
implement an SQP method for the solution of (1.1). The important difference, of course, is that in
the SQP method we do not have to solve the nonlinear constraints C'(y,u) = 0 at every iteration.

In these considerations we neglected the bound constraints @ < u < b. These will be analyzed
in the following sections. We already point out that these relationships between (1.1) and (1.2) are
basically the same with or without the bound constraints.
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3. Optimality conditions. A point z, satisfies the first-order Karush-Kuhn-Tucker (KKT)
conditions if there exist A, € IR™ and u%, u2 € IR"™™ such that

C(z.) =0,

((us)i — @) (u%)i = (b — (us)s) (u)i =0, i=1,....n—m, and

These KKT conditions are necessary conditions for z, to be a local solution of (1.1). Note that the
constraint qualifications are satisfied since the invertibility of Cy(z,) and the form of the bound
constraints imply the linear independence of the active constraints. Under the assumption of the
invertibility of Cy(z), we can rewrite the first-order KKT conditions:

Clae) =0,
a < u, < b,
A= =C ( <) Tvyf(w*)v
a; < ( i <bp = (Vyl(zs, M), =0,
(us)i = @ = (Vyl(zs,A)); >0, and
(us); = b; =  (Vul(z4,A)); <0.

One can obtain a useful form of the first-order KKT conditions by noting that

= Vuf(r.) = Cul@) T Cy(e) TV fla)
Wz )TV f(2.).

In other words, V,{(z., ) is just the reduced gradient corresponding to the u variables. Hence
Z, is a first—order KKT point if

) 07

Clz
a < u. <0,

Ag

P< ()i < by = (W(x*)TVf(x*))Z:O
( i = = (W(a;*)TVf(x*))ZZ() and
(us)i = bi = (W(@)TV[(2.) <0,

Furthermore, z, satisfies the second—order necessary KKT conditions if it satisfies the first—
order KKT conditions and if the principal submatrix of the reduced Hessian

W () Vil M)W (2)

corresponding to indices ¢ such that a; < (u.); < b; is positive semi-definite, where the multipliers

A are given by A\, = —C,(2.)7 TV, f(z.).
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Now we adapt the idea of Coleman and Li [12] to this context and define D(z) € R{»=m)x(n=m)
to be the diagonal matrix with diagonal elements given by
< 0andb; = o0,

> 0 and a; > —o0,

> 0 and a; = —o0,

for e = 1,...,n — m. In the following proposition we give the form of the first—order and second-
order necessary KKT conditions that we use in this paper. To us, they indicate the suitability of
(3.1) as a scaling for (1.1). See also [13], [18], [64] and the remark below for further discussions on
the choice of D as a scaling matrix.

ProrosiTioN 3.1. The point x,. satisfies the first-order KKT conditions if and only if

Clzy)=0, a<u,<b, and
D(z)W(z)TV f(z.) = 0.

The point x, satisfies the second—order necessary KKT conditions if and only if it satisfies the
first—order KKT conditions and

D(@.)W (2,)" V2 (e, AW (2,) D)

is positive semi—definite. The corresponding multiplier is given by Ay = —C\y(2,)" TV, f(2.).

REMARK 3.1. Proposition 3.1 remains valid for a larger class of diagonal matrices D(z). The
scalar 1 in the Definition (3.1) of D can be replaced by any other positive scalar and Proposition 3.1
also remains valid with D(xz) replaced by D(x)?, p > 0. Most of our convergence results still hold
true if D(2) is replaced by D(z)?, p > 1. See also Remark 8.1. and, for the case of simple bound
constraints, [18], [64]. However, the square roots in the definition of D(z) will be necessary for the
proof of local g—quadratic convergence of our algorithms.

The form of the sufficient optimality conditions used in this paper requires the definition of
nondegeneracy or strict complementarity.

DEFINITION 3.1. A point x in B is said to be nondegenerate if (W(w)TVf(x)) = 0 implies
a; < u; < b; forallie{l,....,n—m}. Z

We now define a diagonal (n —m) x (n — m) matrix £(z) with diagonal elements given by

‘(W(w)TVf(x))Z‘ if (I/I/(ac)TVf(ac))Z < 0and b; < o0, or

(E(m))“ = if (W(w)TVf(x)) > 0 and a; > —o0,
0 in all other cases,
for « = 1,...,n — m. The significance of this matrix will become clear in the next section when

we apply Newton’s method to the system of nonlinear equations arising from the first—order KKT
conditions. From the definitions of D(z) and F(z) we have the following property.
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ProprosiTION 3.2. A nondegenerate point x, satisfies the second—order sufficient KKT condi-
tions if and only if it is a first—order KKT point and

D(x )W (2) V220 MW (22) D(w) + E(x.)

is positive definite, where Ay = —C\y(2.)7TV, f(2.).
4. Newton’s method. One way to motivate the algorithms described in this paper is to
apply Newton’s method to the system of nonlinear equations
C(z)=0,

- D(ePW ()T f(x) = 0,

where z is strictly feasible with respect to the bounds on the variables u, i.e., @ < u < b. This is re-
lated to Goodman’s approach [27] for an orthogonal null-space basis and equality constraints.

Although D(z)? is usually discontinuous at points where (W($)TVf($))Z = 0, the function
D(2)?W (z)I'V f(z) is continuous (but not differentiable) at such points. The application of New-
ton’s method to this type of nonlinear systems has first been suggested by Coleman and Li [12] in
the context of nonlinear minimization problems with simple bounds. They have shown that this
type of nondifferentiability still allows the Newton process to achieve local q—quadratic convergence.
In order to apply Newton’s method we first need to compute some derivatives.

To calculate the Jacobian of the reduced gradient W (z)TV f(z), we write
W(@)'V f() = Vuf(2) + Cufa) ",

where A is given by C,(2)T\ = -V, f(z) and has derivatives
% = —Cy(x)_T (Z;ﬁél szci(x)/\i + szf(ac))
= —Cy($)_TV12/yﬁ($, /\)7
% = —Cy(x)_T ( ;(11 Vzucz(x)& + Vzuf(ac))

= —Cy(z) V2 Uz, N).

This implies the equalities

2 (W(a)TV f(x))

Cule)T 50 + V2, f(2) + Ty Vi ei(@)A;

V2, (2, )
= W($)T ( sz£($,A) ) ’

L (W@TVH) = Cul@)TE+ V2 () + S0 Vi)

U

_ Voul(z, )
= W) ( V2 ((z,\) ) ’
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and we can conclude that

d

S W@V (@) = W) V2. A),

where A = —C\(2)"TV, f().

A linearization of (4.1) gives

(4.2) Cylx)sy + Culz)s, = —C(x),
(4.3) (D)W ()20, \) + [0 | B(2))) ( 23) = D)W (2)TV f(2),

where 0 denotes the (n — m) X m matrix with zero entries. Equation (4.2) is the linearized state
equation. The diagonal elements of F(z) are the product of the derivative of the diagonal elements
of D(z)? and the components of the reduced gradient W(z)TV f(z). The derivative of (D(z)?);

does not exist if (W(w)TVf(x)) = 0. In this case we set the corresponding quantities in the
k3

Jacobian to zero (see references [12], [13]). This gives the equation (4.3).
By using (2.2) we can rewrite the linear system (4.2)—(4.3) as

s ="+ W(x)s,,
(44) (D)W ()2, W (@) + B(2)) su = = D(2)*W (@) (V2,0 \)s" + Vf(2)).

We define our Newton-like step as the solution of

(4.5) s=3s"+ W(x)s,,
(4.6) (D)W (2)TV2, 000, WW (2)+ B(2)) sy = = D)W (2)T (V2,0(2,\)s" + V f(z),

where D(z) € RU=)*("=m) js the diagonal matrix defined by
(b—wi it (W(a)T (V2,00 )"+ Vf(2)), < 0and bi < 420,
it
(4.7) (D(x)) = -
i (w—a)? it (W(@)" (V20x,\)s"+ VF(2))) > 0and a; > —os,
(

1 if

for ¢+ = 1,...,n — m. This change of the diagonal scaling matrix is based on the form of the
right hand side of (4.4). Unlike D, the scaling matrix D includes information from the cross term
V2 {(x,\)s" and is therefore used as the scaling matrix for the computation of s, in our algorithm,
cf. (5.6). In the subsequent sections we will allow the replacement of the Hessian VZ_{(z,)) be a
suitable matrix I7.
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If x is close to a nondegenerate point z. satisfying the second-order sufficient KK'T conditions
and if W(2)TV2_0(x, \)s" is sufficiently small, a step s defined in this way is a Newton step on the
following system of nonlinear equations

(4.8)

where D(z), depends on z. as follows:

1 1

lor (b—u)? or(u—a)? if (W(x*)TVf(x*)) =0,

7
7

1

(D(2)0)ii = (b—u)? if (W(x*)TVf(x*))i <0,

K3

(u—a)? if (W(2.)TV f(2.)) >0,

fori=1,....,n —m. If (W(w*)TVf(x*)) = 0, the ¢~th diagonal element of D(z), has to be
chosen so that D(z) and D(z), are the same matrix. Of course, this depends on the sign of
(W(w)T(V?Hﬁ(w, A)s" + Vf(x))) . As Coleman and Li [12] pointed out, D(z), is just of theoretical

use since z, is unknown. One can see that D(z)2W (z)TV f(z) is continuously differentiable with
Lipschitz continuous derivatives in an open neighborhood of z., that D(z.)2W (z.)TV f(z.) = 0,
and that the Jacobian of D(z)2W (2)'V f(z) at =, is nonsingular, for all choices of D(z),. These
conditions are those typically required to get q—quadratic convergence for the Newton iteration
(see [17, Thm. 5.2.1]). Thus the sequence of iterates generated by the Newton step (4.5)—(4.6)
will converge q—quadratically to a nondegenerate point that satisfies the sufficient KKT conditions.
The interior—point process damps the Newton step so that it stays strictly feasible but this does

not affect the rate of convergence. The details are provided in Corollary 9.1.

5. Trust—region interior—point SQP algorithms. The algorithms that we propose gen-
erate a sequence of iterates {x;} where
z) = ( Yk ) :
Ug,

and uy is strictly feasible with respect to the bounds, i.e., a < u < b. At iteration k we are given
xg, and we need to compute a trial step si. If i is accepted, we set 2541 = 21 + sx. Otherwise we
set £x41 to x, reduce the trust-region radius, and compute a new trial step.

Following the application of Newton’s method (4.5), each trial step s is decomposed as

n t n
Sk =8 8. =8, + Wk(sk)uv

where s} is called the quasi-normal component and 52 is the tangential component.

