
LOCAL CONVERGENCE OF A PRIMAL-DUAL METHOD FORDEGENERATE NONLINEAR PROGRAMMINGLU��S N. VICENTE� AND STEPHEN J. WRIGHTyAbstrat. In reent work, the loal onvergene behavior of path-following interior-point meth-ods and sequential quadrati programming methods for nonlinear programming has been investigatedfor the ase in whih the assumption of linear independene of the ative onstraint gradients at thesolution is replaed by the weaker Mangasarian-Fromovitz onstraint quali�ation. In this paper,we desribe a stabilization of the primal-dual interior-point approah that ensures rapid loal on-vergene under these onditions without enforing the usual entrality ondition assoiated withpath-following methods. The stabilization takes the form of perturbations to the oeÆient matrixin the step equations that vanish as the iterates onverge to the solution.Key words. Nonlinear Programming, Degeneray, Interior-Point Methods.AMS subjet lassi�ations. 90C30, 90C311. Introdution. We onsider the nonlinear programming (NLP) problem inthe following form: min f(x); subjet to g(x) = 0; x � 0;(1.1)where x 2 IRn, f : IRn �! IR, and g : IRn �! IRm are smooth funtions. We writethe Lagrangian funtion ` for this problem as`(x; �; z) = f(x) + g(x)T�� xT z:The Karush-Kuhn-Tuker (KKT) onditions are satis�ed at a point x if there existLagrange multipliers � 2 IRm and z 2 IRn suh thatrx`(x; �; z) = rf(x) +rg(x)�� z = 0;(1.2a) g(x) = 0;(1.2b) XZe = 0;(1.2) x � 0; z � 0;(1.2d)where X = diag(xi)ni=1; Z = diag(zi)ni=1;and e represents the vetor of ones of the appropriate dimension (in this ase n).The standard primal-dual interior-point approah for solving (1.1) is to apply aNewton-like method to the square system of nonlinear equations formed by (1.2a),(1.2b), and (1.2), modifying the searh diretion and step length to ensure that the�Departamento de Matem�atia, Universidade de Coimbra, 3001-454 Coimbra, Portugal(lviente�mat.u.pt). Support for this author was provided by Centro de Matem�atia da Uni-versidade de Coimbra, by FCT under grant POCTI/35059/MAT/2000, and by the European Unionunder grant IST-2000-26063.yMathematis and Computer Siene Division, Argonne National Laboratory, Argonne IL 60439(wright�ms.anl.gov). Support for this author was provided by the Mathematial, Information,and Computational Sienes Division subprogram of the OÆe of Advaned Sienti� Computing,U.S. Department of Energy under ontrat W-31-109-Eng-38, and the National Siene Foundationunder grants CDA-9726385 and ACI-0082065. 1



inequalities (1.2d) are satis�ed stritly by eah iterate. As noted below, our modi�-ation relaxes the latter ondition, allowing some omponents of x and z to beomezero or negative when signi�ant progress toward the solution is ahieved by doingso. We show that our strategy ahieves loal superlinear onvergene even when thestandard assumption of linear independene of the ative onstraint gradients (knownas LICQ) is replaed by the weaker Mangasarian-Fromovitz onstraint quali�ation(abbreviated as MFCQ). We sometimes use the term \degenerate problems" to referto problems for whih MFCQ but not LICQ is satis�ed at the solution x�.The loal onvergene theory of interior-point methods for (1.1) is developed inthe papers by El-Bakry et al. [4℄, Martinez, Parada, and Tapia [13℄, and Yamashitaand Yabe [22℄ for primal-dual methods and in the papers by Coleman and Li [3℄,Heinkenshloss, Ulbrih, and Ulbrih [10℄, and Viente [18℄ for aÆne-saling methods.Byrd, Liu, and Noedal [2℄ desribe a hybrid primal-dual approah. The algorithmsin these papers have the lassial properties of Newton and quasi-Newton methods,and all make the LICQ assumption.In many appliation problems, however, LICQ is generially not satis�ed. Anexample is the lass of optimal ontrol and design problems with inequalities or boundsinvolving the state variables; see [11℄. Consider the problemmin f(y; u); subjet to g(y; u) = 0; y � 0; u � 0 ;in whih y 2 IRny represents state variables, u 2 IRnu represents ontrol variables,g(y; u) : IRny � IRnu ! IRny models the state equation, and the partial Jaobianryg(y; u) is nonsingular at all points of interest. The LICQ ondition is satis�ed ata point (y; u) if the matrix 264 ryg(y; u)T rug(y; u)TINy 00 INu 375has full row rank, where Ny and Nu are the ative sets fi : yi = 0g and fi : ui = 0g,respetively, and INy and INu are the submatries of the identity formed by therows orresponding to indies in Ny and Nu, respetively. A neessary ondition fornondegeneray is therefore thatny + jNyj+ jNuj � ny + nu;that is, jNyj+ jNuj � nu:In other words, the number of ontrol and state ative variables (those at their bounds)must not exeed the number of ontrol variables. In situations where ny � nu, thisrequirement is unlikely to be satis�ed.Based on previous work by Wright [19, 20℄ on SQP methods for degenerate prob-lems, we introdue a stabilization for the primal-dual interior-point approah thatallows a measure of the error to onverge quadratially to zero even when the prob-lem is degenerate. Related results were obtained by Ralph and Wright [15, 16℄ formonotone variational inequalities obtained as the optimality onditions of onvexprogramming problems. The latter papers establish both global and rapid loal on-vergene properties by imposing a entrality ondition on the iterates; they require2