The role of s} is to move towards feasibility. It will be seen that s} is related to the Newton
step for the solution of C(y, u) = 0 for fixed ug. The role of 52 is to move towards optimality. The
u component of si is related to the Newton step for the reduced problem (1.2). However, as made
clear previously, we do not require feasibility with respect to the nonlinear equality constraints.
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The global convergence is guaranteed by imposing an appropriate trust region on the step
and monitoring the progress by a suitable merit function. The definition of the quasi-mormal
component, the tangential component, and the merit function as well as the complete formulation
of our algorithms is the content of this section.

5.1. The quasi—-normal component. Let ¢ be the trust radius at iteration k. The quasi—
normal component s is related to the trust-region subproblem for the linearized constraints
e 1 n 2
minimize §HJks + k|
subject to  [|s"|| < &,

and it is required to have the form

(5.1) sl = ( (‘Sg)y ) .

Thus the displacement along s} is made only in the y variables, and as a consequence, z; and
z) + s) have the same u components. Since (s}), = 0, the trust-region subproblem introduced
above can be rewritten as

1
(5.2) minimize §HCy(ack)(sn)y + Cy)?
(5.3) subject to ||(s")y]] < bk.
Thus, the quasi-normal component s is a trust-region globalization of the component s" given in

(2.3) of the Newton step (4.5). We do not have to solve (5.2)-(5.3) exactly, we only have to assume
that the quasi—-normal component satisfies the conditions

(5.4) sl < & [|Cxl
and
(5.5) ICk[I? = ICy (21 )(sR)y + Crll* > wal|Crll min{rs||Crl], &},

where k1, K9, and k3 are positive constants independent of k. In Section 10.1, we describe several
ways of computing a quasi-normal component that satisfies the requirements (5.1), (5.4), and (5.5).
Condition (5.4) tell us that the quasi-normal component is small close to feasible points. Condition
(5.5) is just a weaker form of Cauchy decrease or simple decrease for the trust-region subproblem

(5.2), (5.3).

5.2. The tangential component. The computation of the tangential component (sg), fol-
lows a trust-region globalization of the Newton step (4.6). Following Coleman and Li [13] we
symmetrize (4.6) and get

(DkaTHkaDk + Ek) Di's, = —DyW} (HkSQ + ka)v

where Fj, = E(afk) and Hp, dellotes a symmetric approximation to the Hessian matrix V2 ). The
scaling matrix Dy is equal to D(z) defined by (4.7) with V2 ¢, replaced by Hy. This suggests the
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change of variables 3§, = D;lsu and the consideration in the scaled space §, of the trust-region
subproblem

_ T
minimize  (DyWI (Hys]? + Vi) 50+

subject to |8, < 6.

T (DkaTHkaDk + Ek) 4y

N | —

Now we can rewrite the previous subproblem in the unscaled space s, as

T —
minimize (W,;f (Hpsp + ka)) Syt 38l (W,;[Hka + EkDIZQ) Su

(5.6) ‘ "
subject to ||D} " sy|| < 6.

Of course, we also have to require that the new iterate is in the interior of the box constraints. To
ensure that uy + sy is strictly feasible with respect to the box constraints we choose oy, € [0,1), 0 €
(0,1),and compute s, with ox(a—uy) < s, < ox(b—uy). However, one of the strength of this trust—
region approach is that we can allow for approximate solutions of this subproblem. In particular,
it is not necessary to solve the full trust-region subproblem including the box constraints. For
example, one can compute the solution of the trust-region subproblem without the box constraints
and then scale the computed solution back so that the resulting damped s, obeys ox(a — uy) <
Sy < ok(b—uy), see e.g. Section 5.2.4. We will show that under suitable assumptions this strategy
guarantees global convergence and local gq—quadratic convergence. Another way to compute an
approximate u component of the step is to use a modified conjugate—gradient algorithm applied
to the trust-region subproblem without the box constraints that is truncated if one of the bounds
or(a — ug) < s, < op(b— ug) is violated. See Section 10.2. More ways to compute the tangential
component are possible. The conditions on the tangential component necessary to guarantee global
convergence are stated in Section 5.2.3.

We now introduce a quadratic model

qr(s) =l + V0. s + %STHkS
of l(z + s, Ar) about (zg, Ak). A trivial manipulation shows that
(5.7) G+ Wis) = au(s) + 0 s 5o W HilWis,,
with
a5 = WIVagi(s]) = WE (Hes) + Vi)
For convenience we define
(5.8) Ui(sy) = qp(sp + Wisy) + %sg (EkDgz) Sy-

5.2.1. The decoupled trust—region approach. We can restate the trust—region subprob-
lem (5.6) as

(5.9) minimize  Wi(s,)
(5.10) subject to || Dy tsyl| < 6.
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We refer to the approach based on this subproblem as the decoupled approach. In this decoupled
approach the trust-region constraint is of the form || D} s, || < é) corresponding to the constraint
I3u]] < 6k in the scaled space. One can see from (5.3) and (5.10) that we are imposing the trust
region separately on the y part of the quasi-normal component and on the u part of the tangential
component. Moreover, if the cross—term W,;[Hksz is set to zero, then the trust-region subproblems
for the quasi-normal component and for the tangential component are completely separated.

5.2.2. The coupled trust—-region approach. The approach we present now forces the y
and u parts of the tangential component 52 = Wi(sk)u to lie inside the trust region of radius dy.
The reference trust—region subproblem is given by

(5.11) minimize V()

_ -1
(5.12) subject to H( Cylr) 1Cu(xk)8u ) < 6.

D "sy

In the case where there are no bounds on u this trust-region constraint is of the form

H( —Cy(2i) 7 Cular)su )H = |[Wisul|l < 6.
5 <

U

As opposed to the decoupled case, one can see that the term Cy(zg) ' Cy(ay)s, is present in
the trust-region constraint (5.12). If W;" denotes the Moore-Penrose pseudo inverse of Wy (see
[25, [Sec. 5.5.4]), then

sl < IWasull < Il
Thus, if the condition number k(Wy) = [|W,F|| [|Wk]|| is small, then the decoupled and the coupled
approach will generate similar iterates. In this case, the decoupled approach will be more efficient
since it uses fewer linear system solves with the system matrix Cy(2y). See Section 10.2. However,
if k(Wy) is large, e.g. if Cy(2y) is ill-conditioned, then the coupled approach will use the true size
of the tangential component, whereas the decoupled approach may underestimate vastly the size of
this step component. This can lead to poor performance of the decoupled approach when steps are
rejected and the trust-region radius is reduced based on the incorrect estimate ||s,|| of the norm of
st = Wys,. This indicates that when Cy(z) is ill-conditioned the coupled approach offers a better
regularization of the step.

5.2.3. Cauchy decrease for the tangential component. To assure global convergence to
a first-order KK'T point, we consider analogs for the subproblems (5.9)—(5.10) and (5.11)-(5.12) of
the fraction of Cauchy decrease or simple decrease conditions for the unconstrained minimization
problem.

First we consider the decoupled trust-region subproblem (5.9)-(5.10). The Cauchy step cg is
defined for this case as the solution of

minimize  Wg(s,)
subject to HD,;lsuH < b6, Sy € span{—D3igy},
or(a —ug) < sy < op(b—uy),
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where —DZ2gy is the steepest—descent direction for Wy(s,) at s, = 0 in the norm ||D;* -||. Here
o € [o,1) ensures that the Cauchy step cg remains strictly feasible with respect to the box
constraints. The parameter ¢ € (0,1) is fixed for all k. As in many trust-region algorithms, we
require the tangential component (s ), with ox(a — ug) < (85)y < ok(b— ug) to give a decrease on
VU (s,) smaller than a uniform fraction of the decrease given by cg for the same function W(s,).
This condition is often called fraction of Cauchy decrease, and in this case is

(5.13) U4(0) — W((s)a) > B8 (0k(0) — wi(ef)) |

where ﬁfl is positive and fixed across all iterations. It is not difficult to see that dogleg or conjugate—
gradient algorithms can compute components (s ), conveniently that satisfy condition (5.13) with
ﬁfl = 1. We leave these issues to Section 10.2.

In a similar way, the component (sy), with ox(a —ug) < (sg)u < 0x(b — uy) satisfies a fraction
of Cauchy decrease for the coupled trust-region subproblem (5.11)—(5.12) if

(5.14) Wk (0) = Wi((s)a) > 55 (Wr(0) = Wi(cf)).

for some 37 independent of k, where the Cauchy step ¢} is the solution of

minimize  Wg(s,)
_ -1 _
subject to ( Cy(wkb_lfu(xk)su ) < 6, Sy € span{—D3igy},
or(a —ug) < sy < op(b—ug).

In Section 10.2 we show how to use conjugate-gradients to compute components (sg), satisfying
the condition (5.14).

One final comment is in order. In the coupled approach, the Cauchy step cf was defined
along the direction —ngk. To simplify this discussion, suppose that there are no bounds on u.
In this case the trust-region constraint is of the form ||[Wys,|| < 6x. The presence of Wy gives
the trust region an ellipsoidal shape. The steepest—descent direction for the quadratic (5.8) in the
norm [|Wy || at s, = 0 is given by —(WIW;)"'gr. Our analysis still holds for this case since
W EW)7|} is a bounded sequence. The reason why we avoid the term (W[ W)=t is that
in many applications there is no reasonable way to solve systems with W,;[Wk We will show in
Section 10.2 how this affects the use of conjugate gradients (see Remark 10.2). Finally, we point
out that this problem does not arise if the decoupled approach is used.

5.2.4. Optimal decrease for the tangential component. The conditions in the previous
subsection are sufficient to guarantee global convergence to a point satisfying first—order necessary
KKT conditions, but they are too weak to guarantee global convergence to a point satisfying
second—order necessary KKT conditions. To accomplish this, just as in the unconstrained case [46],
[59], in the box—constrained case [13], and in the equality—constrained case [19], we need to make
sure that s, satisfies an appropriate fraction of optimal decrease condition.

First we consider the decoupled approach and let og be an optimal solution of the trust-region
subproblem (5.9)-(5.10). It follows from the KKT conditions for this trust-region subproblem that
there exists v > 0 such that

(5.15) W,?Hka + EkD,;Q + ’ykD,;Q is positive semi—definite,
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(5.16) (W HgWy + EDF? 4 31.D5?)off = ~gi, and
(8, — | D o[]) = 0.

(For practical algorithms to compute og see references [53], [46], [55], [60]. These conditions are also

sufficient for og to be an optimal solution [22], [59].) Since wuy + og might not be strictly feasible,

we consider TkOg, where 7, is given by
bi — (ur)i @i — (ug):
(5.17) Tp, = 0)  min {1, max{ guk) , a4 G(luk) } }
1=1,...,n—m (Ok )2 (Ok )2

The tangential component (si), then is required to satisfy the following fraction of optimal

decrease condition

Wi(0) = Wr((sk)) > 55 (W4(0) = Wi(rpof))  and

(5.18) _
D5 (sk)ull < 5965,

where ﬁg,ﬁg are positive parameters.
From conditions (5.15), (5.16), and (5.18), and 7, < 1, we can write

V(0) - Wil > 58 (—nglof - Srb(of)T (WE B+ BD?) (of)

v

1 —_ —_
B3 (—9502 - 5(02)T (W H Wy + ED? + 3D;?) (02))
1 = _
+ 508 v(of) " D (of)
L d dpz , Lod 2 2
> 552 k|| Riog||” + 552 T VK0
1
(5.19) > §ﬂdﬂ?7k6i,
where WkTHka + EkD,;Q + ’ykD,;Q = R;{Rk.

Now let us focus on the coupled approach and let of be the optimal solution of the trust-region
subproblem (5.11)—(5.12). It follows from the KKT conditions for this trust-region subproblem
and the equality

1 T 1 T
(Cylm) ™ Culan)) Cylan) " Culen) = WEWy = Loy,
that there exists v > 0 such that

(5:20)  WEHWy+ ExDF? + 3, (D + WIWy — I, ) s positive semi—definite,
(5.21) (W,?kak + Ey DT + (D,;2 +WIWw, - In_m)) of = —gi, and

)
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Now we damp of with 7 given as in (5.17) but with og replaced by of. Thus, the resulting step
uy, + Trof is strictly feasible. We impose the following fraction of optimal decrease condition on the
tangential component (sg),:

Wi(0) = Wr((sk)) > G5 (W (0) — Wr(rr0f)) and

(5.22)
< P56k

H( —Cyl2r) 7 Culn) (8 )

Dlzl(sk)u

In this case it can be shown in a way similar to (5.19) that

(5.23) We(0) = W((51).) > S5

5.3. Reduced and full Hessians. In the previous section we considered an approximation
Hy, to the full Hessian. The algorithms and theory presented in this paper are also valid if we use
an approximation Hj to the reduced Hessian W,?Vixﬁkwk. In this case we set

(5.24) Hy = ( 8 I% ) .

Due to the form of Wy, we have
Wl H.W, = Hy.

This allows us to obtain the expansion (5.7) in the context of a reduced Hessian approximation.
For the algorithms with reduced Hessian approximation the following observations are useful:

0

(5.25) d"Hpyd = dHyd,,
WIHd = Hyd,.

5.4. Outline of the algorithms. We need to introduce a merit function and the correspond-
ing actual and predicted reductions. The merit function used is the augmented Lagrangian

L(,3ip) = f(2) + XTC(2) + pC(2)Ca)
We follow [15] and define the actual decrease at iteration k as
ared(sg; pr) = Lz, Aks pr) = L(wk + sk, Akga; pr),
and the predicted decrease as
pred(sg; pr) = Ly, Ak; pr) — (f]k(sk) + AN (Jesy + Cx) + prl| Tisk + CkHQ) ,

with AXp = A1 — A
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REMARK 5.1. A possible redefinition of the actual and predicted decreases is obtained by
subtracting the term 2(sj)l (EkDgz) (sk)y from both ared(sy; pi) and pred(sg; pi). This type of
modification has been suggested in [13] for minimization with simple bounds, and it does not affect
the global and local results given in this paper.

To decide whether to accept or reject a trial step si, we evaluate the ratio

ared(sg; pr)

pred(sy; pr)
To update the penalty parameter p; we use the scheme proposed by El-Alem [20]. Other schemes
to update the penalty parameter have been suggested in [21] and [40].

We can now outline the main procedures of the trust-region interior—point SQP algorithms
and leave the practical computation of 57, (sg),, and Ag to Section 10.

ALGORITHM 5.1 (TRUST-REGION INTERIOR-POINT SQP ALGORITHMS).
1 Choose zg such that a < wg < b, pick 6y > 0, and calculate Ag. Choose a1, 151, &, éin,
Omaz, P, and p_q such that 0 < a1, m,0 < 1, 0 < dnin < dmaw, p>0,and p_1 > 1.
2 For k=0,1,2,...do
2.1 Compute s} such that ||s7|| < 6.
Compute (s), based on the subproblem (5.9)—(5.10) (or (5.11)—(5.12) for the coupled
approach) satisfying
or(a —up) < (sp)u < 0p(b— ug),

with o1, € [0,1). Set s, = 5] + si = sp + Wi(sk)y.
2.2 Compute Apyq and set Adgy = Apy1 — Ag.
2.3 Compute pred(sy; pp—1):

pred(si; pr-1) = qe(0) = gx(s1) — AN (Tt + C) + proa (ICl1? = [1rsi + Cel?) -
If pred(sg; pr—1) > ka_l(HCkH? — || Jesk + CkHQ) then set pr = pr_1. Otherwise set
2 (f]k(sk) — qx(0) + AN (Jysp, + Ck))
a ICHZ = 1 Tes + CilP

ared(sg;
24 If % < m, set

+ p.

Op+1 = @ max {HSQH, HD;l(sk)uH} in the decoupled case or
_ -1
bits = oy max {uszu, ”( Cullor) ™ Culon)(si) ) H} in the

Dlzl(sk)u

coupled case, and reject sg.
Otherwise accept s; and choose 4541 such that

max{éminv 6k} S 6k—|—1 S 6maac-

2.5 If s was rejected set zp41 = 2 and Appq = Ag. Otherwise set 2341 = x4 s and
A1 = Ap + AN

Of course the rules to update the trust radius in the previous algorithm can be much more
involved but the above suffices to prove convergence results and to understand the trust-region
mechanism.
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5.5. Assumptions. In order to establish local and global convergence results we need some
general assumptions. We list these assumptions below. Let € be an open subset of IR™ such that
for all iterations k, zp and zp + sp are in €.

A.1 The functions f(z), ¢;(x), i =1,...,m, are twice continuously differentiable in €.

A.2 The partial Jacobian Cy(z) is nonsingular for all z € Q.

A.3 The functions f(z), Vf(z), Vif(z), C(z), J(z), Vi¢;(z),i=1,...,m are bounded in Q.
A.4 The sequences {Wy}, {Hi}, and {\} are bounded.

A.5 The matrix C;'(2) is uniformly bounded in €.

A .6 The sequence {u} is bounded.

It is equivalent to Assumptions A.3—-A.6, that there exist positive constants vyg, ..., vy indepen-
dent of k£ such that
|f(2)] < wo, VAl < vis IV S vy ICR) S vsy ([T (2)]] < vas
IVici(z)|| <wvs, i=1,...,m, and 1Cy(2) 7| < ve

for all 2 € 2, and
IWell < ve Hkl < vr, [l Svs, and  [[Dy] < vo,

for all k.

For the rest of this paper we suppose that Assumptions A.1-A.6 are always satisfied.

As we have pointed out earlier, our approach is related to the Newton method presented in
Section 4. The u component (skN )u of the Newton step skN =sp+ Wk(skN )Ju, Whenever it is defined,

is given by

_ -1
(sN), = — (D,% WIH W), + Ek) D3gy
(5.26) o, _ -1 _
T _
where
B -1
(5.27) o= ( Cy(afg) Ch ) :

and gp = W,;[(Hksz + ka) From (5.26) we see that the Newton step is well defined in a
neighborhood of a nondegenerate point that satisfies the second—order sufficient KKT conditions
and for which W,;[Hksz is sufficiently small. To guarantee strict feasibility of this step we consider
a damped Newton step given by

(5.28) s+ WirN(sN).,
where (skN )u and s} are given by (5.26) and (5.27), and

5.29 Nos min {1, max{bi — (uk)l, & (uk)l} } .
2 F T e ()™ (s

If Algorithms 5.1 are particularized to satisfy the following conditions on the steps, on the
quadratic model, and on the Lagrange multipliers, then we can prove global and local convergence.
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C.1 The quasi-normal component s} satisfies conditions (5.1), (5.4), and (5.5).
The tangential component (s), satisfies the fraction of Cauchy decrease condition (5.13)
((5.14) for the coupled approach).
The parameter o is chosen in [o,1), where ¢ € (0,1) is fixed for all .

C.2 The tangential component (sg), satisfies the fraction of optimal decrease condition (5.18)
((5.22) for the coupled approach).

C.3 The second derivatives of f and ¢;, 7 = 1,...,m are Lipschitz continuous in 2.
The approximation to the Hessian matrix is exact, i.e., Hy = V2 {(x), \z) with Lagrange
multiplier Ay = —C(z) "IV, f(2k).

C.4 The step s is given by (5.28) provided (skN )u exists, (s} ), lies inside the trust region (5.3),
and T]L\I(SkN )u lies inside the trust region (5.10) ((5.12) for the coupled approach).
The parameter o}, is chosen such that op > o and |oj, — 1] is O (||Dk§k||)

Condition C.1 assures global convergence to a first—order KKT point. Global convergence to
a point that satisfies the second—order necessary KKT conditions requires Conditions C.1-C.3. To
prove local gq—quadratic convergence, we need Conditions C.1, C.3, and C.4. It should be pointed
out that the satisfaction of C.2 or C.4 does not necessarily imply the satisfaction of C.1.

6. Intermediate results. We start by pointing out that (5.5) with the fact that the tangential
component lies in the null space of J, together imply

(6.1) ICHI® = 1ksi + Crll” > mal|Crll min{ss || Cull, 65

We calculated the first derivatives of A(z) = —C\(2)"TV, f(z) in Section 4. It is clear that
under Assumptions A.3 and A.5 these derivatives are bounded in €. Thus, if Ay is computed as
stated in Condition C.3, then there exists a positive constant r19 independent of k such that

(6.2) [AAK]] < wiof|sk]l-

From ||s}|| < 6,4 and Assumptions A.3-A.4 we also have

(6.3) lgell = Wi (#usd + V1) | < o,

where 111 = v(V7dman + 11).
The following lemma is required for the convergence theory.
LEMMA 6.1. FEvery trial step satisfies

(6.4) Jsell < rade
and, if s is rejected in Step 2.4 of Algorithms 5.1, then
(6.5) b = wsllsell

where k4 and ks are positive constants independent of k.
Proof. In the coupled trust-region approach we bound 52 as follows:

[Sad 8 S0 [ el |
Sy 0 Dy D;lsu
(1+v9) by,

IN
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where vg is a uniform bound for || Dy, see Assumption A.6. Since [|s?|| < 6z, we obtain ||sg|| <
(2 + v) 6. It is not difficult to see now that in Step 2.4 we have dp4; > G- min {1, ﬁ} skl
In the decoupled approach, [|si|]] = [|sp + Wi(si)u|l < (1 + verg)dy and similarly 641 >

- min {1, %1119 } |Iskl|, where v is a uniform bound for [|[Wy]|, see Assumption A.4.