monotoniity/onvexity, but not the stabilization parameter of this paper. In a re-lated paper, Tseng [17℄ desribes a primal-dual interior-point method for monotonenonlinear omplementarity problems in whih superlinear onvergene ours evenwhen the \primal" solution is not unique. His work also imposes entrality and guar-antees global onvergene. Another topi of interest, not onsidered here, onernsthe behavior of interior-point methods when strit omplementarity does not holdat the solution. Heinkenshloss, Ulbrih, and Ulbrih [10℄ desribe an aÆne-salinginterior-point method that onverges superlinearly for minimization problems withsimple bounds, without the assumption of strit omplementarity.The stabilized primal-dual method that we introdue in this paper results frommodifying the theory for the lassial primal-dual method in two respets. The �rstmodi�ation appears in the familiar matrix used in the omputation of the primal-dual step. The diagonal bloks in this matrix are modi�ed to ensure that those oftheir diagonal elements that are onverging to zero do so at a ontrolled rate andremain stritly positive. The other modi�ation is that a step length of 1 may betaken even when it leads to new iterates that have nonpositive omponents, providedthat some onditions are satis�ed that ensure that the resulting step makes exellentprogress toward the solution.The paper is organized as follows. In Setion 2 we detail our assumptions andnotation. The stabilized primal-dual method is presented in Setion 3, and the mainonvergene results are presented in Setion 4. Finally, we disuss alternative ap-proahes in Setion 5.2. Assumptions and Notation. Exept for relaxing the LICQ to MFCQ, ourassumptions are ones traditionally made in standard analyses of superlinear loalonvergene. We make seond-order suÆient assumptions (see below) that ensurethat x� is a strit loal solution. Beause of MFCQ, the multipliers �� and z� thatsatisfy (1.2) are not neessarily unique. We de�ne the following sets:SD = f(��; z�) : (x�; ��; z�) satisfy (1.2)g ; S = fx�g � SD:The analysis of the stabilized primal-dual method presented in Setion 3 makesuse of the partition of the index set f1; 2; : : : ; ng into ative and inative index setsat the point x�, de�ned as follows:B = fi = 1; 2; : : : ; n : x�i > 0g ; N = fi = 1; 2; : : : ; n : x�i = 0g :We will prove in Setion 4 that the stabilized primal-dual method exhibits a quadratirate of loal onvergene to a point x� that satis�es the following set of assumptions:A.1 The funtions f and g are twie ontinuously di�erentiable in a neighborhood ofx�.A.2 The point x� satis�es the KKT onditions (1.2).A.3 Strit omplementarity holds; that is, for some (��; z�) 2 SD , we have z�i > 0for all i 2 N .A.4 The following seond-order suÆient ondition is satis�ed:there exists � > 0 suh that dTr2xx`(x�; ��; z�)d � �kdk2for all (��; z�) 2 SD and for all d suh that" rg�BT rg�NT0 �I # � dBdN � = 0:3



(Here, rg�B ontains the partial derivatives of g with respet to xi, evaluatedat x�, for i 2 B; similarly for rg�N .)A.5 The Mangasarian-Fromovitz onstraint quali�ation [12℄ (MFCQ) is satis�ed atx�, that is, rg(x�) has full olumn rank, and there exists a vetor w suhthat rg(x�)Tw = 0; wi > 0 for all i 2 N:Given Assumptions A.1{A.5, it is well known that x� is a strit loal minimizer for(1.1). Another important result is the following haraterization of the boundednessof SD proved by Gauvin [7℄:Lemma 2.1. Let Assumptions A.1{A.4 hold. The set SD is bounded if and onlyif the MFCQ A.5 holds.Given x 2 IRn, we denote by x� the vetor whose elements are min(xi; 0) fori = 1; 2; : : : ; n. We use (x; z)� to denote the vetor in IR2n in whih the �rst nomponents ontain x� and the last n omponents ontain z�.Given two ontinuous funtions 	1(�) and 	2(�) that map some spae to IR, wesay that 	1(x) = O(	2(x)) if there exist onstants � and �(�) suh thatj	2(x)j 2 [0; �℄ =) j	1(x)j � �(�)j	2(x)j :We say that 	1(x) = �(	2(x)) if both 	1(x) = O(	2(x)) and 	2(x) = O(	1(x)).We use k � k to denote the Eulidean norm of a matrix or a vetor.3. Stabilizing the Primal-Dual Method. A standard primal-dual approahfor solving (1.1) omputes steps based on the linearization of the following perturbedversion of (1.2a), (1.2b), and (1.2):rx`(x; �; z) = 0;(3.1a) g(x) = 0;(3.1b) XZe = �e;(3.1)for some parameter � > 0. In addition, all iterates are typially required to satisfythe strit positivity onditions x > 0, z > 0. Aeptable performane of this approahdepends on a number of fators, among them the hoie of parameter � > 0, whihwe disuss below. Linearization of (3.1) yieldsZ�x+X�z = �XZe+ �e :(3.2)This equation is ombined with linearizations of (3.1a) and (3.1b) to yield the linearsystem that is solved at eah iteration of a typial primal-dual interior-point method.Sine our onditions do not assume a unique primal-dual solution point, we areinterested in the onvergene of the sequene of iterates (x; �; z) to some point in theprimal-dual solution set S. DiÆulties may arise when some of the oeÆients of �xand �z in the linearization (3.2)|that is, the elements of the vetors x and z|arevery lose to zero. Many path-following methods enfore the entrality onditionsxizi � �, where  > 0 is a onstant and � is a measure of the distane of the urrentiterate (x; �; z) to the primal-dual solution set S (about whih see more below). Thisondition ensures that the pairwise produts xizi remain roughly in balane as theyapproah zero and that even the small omponents of x and z are bounded below bya multiple of �. In this paper, we onsider an alternative to the entrality ondition4