We can combine these bounds to obtain
lIskl] < max{2+ vy, 1+ vsrg} by,

bepr > G min {1, 2 o}l

In the case where fraction of optimal decrease (5.18) or (5.22) is imposed on (s )y, the constants
k4 and k5 depend also on ﬁg and j5. O
In the following lemma we rewrite the fraction of Cauchy decrease conditions (5.13) and (5.14)
in a more useful form for the analysis.
LEMMA 6.2. If (s ), satisfies Condition C.1 then

(6.6) ae(sp) — qr(sh + Wi(sk)u) > || Drgel| min {mHDkaH,Hsék},

where kg, K7, and kg are positive constants independent of the iteration k.
Proof. From the definition (5.8) of ¥j we find

() — k(] Wilsn)) > ar(o) = (s + W) = 5507 (D2 (s
(6.7) = Uu(0) = Ur((Sk)u)-

Let 6, be the maximum || D' - || norm of a step, say (1), along —Dkng—’;” allowed inside the
trust region. Here g = Dkgk.
If the trust region is given by (5.10), then

(6.8) b = bp.

If the trust region is given by (5.12), then we can use Assumptions A.4-A.6 to deduce the
inequality

= 1= Cylor) ™ Cular) DD (5k)ul P + 1D (5k)ul?

< (vgvd + DD Gr)ull?
= (Wi + 1)
or, equivalently,

- 1
(6.9) bp > ——— .

\/l/gl/g—l—l
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Define ¢ : RT — IR as ¥(t) = ¥y (—tDk”g—’;”) — Ui(0). Then (1) = —||gkllt + 12, where
TR = Hflﬁgk and Hy = Dy (W,;[Hka + EkDgz) Dy. Now we need to minimize 1 in [0, T}] where
T} is given by

< Dyg Dyg
T, = min{ék, Ukmin{M 2 Gr)i > 0} , O)min {—M 2 gr)i < 0}} )
(Gr )i (k)i

Let ¢} be the minimizer of ¢ in [0,7}]. If ¢} € (0,7%) then

1gell* . L1Igell®
<

1 1
(6.10) vt = —5 . 2|

If t; = T} then either r; > 0 in which case “g—:u > Ty or 7, < 0 in which case rT) < [|Gx||. In either
event,

" . Tk Ty, .
(6.11) G(ty) = (1) = =Txllgell + ETkZ < =5 lgxll-
We can combine (6.7), (6.10), and (6.11) with

We(0) — We((se)u) 2 59 (W(0) = Wi(ef)) = —du(ey)

to get

o) = o+ o) > ot i { L0

The facts that o5 > o and ||gk|| < v11 (see (6.3)) imply that

Ui (0) — Ur((sk)u)

1 _— . Dy gr, .
> §ﬂfHDk9kam{ — | | — 7mln{5k, HDkaH}}
IDT (W] H Wi+ ExD?) Dyl

To complete the proof, we use (6.8), (6.9), the Assumptions A.1-A.6, and the fact that
0k < Omar to establish (6.6) with kg = %m {ﬁl,ﬁl} Ky = mm{+ L}, and kg =

1/71/21/34—1/1 vg’ V11

: 1
min {1 7ot} X
Now we state the convenient form of the fraction of optimal decrease conditions (5.18) and
(5.22).

LEMMA 6.3. If (s )y satisfies Condition C.2 then

(6.12) gk (sh) — qe(sp + Wi(sk)u) > KoTiVk07

where kg 1s a positive constant independent of the iteration k.
Proof. The proof follows immediately from observation (6.7) and conditions (5.19) and (5.23).
O

We also need the following two inequalities.
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LemMA 6.4. Under Condition C.1 there exists a positive constant kg such that

(6.13) 05(0) — qi(s]) = AN (Jisi + Ci) > —rol|Cll-

Moreover if we assume Condition C.3, then

(6.14) qr(0) = qx(sf) — ANE (Jusr + Cr) 2 —wnl|Cxll (1] + [1sl) -

Proof. The term ¢;(0) — g (s}) can be bounded using (5.4) and ||s}|| < 63 in the following way:

ge(0) = qr(sh) = =V llsh — S(sP)T Hy(s])

v

i (IValell + 3o/l ]) 1Cill
On the other hand, it follows from ||Jg s, + Ci|| < ||Ck|| that
(6.15) — AN (T + Cr) = =[[ AN C]l-

Combining these two bounds with Assumptions A.3 and A.4 we get (6.13).
To prove (6.14) we first observe that, due to the definition of Ay in Condition C.3 and to the
form (5.1) of the quasi-normal component s},

0 ey
T.n _ Sply } _
(6-16) Vil sk = ( Vil + Culr)T A ) ( 0 ) =0
Thus

1 1
(6.17) ax(0) — qr(sp) > =gl [ (I Cxll Ishll > — v [[Cll 152 1I-

Also, by appealing to (6.2) and (6.15),
(6.18) — A/\{(Jksk + Ck) > _V10H8kH HCkH

The proof of (6.14) is complete by combining (6.17) and (6.18). 0
The convergence theory for trust regions traditionally requires consistency of actual and pre-
dicted decreases. This is given in the following lemma.
LemMma 6.5. Under Condition C.1 there exists a positive constant k1o such that

(6.19) lared(si; pr) — pred(si; pi)| < saz ([lsell? + pr ([lsell® + 1Ck 1sel12) )
Moreover, if Condition C.3 is also valid, then

(6.20) jared(si; pr) — pred(sis pi)| < mapr (s l® + 11 sil?) -
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Proof. Adding and subtracting {(2g41,Ar) to ared(sy;pi) — pred(sg; pi) and using Taylor
expansion we obtain

ared(sg; pr) — pred(sg; pr) = %5% (Hp — V2, l(xg + thsk, M) Sk
—% Zﬁl(A/\k)isgvzci(wk + tisk)sk
—pi (0 cilan + ) (sK)TV2ei(wp + s (51)
+(sp) T (2p 4+ 3 si)T T (g + t3s1) (k)
()T T T () (s1))

where ¢}, t2, and ¢} are in (0, 1). By expanding ¢;(x) + ¢} sy ) around ¢;(zx) and using Assumptions
A.3 and A.4 we get (6.19).

The estimate (6.20) follows from (6.2), pr > 1, and the Lipschitz continuity of the second
derivatives. a

The last result in this section is a direct consequence of the scheme that updates py in Step 2.3
of Algorithms 5.1.
LEMMA 6.6. The sequence {py} satisfies

pr > pr—1 > 1 and

(6.21) pred(sii p) = B (ICHI12 = 1 Tks + Cul?).

7. Global convergence to a first—order KKT point. The proof of the global convergence
to a first-order KKT point (Theorem 7.1) established in this section follows the structure of the
convergence theory presented in [15] for the equality—constrained optimization problem. This proof
is by contradiction and is based on Condition C.1. We show that the supposition

HDkng + HCkH > €tols

for all k, leads to a contradiction.
The following three lemmas are necessary to bound the predicted decrease.
LemMA 7.1. Under Condition C.1 the predicted decrease in the merit function satisfies

pred(siip) > sigl| Digill min {rl| Digell, st }
(7.1)
—r1ol|Ckll + o (ICHlIZ = sk + Cl?),

for every p > 0.
Proof. The inequality (7.1) follows from a direct application of (6.13) and from the lower bound
(6.6). 0
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LEMMA T7.2. Assume Condition C.1 and |Digel|| + [|Ckll > €01 are satisfied. If ||Cy|| < adg,
where a is a positive constant satisfying

o o . 2 o
) s min (g5 G i G o}

then

K — . = =
(13)  pred(siip) 2 7 || Degell min {el| Digall msdi f + p (ICKI> = I1isi + Cill?)

Jor every p>0.
Proof. From || Dygr|| + [|Ck|| > €tor and the first bound on a given by (7.2), we get

o 2
(7.4) | Drgrl| > §€tol-

If we use this, (7.1), and the second bound on «a given by (7.2), we obtain

pred(siip) > S| Dgell min {rz ]| Digill, msds | + 2ot min {2528 gy |

—r1ol|Ckll + p(ICKI? = 1 kse + Cul?)

v

5| Digil| min { ke[| Dagill, w5} + p (IICKN12 = sk + Cill?).

|
We can use Lemma 7.2 with p = pgr_; and conclude that if ||Dggx|| + ||Ck|| > €101 and ||Cr|| <
ady, then the penalty parameter at the current iteration does not need to be increased. See Step
2.3 of Algorithms 5.1. This is equivalent to Lemma 7.7 in [15]. The next lemma states the same
result as Lemma 7.8 in [15] but with a different choice of a.
LEMMA 7.3. Assume Condition C.1 and ||Dggr|l + |Ckll > €1 If [|Ckl] < by, where a
satisfies (7.2), then there exists a positive constant k14 > 0 such that

(7.5) pred(sg; pr) > K140k

Proof. From (7.3) with p = pj, and || Dxgr|| > Z€0, cf. (7.4), we obtain
pred(sg;pp) > Hegel min{28L0al ko)
> Refl min{—%’zzjg , kg 0.

Hence (7.5) holds with

oia — Re€tol min { 2576150[ K }
14 — 8( -
3 3bmans

The following lemma is also required.
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LEMMA 7.4. Under Condition C.1, if || Dggr|| + ||Ckl| > €t for all k then the sequences {py}
and { Ly} are bounded and by, is uniformly bounded away from zero.

Proof. See Lemmas 7.9-7.13, 8.2 in [15]. 0

Our first global convergence result follows.

THEOREM 7.1. Under Condition C.1 the sequences of iterates generated by the trust—region
interior—point SQP Algorithms 5.1 satisfy

(7.6) lim inf (I1DxWIS fill + 1Cxll) = 0.

Proof. The proof is by contradiction. Suppose that for all &
(7.7) 1 Dkgill + Cxll > €t

At each iteration k either ||C]| < ady or [|Ck|| > ady, where a satisfies (7.2). In the first case we
appeal to Lemmas 7.3 and 7.4 and obtain

pred(sg; pr) > Kby,

where ¢, is the lower bound on é;, given by Lemma 7.4. If ||Cy|| > ady, we have from py > 1, (6.1),
(6.21), and Lemma 7.4, that

pred(sg; pr) > %a min{xza, 1}6..

Hence pred(sy; pr) > k15 for all k, where the positive constant x15 does not depend on k. From
this and (6.19) we establish

ared(sg; pr) — pred(sg; pr)
pred(sg; pr)

K
< T2 syl + pu (st + Il lsel?)) < maabE,

K15

where p, is the upper bound on pj; guaranteed by Lemma 7.4. From the rules that update 6 in
Step 2.4 of Algorithms 5.1 this inequality tells us that an acceptable step always is found after a
finite number of unsuccessful iterations. Using this fact, we can ignore the rejected steps and work
only with successful iterates. So, without loss of generality, we have

Ly — Lpy1 = ared(sy; pr) > mpred(sg; pr) > nikis.

Now, if we let k go to infinity, this contradicts the boundedness of {L;} guaranteed by Lemma 7.4.
Hence the supposition (7.7) is false, and we must have that

(7.8) lim inf (|[Dygs ]| +[ICi) = 0.

Let {k;} be a subsequence with lim; (|| Dk, gr,|| + ||Ck,||) = 0. Together with (5.4) and the
boundedness of { Hj} this implies lim; (HDk] W,;‘Cka] | +|Cx, H) = 0. To establish (7.6), it remains
to show that ij, which is the scaling matrix defined with the reduced gradient W,;‘C(Hk] szj +V fx; )
can be replaced by Dy, . This can be shown by standard arguments. Let i € {1,...,n —m} be
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arbitrary. Assume there exists ¢; > 0 and a subsequence of {k;}, for simplicity again denoted by

{k;}, such that
(7.9) ((Dk, = D WEN i)l > @

If (W,;‘Cka] ); — 0, then the boundedness of Dy, and Dy, yields a contradiction to (7.9). Thus, there
must exist ¢; > 0 and a subsequence of {k;}, again denoted by {k;}, such that |(W,;€kaj)2| > €.
Since lim ijszj = 0, the definitions of D and D imply that |(Dg, — Dy, );| — 0, which again leads
to a contradiction of (7.9). Consequently, the previous assumption can not be satisfied and (7.6) is

proven. d

Using the continuity of C(z), D(z)W (2)TV f(z), and Theorem 7.1, we can deduce the following
result.

COROLLARY 7.1. Let the conditions of Theorem 7.1 be valid. If {xy} is a bounded sequence,
then {xx} has a limit point satisfying the first—order KKT conditions.

8. Global convergence to a second—order KKT point. In this section we establish global
convergence to a point that satisfies the second—order necessary KKT conditions.

THEOREM 8.1. Under Conditions C.1-C.3, the sequences of iterates generated by the trust-
region interior—point SQP Algorithms 5.1 satisfy

(8.1) lim inf (HDkaH + | Crll + T,fw) =0,

where vy is the Lagrange multiplier corresponding to the trust-region constraint, see (5.15), (5.20),
and Ty, is the damping parameter defined in (5.17).
Proof. The proof is again by contradiction. Suppose that for all &,

- 5
(8:2) 1Dxgell + ICKIl + 7 > Sl

(i) Suppose that ||C|| < a’é;, where

. R9€tol
8.3 o :mm{a,i}
( ) 3:‘4}11(1 —|— I434)

and «a satisfies (7.2). From the first bound on « in (7.2) we get

_ 4
| Drgll + 5y > 3 Ctol-

Thus, either || Dggy|| > %qol or TRy > %qol. In the first case we proceed exactly as in Lemmas 7.2,
7.3 and obtain

(8.4) pred(sg; p)

v

K — . =
SNDegell min {sll Dugell,wsde ) + o (ICKI2 = [ kse + Cill?)

K14 o9
6
k

v

6max
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for every p > 0. If 729; > 26 then from (6.4), (6.12), (6.14), [|s?|| < &k, and the second bound
on o given in (8.3), we can erte
pred(spip) = qe(s]) = ar(s) + Wi(sk)u) + a1(0) = ar(s]) — AN (Jisi + Ci)
+p (ICKI1* = [[Tesi + Cil1?)

1 1
> 559773%5;3 + <§H9€tol5k — k11 ]| Crl|(1 + 54)) o+ p (HCkH2 — || Jksk + CkHQ)
1
(8.5) > Srortdt+ o (ICkl” = [ ksi + Cil?)
Ro€tol 9
> §
sl 3 k

for every p > 0. From the two bounds (8.4), (8.5), we conclude that if ||C}|| < o/6; then the
penalty parameter does not increase. See Step 2.3 of Algorithms 5.1. Moreover, these two bounds
on pred(sg; pr) show the existence of a positive constant 17 independent of k such that

(8.6) pred(sg; pr) > K176},

provided ||Cyl| < o6y,
(ii) Now we prove that {p;} is bounded. If pj is increased at iteration k, then it is updated
according to the rule

e =2 @ (k) — qr(0) + AN (Jpsg + Ci) e
ICk[I? = ([T sk + Ckl|? '

We can write

2 (ICl2 = sk + Cull?) = arlse) — anls])

(q ) — qr(s]) ) —I—A/\T(Jksk—l—Ck)
L

2

+E(IICHI2 = sk + Cill?).
(

By applying (6.1) to the left hand side and (6.4), (6.12), (6.14), and ||s}|| < 6z to the right hand
side, we obtain

A

Sl Cillmin{sallCull. 64} < mna(1+ w)sellCall + 5 (=207 C) s = s )

(8.7) (K11 (L + Ka) + prakia) 8| Cr]-

IN

If pj is increased at iteration k, then, because of part (i), ||[Ck]| > a'6;. Now we use this fact to
establish that

Ko . _
(72 min{xza’, 1}) pr < k11(1 + Kq) + prary.
This proves that {p;} and {Lj} are bounded sequences.

(iii) The next step is to prove that d; is bounded away from zero.
If sx_1 was an acceptable step, then 6; > 0,5n, see Step 2.4 in Algorithms 5.1.
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If sp—1 was a rejected, then 6 > K5||sg—1]|, see (6.5). We consider two cases. In both cases we
will use the fact that

ared(sk—1; pr—1)
pred(sg_1; pr—1)

I—-m<

-1].

In the first case we will assume that ||Cy_1]| < @’éx—1. From (8.6) we have pred(sg_1; pr—1) >
k1767 _,. Thus we can use ||sy_1]| < k465_1, see (6.4), and (6.20) with & replaced by k& — 1 to obtain

ared(sy—1;pr-1) 1‘ . K13P% (&21513—1 + /@40/6;3_1) Isk—1]|

pred(sg_1; pr—1) K18}y

This gives 65 > rs||sk—1]] > _ws(I—m)mir

ngp*(ﬁi—l—oz’m;)
The other case is ||C_1]| > a’6x—1. In this case we get from (6.1) and (6.21) with & replaced
by k — 1 that

= K18.

Pred(sk—l; Pk—l) > pl}_l HzHCk—lH min{HSHCk—luv Op—1}
> pr—1K190k—1]|Cr-1||
> prp_10'K1967_ 4,

where k19 = %2 min{xza’, 1}. Again we use pr_y > 1 and (6.20) with & replaced by k — 1, this time
with the last two lower bounds on pred(sg_1;pr—1), and we write

Wed(sk—1§,0k—1) _ 1‘ 513,0k—1HSk—1HS H13Pk—1HCk—1H HSk—1H2
pred(sp—1; pr—1) |pred(sg—1; pr—1)| |pred(sg—1; pr—1)|
513Pk—15421513_1 HlSPk—1H45k—1HCk—1H HSk H
= —11{|-
Pk—la’ffwéz_l Pk—15195k—1HCk—1H
Hence 63 > ks|/sp—1| > rs(l=m)alms — K90

ng(ﬁi+alﬁ4)
Combining the two cases yields

Ok > 6 = min{d,in, K1s, K20}

for all k.

(iv) The rest of the proof consists of proving that an acceptable trial step is always found after
a finite number of iterations and then from this concluding that the supposition (8.2) is false. The
proof of these facts is exactly the proof of Theorem 7.1 where a is now o’ and k140, is replaced by
51753. a

The following result finally establishes global convergence to a point satisfying the second—order
necessary KKT conditions. The proof uses ideas applied in [13, Lem. 3.8]. However, we show that
convergence to a limit point satisfies the second—order necessary conditions even in the degenerate
case.

THEOREM 8.2. Let {1} be a bounded sequence of iterates generated by the trust—region
interior—point SQP Algorithms 5.1 under Conditions C.1-C.3. Then {x;} has a limit point z.
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satisfying the first—order KKT conditions. Furthermore, x, satisfies the second—order necessary
KKT conditions.

Proof. Consider the subsequence of {2} for which the limit in (8.1) is zero. Since this subse-
quence is bounded we can use the same arguments as in the proof of Theorem 7.1 to show that it
has a convergent subsequence indexed by {k;} such that

(8.8) lim ([| D, g, ||+ 1€, 1) = lim (J1D8, WEN fi | + 1€, 1) = 0.
Moreover,

. 2 _
(8.9) h;{n T, Yk = 0,

where 7, is given by (5.17). Let z. denote the limit of {zy, }. It follows from (8.8) and the
continuity of C'(z) and D(z)W (2)TV f(z) that z. satisfies the first—order KKT conditions.

Next, we will prove that lim; vy, = 0. First we consider the decoupled approach. Define the
vector valued function h as follows:

W) = 1 if (W(x)TVf(x))Z =0 and (D(w)“) =0,
t (VV(QC)TVf(JU))Z otherwise,

for all : = 1,...,» — m. The function h is used to identify the active indices. By definition of &
and since x, satisfies the first—order KKT conditions, the implications

(8.10) D(z,);i =0 < h(z.);#0, i=1,....n—m
are valid. (If z, is nondegenerate then h(z,) = W(2,)'V f(2.).) Moreover,

(8.11) lim D(z)h(z) = 0.

T—Tx

Since lim; zg, = 2., (8.10) implies the existence of ¢y € (0, 1) such that

(8.12) min {(uk])i—ai, bi—(uk])i}—l— ‘(hkﬂ)z‘ > 2¢q, it=1,...,n—m
for large enough j, and
2¢p < min{b; —a;, i =1,...,n— m}.

Without loss of generality, we will only consider the cases where 7, < oy, < 1. In the following
the index 7 will be the index defining 7, in (5.17). (The index 7 is really 7; but we drop the j from
i; to alleviate the notation.) We also assume that j is large enough such that

(8.13) (D2 h,) | < e,

of. (8.11).
Multiplying both sides of (5.16) by Dzj gives

(Ek] + 'Vk]In—m) Og] = Dz] (—gk] — W,g;Hk] WkJOg]) ,
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which in turn implies

(8.14) i, 108 )il < (D3

p. T d
(—gk] — Wi, Hi, Wy, ij)i‘ .
Also, Assumption A.6 implies Hog] || < voér, < V9bpmar. From this, (6.3), and Assumptions A.3-A.4,
we can write
1 Vk;

(8.15) (Og])i = ka(Dy,)%

for some k9; independent of k. Now we distinguish between two cases.
In the first case we consider ‘(hkﬂ)z‘ < ¢ and appeal to (8.12) to get min{(uy,); — a;, b; —

(uk,)i} > €0. Thus from (8.15) and the definition (5.17) of 7, we obtain

Ok;Vk; €0
8.16 Te, > — 7
(8.16) 77 ka1 (D, )%

Now we analyze the case ‘(hk])

| > €. Two possibilities can occur.

K3 —
(i) The first possibility is that the value of the numerator defining 7 is equal to (Dy,)7. In

this situation (8.15) immediately implies

Tk, Vk,

817 T >
(8.17) k o

7 =

(i) The other possibility is that the value of the numerator defining 73, is not equal to ( Dy, ).
In this case we have from (8.13) that (Dy, )7 < ¢ and since b; — a; > 2¢g, the numerator in the
definition (5.17) of 7, is bigger than €. Thus

Ok;Vk; €0
8.18 Ty > —2=t—.
(19 Y= (D )R
Using (8.9), (8.16), (8.17), (8.18), ok, > o, and the boundedness of Dy, this proves that

lim v, = 0.
i

By (5.15) we know that
ij le;ij WkJDk] + Bk, + Yk, Inem

is positive semi-definite. Hence condition (8.8), the continuity of W (2)T'V2_((z, \)W(z), the lim-
its lim; \]W,;‘Cijssz = 0 and lim;y;, = 0 imply that the limit of the principal submatrix of
WkTHk] Wi, corresponding to indices [ such that a; < (uy); < b is positive semi-definite. Hence,
the second—order necessary KKT conditions are satisfied at x.. This completes the proof for the
decoupled approach.

The proof for the coupled trust-region approach differs only from the proof for the decoupled
approach in the use of equations (5.20) and (5.21) and in the use of [|[IWy, oij | < (14 v9)dmaes to
bound the right hand side of inequality (8.14). 0

REMARK 8.1. The global convergence results of Sections 7 and 8 hold true if the quadratic
Uy (sy) is redefined as Wi(s,) = qr(sp + Wisy) (see (5.7) and (5.8)) without the Newton augmenta-
tion term %sg (Elezz) 5y. They are valid also if the matrices Dy and Dy, are redefined respectively

as DY and DY with p > 1.
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9. Local rate of convergence. We will now analyze the local behavior of Algorithms 5.1
under Conditions C.1, C.3, and C.4. We start by looking at the behavior of the trust radius close to
a nondegenerate point that satisfies the second—order sufficient KKT conditions. For this purpose
we require the following lemma.

LeMMA 9.1. Under Condition C.1 the quasi—normal component satisfies

(9.1) IRl < faallskll,

where koo is positive and independent of the iteration counter k.
Proof. From sj, = s} + Wy(sy )y, we obtain

szl < skl + Wkl ICsrdull-
But since [[sk]|? = ||(sk)yll* + |(sk)ull*, we use Assumption A.4 to obtain
IRl < (14 ve) [lsell,

and (9.1) holds with kg = 1+ 5. O

THEOREM 9.1. Let {ap} be a sequence of iterates generated by the trust—region interior—point
SQP Algorithms 5.1 under Conditions C.1 and C.3. If x) converges to a nondegenerate point x,
satisfying the second—order sufficient KKT conditions, then oy is uniformly bounded away from zero
and eventually all the iterations will be successful.

Proof. 1t follows from limy_ 4. 2r = 2. and C(z,) = 0 that limy_ 4 [|Ck|| = 0. This
fact, condition (5.4), and Assumptions A.3-A.4, together imply limy_ . [|[W] Hgs?|| = 0. Since
x) converges to a nondegenerate point that satisfies the second—order sufficient KKT conditions and
limg— 40 HW,;‘FHksz || = 0, there exists a§ > 0 such that the smallest eigenvalue of DkaTHkaDk—I—
F, is greater than v for k sufficiently large.

First we will proof that {p;} is a bounded sequence. Since W;(0) — Wi ((sx),) > 0, we obtain

LD (s)u)T (DRWEHWDi + Ex) (DM (si)u) < =(D5 (s1)u)T(Dagi)

IN

105 (s )ul 11 Drgill,
which, by using the upper bounds on W, and Dy, given by Assumptions A.4 and A.6, implies

21/6 Vg

(9-2) skl = IWk(si)ull < 1Dk gill-

Using (6.6) and (9.2), we find that

(9.3) k(P = (] + Wilsk)u) > #el| Digill min{rzl| Degill, ssoi}
> |7,
where x93 = 21/ o {2'2739, y"y . 735-} accounts for the decoupled and coupled cases.

Next, we prove that if HCkH < a"T’skH, where o will be defined later, then the penalty param-
eter does not need to be increased. From (5.4) and [|Ck|| < o”||sk||, we get

2
el < (12l + [1s51) " < 2121 + 2fj st 11

IN

o k3| Cll 1l + 2l ]I
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This estimate, (5.4), (6.14), (9.3), and ||Ck|| < o”||sg]| yield

pred(sp;p) = q(sh) — qr(sh + Wi(sp)u) + @(0) — qr(sh) = AN (Jrse + Cr)
+ 0 (G2 = [1ksk + Crl?)

(9.4)

v

1 1
Traslsnl? + (Graslsnll = (@"beas + (s + ICH) s

+ 0 (ICKI17 = 1kse + Cil?)
for every p > 0. If ||Cy|| < a”||sk||, where o’ satisfies
(95) (4/4311) Oé” —|— (4:‘4}%/{23 —|— 4/431/4311) (O/l)2 S K23,

then we set p = pg_1 in (9.4) and deduce that the penalty parameter does not need to be increased.
See Step 2.3 of Algorithms 5.1. Hence if py is increased then the inequality ||Ck|| > o”||sk|| must
hold, and we can proceed as in Theorem 8.1, equation (8.7), and write

. 1 _
% wall il min {walCull sl | < Genateaa + 1)+ gl Il
4

(here we used inequality (9.1)) which in turn implies

) . 7" 1 _
(—mm {H3Oé 7—}) pr < Kii(koe + 1) + pra.
2 R4

This gives the uniform boundedness of the penalty parameter:

for all .
Given the boundedness of {p;} we can complete the proof of the theorem. If ||Ck|| > o”||s]|,
where o satisfies (9.5), then from (6.1) and (6.21) we find that

K .
(9.6) pred(se: pr) = pr || Cull min{ssl|Cxll, 64} > peraallsill®.

where kg4 = "2;” min{kza’”, 51—4} In this case it follows from (6.20) and (9.6) that

ared(sg; pr)

(9.7) pred(sg; pr)

K13
1] < 22 sl + 6D
24

Now, suppose that [|Cy|| < a”||sk||. From (9.4) with p = pj, we obtain pred(sy;py) > 222|si|%
Now we use (6.20) and pi < p., to get

ared(sg; pr)

(9:8) pred(sg; pr)

4K13p«
- 1] < P s+ .
23

Finally from (9.7), (9.8), limp_ 4o 2k = 24, and limg_ 4 ||Ck|| = 0, we get

lim ared(sg; pr)

=1,
k—+oo pred(sg; pr)
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which by the rules for updating the trust radius given in Step 2.4 of Algorithms 5.1, shows that d;,
is uniformly bounded away from zero. O

We use the following straightforward globalization of the quasi-normal component s} of the
Newton step given in (5.27). The new quasi-normal component is given by:

(9.9) o= ( —&Cy(zp) 1O ) 7

0
where
! it ||Cy(@r) O] < bk,
o = 5 therwi
0y (o) Ty Otherwise.

Before we state the g—quadratic rate of convergence we prove the following important result.

LeMMA 9.2. The quasi—normal component (9.9) satisfies conditions (5.1), (5.4), and (5.5) for
some positive K1, Ko, and ks independent of k.

Proof. 1t is obvious that (5.1) holds. Condition (5.4) is a direct consequence of the condition
(5.5). In fact, using ||Cy(zx)(s]), + Ck|| < ||Ckl| and the boundedness of {C(x)™1} we find that

[spll = [lsf + Cylar) ' Cr = Cyar) ™ O]

9.11
o4y < Gy (I @)Dy + Crll +1Cll) < 20 [ICw] -

So, let us prove (5.5). A simple manipulation shows that

1Kl = 11Cy (@)D + Coll? = Ok = [ = &Cy(ar)Cylzr) ™ Cr + Cul|?
2
1Rl = ((1 = €w)lICx]T)

(2= E)ICHIP > & NICkl.

We need to consider two cases. If £ = 1, then
ICl? = €y (xrk)(s)y + Crll® 2 1Ok ming[|Crll, 8}

Otherwise, &, = m. In this case we get

1 1 :
IClI* = Iy () (s )y + Cill* > o M€kl 81 2 2| Cl| mind[ICell, 8}

Thus the result holds with k3 = min{l, %} and k3 = 1. 0
COROLLARY 9.1. Let {x}} be a sequence of iterates generated by the trust—region interior—point

SQP Algorithms 5.1 under Conditions C.1, C.3, and C.4. If x converges to a nondegenerate point

x. satisfying the second—order sufficient KKT conditions, then x converges q—quadratically.
Proof. We start by showing that |7',L\I —1]is O(||zk — 2«||), where T]L\I is given by (5.29). Since

limy_ 4o ||W{ Hys?|| = 0, we have that ‘% — 1] is (’)(H(s%I Jull) (see [12, Eq. (6.4) and Lem. 12]).




36 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTE

Also since by Condition C.4 oy — 1] is O (|| Drgk|), and Drgy is O (H(SkN)uH) (see (5.26)), we can
see that oy — 1] is also O (H(skN )uH) Furthermore,

N
-
N 1 <o [ — 1]+ |op — 1]
O

Hence |7',L\I —-1lis O (H(sy)uH) But (skN)u is O(J|leg + sp — x.]]) and s} is O(]Jag — 2.||) and this

shows that |7',L\I —1]is O(||lzr — z«]])-

We need to prove that Condition C.4 does not conflict with Condition C.1 so that Theorem 9.1
can be applied. In other words, we need to show that the decrease conditions given in Condition
C.1 hold for the Newton damped step (5.28) whenever it is taken. In Lemma 9.2 we showed that
the quasi-normal component s} given in (9.9) satisfies (5.1), (5.4), and (5.5). From Condition C.4,
s given by (5.27) is used when it coincides with the s} given by (9.9). Thus s} given by (5.27)
satisfies also (5.1), (5.4), and (5.5). It remains to prove that T,L\I(skN )u satisfies the Cauchy decrease
condition (5.13) ((5.14) for the coupled approach). This is indeed the case since

Ue(0) = U(r N () > =rNgl (sl — (20T (WE W + ERDR?) (1))
> o (=gl - ST (WE e+ ED) ()
> o (0(0) = Wa(e)))

and |7N — 1] is O (||lzx — z.])).

Now we need to show that eventually s; is given by (5.28). Since {z}} converges to a nonde-
generate point satisfying the second—order sufficient KKT conditions, (skN )., exists for &k sufficiently
large. Furthermore (s), = —C\(2) " C}, for k large enough because limg_ 4o [|Cy(z) " Ck|| = 0,
and from Theorem 9.1, é;, is eventually bounded away from zero. Using a similar argument we see
that 7',9'(52I )u is inside the trust region (5.10) for the decoupled approach or (5.12) for the coupled
approach. So, from Condition C.4 we conclude that there exists a positive integer k such that sy
is given by (5.28) for k > k.

Using the fact that (skN Ju is O(||lzr — 24|]), we conclude that T]L\I(SkN Ju — (skN Ju i8S
O (|lzx — x4])*). Thus

%_ﬁz(%—cww*@wwwﬂn)_(%—cww*&wmﬂn)

(s}
N

is O(||zx — x.||*). This completes the proof since s, can be seen as a Newton step on a given
vector function of the type (4.8). This function vanishes at z, and is continuously differentiable
with Lipschitz continuous derivatives and a nonsingular Jacobian matrix in an open neighborhood
of z,.. See the discussion at the end of Section 4. Thus the q—quadratic rate of convergence follows
from [17][Thm. 5.2.1] and from the fact that s — skN is O(||zg — .l*). a

10. Trial steps and multiplier estimates. When we described the trust—region interior—
point SQP algorithms, we deferred the practical computation of the quasi-normal and tangential
components and of the multiplier estimates. In the following sections we address these issues.
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10.1. Computation of the quasi-normal component. The quasi-normal component s}
is an approximate solution of the trust-region subproblem

1
(10.1) minimize §HCy(ack)(sn)y + Cy)?
subject to  [|(s")y]] < bk,

and it is required for global convergence to a point that satisfies the necessary KKT conditions
to satisfy conditions (5.1), (5.4), and (5.5). As we saw in equation (9.11) of the proof of Lemma
9.2, property (5.4) is a consequence of (5.5). Whether Property (5.5) holds depends on the way
in which the quasi-normal component is computed. We will show below that (5.5) is satisfied for
many reasonable ways to compute s.

There are various ways to compute the quasi-normal component s} for large scale problems.
For example, one can use the conjugate-gradient method as suggested in [61] and [63], or one can
use the Lanczos bidiagonalization as described in [26]. Both methods compute an approximate
minimizer to the least squares functional in (10.1) from a subspace which contains its negative
gradient —C,(21)7Ck. Thus, the components s} generated by these methods satisfy ||sl|| < & and

1 . (1
SC 6D, + ol < min { 2Cyou)s+ CUP s s € span{=C, (2., sl < o}

We can appeal to a classical result due to Powell, see [52, Thm. 4], [45, Lem. 4.8], to show that

1 . |Cy(2r)T Ci|
Cill? = [1C, (2p)(sM)y + Crll? > =||1C (25 TCk mm{ Y Ok ¢
ICAIP = IRy + Call 2 I ) Cullmin § p P Sm b

Now one can use the fact that {C,(zx)} and {C,(2;)"T} are bounded and write
ICKII* = ICy (k) (s7)y + Cill* 2 kol Cil| min{ra]|Cill, 85}

where k9 and k3 are positive and do not depend on k.

An alternative to the previous procedures is to compute the solution of Cy(z)s = —C(z}) and
to scale this solution back into the trust region (see (9.9)). In Lemma 9.2, we proved that (9.9)
satisfies conditions (5.1), (5.4), and (5.5).

10.2. Computation of the tangential component. In this section we show how to de-
rive conjugate—gradient algorithms to compute (sg),. Other practical algorithms to compute trial
steps for box—constrained minimization trust-region subproblems are introduced in [7] using three
dimensional subspace approximations and conjugate gradients.

Let us consider first the decoupled trust-region approach given in Section 5.2.1. If we ignore
the bound constraints for the moment, we can apply the conjugate-gradient algorithm proposed
by Steihaug [61] and Toint [63] to solve the problem

minimize  Wg(s,)
subject to || Dy tsyl| < 6.

However we also need to incorporate the constraints
or(a —ug) < sy < op(b—ug).
This leads to the following algorithm:

ALGORITHM 10.1 (COMPUTATION OF s = sp + Wi(sg), (DECOUPLED APPROACH)).
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1 Set s =0, r90=—gr = —WIVa(s?), go = D?ro, dg = qo, and € > 0.
2 For:=10,1,2,...do

s

2.1 Compute v; = i %

df (W H Wy +E D)

2.2 Compute
ri=max{r >0 : |Dy'(s, +7d,)| < &,
op(a —up) < s+ 7d; < op(b — ug)}.
2.3 If v, <0,0rif v; > 7, then set (Sg)y = s, + 7id;, where 7; is given as in 2.2 and go to
3; otherwise set s't! = 5! + v,d;.
2.4 Update the residuals: r;41 = r; — VZ(W,;‘FHka + EkD_z)di and ¢;41 = Dzri+1.

T
2.5 Check truncation criteria: if \/% < e, set (s1), = sitl and go to 3.
0

2.6 Compute a; = T—’T'*% and set d;11 = 41 + ud;.
3 Compute s;, = s + Wkl(sk)u and stop.

Step 2 iterates entirely in the vector space of the u variables. After the u component of the step
si has been computed, Step 3 finds its y component. The decoupled approach allows an efficient
use of an approximation H; to the reduced Hessian Wk V2 0. Wy. In this case, only two linear
systems are required, one with C\,(z;)T in Step 1 to compute g; and the other with C,(z}) in Step
3 to compute Wy(sg)y. If the Hessian V2 _{} is being approximated, then the total number of linear
systems is 2/(k) 4+ 2, where I(k) is the number of conjugate-gradient iterations.

One can transform this algorithm to work in the whole space rather then in the reduced space by
considering the coupled trust-region approach given in Section 5.2.2. This alternative is presented
below.

ALGORITHM 10.2 (COMPUTATION OF s, = sp + Wi(sg), (COUPLED APPROACH)).
1 Set s =0,7r0 = —gx = ~WIVar(sh), go = Dirg, do = Wrqo, and € > 0.
2 For:=10,1,2,...do
2.1 Compute v; =

qu

d Hydi+(di)LEx D7 (di)u

2.2 Compute

7 = max{r >0 : H( Cylar) 7 Culi)r(di)u )

D 17’((5Z u < O,

or(a —ug) < st + 7(d;)y < op(b—ug)}.
2.3 If v; <0, orif ; > 7, then si = s' + 7;d;, where 7; is given as in 2.2 and go to 3;
otherwise set sit! = ¢ + ~Yid;.
2.4 Update the residuals: r;41 = r; — 7; (I/VkTdeZ + EkD;Z(di)u) and ¢41 = Dzri+1.

T o .
2.5 Check truncation criteria: if ,/% < e, set si = s't! and go to 3.
0

T
2.6 Compute a; = T’J;sz’fl and set dit1 = Wi(qiy1 + aud;).

: 9t

3 Compute s = s} + si and stop.

Note that in Step 2 both the y and the u components of the tangential component are being
computed. The coupled approach is suitable particularly when an approximation Hj to the full
Hessian V2 _( is used. The coupled approach can be used also with an approximation Hy to
the reduced Hessian W,?Vixﬁkwk. In this case, we consider Hj that is given by (5.24) and use
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the equalities (5.25) to compute the terms involving Hy in Algorithm 10.2. If the Hessian V2 {}
is approximated, the total number of linear systems is 2I(k) + 2, where I(k) is the number of
conjugate—gradient iterations. If the reduced Hessian W,;[V?El,ﬁka is approximated, this number
is I(k)+ 2.

Two final important remarks are in order.

Remark 10.1. If W,;[Wk was included as a preconditioner in Algorithm 10.2, then the
conjugate—gradient iterates would monotonically increase in the norm [|Wj - ||. Dropping this pre-
conditioner means that the conjugate-gradient iterates do not necessarily increase in this norm (see
[61]). As a result, if the quasi-Newton step is inside the trust region, Algorithm 10.2 can terminate
prematurely by stopping at the boundary of the trust region.

REMARK 10.2. Since the conjugate-gradient Algorithms 10.1, 10.2 start by minimizing the
quadratic function W (s,) along the direction —D%gy, it is quite clear that they produce reduced

tangential components (sg), that satisfy (5.13) and (5.14), respectively, with ﬁfl =6y =1.

10.3. Multiplier estimates. A convenient estimate for the Lagrange multipliers is the ad-
joint update

(10.2) M = =Cy(2r) TV fr,

which we use after each successful step. However we also consider the following update:
(10.3) Mg = =Cy(2) T Vyqr(sh) = =Cy(ar) ™ (Hrsh)y + Vi i) -

Here the use of (10.3) instead of

(10.4) A1 = —Cy(ap + 51) TV, fag + sp),

might be justified since we obtain (10.3) without any further cost from the first iteration of any of
the conjugate-gradient algorithms described above. The updates (10.2), (10.3), and (10.4) satisfy
the requirement given by A.4 needed to prove global convergence to a first—order KKT point.

11. Numerical example. A typical application that has the structure described in this paper
is the control of a heating process. In this section we introduce a simplified model for the heating
of a probe in a kiln discussed in [8]. The temperature y(z,t) inside the probe is governed by a
nonlinear partial differential equation. The spatial domain is given by (0,1). The boundary z = 1
is the inside of the probe and z = 0 is the boundary of the probe.

The goal is to control the heating process in such a way that the temperature inside the probe
follows a certain desired temperature profile y4(¢). The control u(t) acts on the boundary z = 0.
The problem can be formulated as follows.

(11.1) minimize %/(JT[(y(l,t) — ya(1)? + yu*(1)]dt

subject to
) = qle,t), (1) €(0,1)x(0,T),
1)0:y(0,1) = gly(0,8) —u(t)], 1e€(0,T),
) = 0, te(0,7),

y(z,0) = yolz), z€(0,1),

Upw < U < Unpp 5
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where y € L*0,T; HY0,1)), and w € L*(0,T). The functions 7 : R — IR and x : R — IR
denote the specific heat capacity and the heat conduction, respectively, yg is the initial temperature
distribution, ¢ is the source term, ¢ is a given scalar, and v is a regularization parameter. Here
Wiow, Uupp € L(0,T) are given functions.

If the partial differential equation and the integral are discretized, we obtain an optimization
problem of the form (1.1). The discretization uses finite elements and was introduced in [8] (see also
[29] and [39]). The spatial domain (0,1) is divided into N, subintervals of equidistant length, and
the spatial discretization is done using piecewise linear finite elements. The time discretization is
performed by partitioning the interval [0, 7] into N; equidistant subintervals. Then the backward
Euler method is used to approximate the state space in time, and piecewise constant functions
are used to approximate the control space. This leads to a discretized problem with dimension
n = N(N;+ 1)+ Ny and m = NN, + 1). Under the assumptions on the coefficient functions x
and 7 stated in [8], [39] which guarantee the well-posedness of the infinite dimensional problem,
it is shown in [39] that the constraints C'(y,u) of the discretized problem satisfy the assumptions
A.3 and A.5 provided the discretization parameters N, and Ny are chosen appropriately. For more
details we refer to the comprehensive treatments in [8] and [39].

The algorithms studied in this paper have been implemented in FORTRAN 77. The resulting
software package TRICE, trust-region interior—point SQP algorithms for optimal control and en-
gineering design problems is available via the internet [16].

We use the formula (9.9) to compute the quasi-normal component, and Algorithms 10.1 and
10.2 to calculate the tangential component. The numerical test computations were done on a Sun
Sparcstation 10 in double precision. These results demonstrate the effectiveness of the algorithms.

With this discretization scheme, Cy(2) is a block bidiagonal matrix with tridiagonal blocks.
Hence linear systems with C(z) and C,(2)T can be solved efficiently by block forward substitution
or block backward substitution, respectively. In each substitution step, only a small system with
tridiagonal system has to be solved. In the implementation we use the LINPACK subroutine DGTSL
to solve the tridiagonal systems. Notice that direct factorizations are only applied to the small
(Ny + 1) X (N, 4 1) tridiagonal subblocks of Cy(z), but not to the entire Ny N, x (Ny(N, + 1))
Jacobian matrix (Cy(z) Cy(2)). See also [39].

As we pointed out in Section 1, the inner products and norms used in the trust-region interior—
point SQP algorithms are not necessarily the Euclidean ones. In our implementation [16], we call
subroutines to calculate the inner products (y!,y?) and (u',w?) with y!,y? € R™ and u!,u? €
IR™®™™. The user may supply these subroutines to incorporate a specific scaling. If the inner
product (x!,2?) is required, then it is calculated as (y!,y%) + (u!l,u?). In this example, we used
discretizations of the L2(0,7T) and L*(0,7T; H'(0,1)) norms for the control and the state spaces
respectively. This is important for the correct computation of the adjoint and the appropriate
scaling of the problem.

In our numerical example we use the functions

Ty)=a+qy, yeR, ky)=r+ry, yelk,

with parameters 11 = ¢ = 4, r9 = —1, and ¢ = 1. The desired and initial temperatures, and the
right hand side are given by

ya(t) = 2—€™,
yo(z) = 24 cosme, and
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q(z,t) = g+ 2q2) + 7T2(7‘1 + 27‘2)]67725 COSTX
2

—rom2e?T 4 (27‘27r2 + nqz)ezm cos“ Tz,
with 7 = —1. The final temperature is chosen to be T" = 0.5 and the scalar ¢ = 1 is used in the
boundary condition. The functions in this example are those used in [39, Ex. 4.1]. The size of the
problem tested is n = 2200, m = 2100 corresponding to the values N; = 100, N, = 20.
The scheme used to update the trust radius is the following fairly standard one:
o If ratio(sy; pr) < 1074, reject sg and set éxp1 = 0.5 norm(s);
If 10~* < ratio(sg; px) < 0.1, reject s and set &,y = 0.5 norm(sy);
If 0.1 < ratio(sg; pr) < 0.75, accept s and set dpy1 = O;
If ratio(sg; px) > 0.75, accept si and set §x41 = min {265, 101°};

ared(sg;pr)
pred(sg;pr)’

where ratio(sg; pr) =

norm(sy) = max { |52, [1D5 (st )l }

in the decoupled approach, and

norm(sy) = max {HSQH, ” ( —Cy(fig;zu()ik)(slg)u ) H}

k

in the coupled approach. The algorithms are stopped if the trust radius gets below 1075,

We have used o, = ¢ = 0.99995 for all k; 6y = 1 as initial trust radius; p_; = 1 and p = 1072
in the penalty scheme. The tolerance used in the conjugate—gradient iteration was ¢ = 107*. The
upper and lower bounds were b; = 1072, a; = —1000, ¢ = 1,...,n — m. The starting vector was
Trog = 0.

For both the decoupled and the coupled approaches, we did tests using approximations to
reduced and to full Hessians. We approximate these matrices with the limited memory BFGS
representations given in [10] with a memory size of 5 pairs of vectors. For the reduced Hessian we
use a null-space secant update (see [49], [67]). The initial approximation chosen was v/I,,_,, for the
reduced Hessian and «1, for the full Hessian, where 7 is the user specified regularization parameter
in the objective function (11.1).

In our implementation we use the following form of the diagonal matrix Dy,

) min{l, (b— ug);} if (gx); <O,
(11.2) (Dk)ﬁ =

min{1, (ur —a);} if (gx);, >0,

fori =1,...,n —m. This form of Dy, gives a better transition between the infinite and finite bound
and is less sensitive to the introduction of meaningless bounds. See also Remark 3.1.
The algorithms were stopped when

IDkWE Y fill + ICx]| < 1075

The results are shown in Tables 11.1 and 11.2 corresponding to the values v = 1072 and
v = 1073, respectively. There were no rejected steps. The different alternatives tested performed
quite similarly. The decoupled approach with reduced Hessian approximation seems to be the best
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TaBLE 11.1
Numerical results for v = 1072

Decoupled Coupled
Reduced ﬁk Full Hy, Reduced ﬁk Full Hy,
number of iterations k* 14 20 17 18
| Crex|| D082E — 11 | A370FE — 10 | .7122F — 12 | 8804 F — 11
| Dix WL frox | A4033F — 08 | L1389F — 08 | .63651 — 10 | .2641F — 08
I|skx—1]| A230E£ — 04 | 1461 FE — 04 | .3546F — 05 | .1445F — 04
Opr_1 A638E 4+ 05 | L1049FE + 07 | (1311 E 406 | 2621 F 4 06
Prr_1 1000F + 01 | .1000E 4 01 | .1000£ 4+ 01 | .1000F 4 01
TABLE 11.2
Numerical results for vy = 1072
Decoupled Coupled
Reduced ﬁk Full Hy, Reduced ﬁk Full Hy,
number of iterations k* 16 18 17 19
| Crex|| 6233F — 11 | 1115FE — 10 | .6487F — 11 | 1246 F — 09
| Des WA fix | SHI61E — 08 | 2539F — 08 | 72821 — 09 | .4696) — 08
I|skx—1]| 1626 — 04 | 17T03FE — 04 | .1530F — 04 | .4659F — 04
Opr_1 6554 + 05 | .2621FE+ 06 | (1311 FE 4+ 06 | .5243F 4 06
Prr_1 1000F + 01 | .1000E 4 01 | .1000£ 4+ 01 | .1000F 4 01
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Fia. 11.1. Coleman—L: affine scaling. Fia. 11.2. Dikin-Karmarkar affine scaling.

for this example. Note that in this case the computation of each trial step costs only three linear
system solvers with Cy(z}) and C,(2x)T, one to compute the quasi-normal component and two for
the computation of the tangential component.

We made an experiment to compare the use of the Coleman—Li affine scaling with the Dikin—
Karmarkar affine scaling. When applied to our class of problems, the Coleman—Li affine scaling
is given by the matrices D) and Dj. A study of the Dikin-Karmarkar affine scaling for steepest
descent is given in [54]. For our class of problems, this scaling is given by

(11.3) (Kk) C=min{l, (up — a)i, (b—ug)i}, i=1,...,n—m,

and has no dual information built in. We ran the trust-region interior—point SQP algorithm with
the decoupled and reduced Hessian approximation and (11.2) replaced by (11.3). The algorithm
took only 11 iterations to reduce ||[KtW['V fi|| + [|Ck| to 1078, However, as we can see from the
plots of the controls in Figures 11.1 and 11.2, the algorithm did not find the correct solution when
it used the Dikin-Karmarkar affine scaling (11.3). Some of the variables are at the wrong bound
corresponding to negative multipliers.

12. Conclusions. In this paper we have introduced and analyzed some trust—region interior—
point SQP algorithms for an important class of nonlinear programming problems that appear in
many engineering applications. These algorithms use the structure of the problem, and they com-
bine trust-region techniques for equality—constrained optimization with an affine scaling interior—
point approach for simple bounds. We have proved global and local convergence results for these
algorithms that includes as special cases both the results established for equality constraints [15],
[19] and those for simple bounds [13].

We have implemented the trust-region interior—point SQP algorithms covering several trial step
computations and second—order approximations. In this paper we have reported numerical results
for the solution of a specific optimal control problem governed by a nonlinear heat equation. In [11],

0.5
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[30], [31], these algorithms have been applied to other optimal control problems. The numerical
results have been quite satisfactory.

We are investigating extensions of these algorithms to handle bounds on the state variables
y. See [66]. We also are developing an inexact analysis to deal with trial step computations that
allow for inexact linear system solvers and inexact directional derivatives [31]. The formulation and
analysis of these methods in an infinite dimensional framework is also part of our current studies.
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