that ahieves the same e�et: We modify the system (3.2) to ensure expliitly thatthe oeÆients of �x and �z do not approah zero too rapidly. Our modi�ed systemis ~Z�x+ ~X�z = �XZe+ �e;(3.3)where ~X = diag(~xi)ni=1; ~xi = max(�min; xi); i = 1; 2; : : : ; n;(3.4a) ~Z = diag(~zi)ni=1; ~zi = max(�min; zi); i = 1; 2; : : : ; n;(3.4b)where �min is a positive value, spei�ed below, that varies like the distane of theurrent iterate (x; �; z) to the solution set S. For those xi and zi that do not approahzero, the modi�ation (3.4) has no e�et, and we reover the same oeÆients as in(3.2) for these omponents.Linearization of the nonlinear equation (3.1a) is given byr2xx`(x; �; z)�x +rg(x)�� ��z = �rx`(x; �; z);(3.5)while linearization of the feasibility ondition (3.1b) yieldsrg(x)T�x = �g(x):(3.6)The onjuntion of the linear equations (3.5), (3.6), and (3.3) de�nes the linear systemthat provides the step (�x;��;�z):24 r2xx`(x; �; z) rg(x) �Irg(x)T 0 0~Z 0 ~X 3524 �x���z 35 = �24 rx`(x; �; z)g(x)XZe� �e 35 :(3.7)When the iterates satisfy a entering ondition, and when the norms of g(x) andrx`(x; �; z) are bounded by a onstant multiple of xT z at all iterates, it suÆes toestimate the distane of (x; �; z) to S by xT z. A measure that holds in more generalirumstanes, whenever onditions A.1{A.5 are satis�ed and for all points (x; �; z)suÆiently lose to the solution set, is given by�(x; �; z) def= k(rx`(x; �; z); g(x);min(x; z))k :(3.8)Here, min(x; z) denotes a vetor of length n whose ith omponent is the minimumof xi and zi. Several authors (for example, Fahinei, Fisher, and Kanzow [5℄, Hagerand Gowda [9, Lemma 2℄, and Wright [19, Theorem A.1℄) have proved that underAssumptions A.1{A.5 we have thatdist((x; �; z);S) = �(�(x; �; z)):(3.9)We assume that the algorithmi parameter �min is hosen to satisfy�min = �(�(x; �; z)):(3.10)For instane, it an be set to �min = ��(x; �; z) for some positive onstant �.We now desribe our stabilized primal-dual method.Algorithm 3.1 (Stabilized Primal-Dual Method).5



Choose parameter � 2 (1; 2);Choose initial point (x; �; z) with (x; z) > 0;repeatChoose �min > 0 satisfying (3.10);Choose entering parameter � 2 [0; �℄ to satisfy� = O(�(x; �; z)2);Compute (�x;��;�z) by solving (3.7);if both of the following onditions hold:k(x +�x; z +�z)�k � �(x; �; z)� ;(3.11a) �(x +�x; �+��; z +�z) � �(x; �; z)� ;(3.11b) Set � = 1;else Choose step parameter � 2 (0; 1) to satisfy1� � = O(�(x; �; z));Choose � to satisfy the ondition� 2 �0; � �1min(X�1�x; Z�1�z;�1)� ;end (if)De�ne the new iterate by(x; �; z) (x; �; z) + �(�x;��;�z);until onvergene.We denote the iterates generated by this method by (xk ; �k; zk), k = 0; 1; 2; : : :.The method above departs from the lassial primal-dual interior-point approahin two major respets. First, the omputation of the step in (3.7) is obviously di�erent,sineX and Z have been replaed by ~X and ~Z. Seond, a step length of 1 may be takeneven when it produes new iterates that have nonpositive omponents, provided thatthe onditions (3.11a) and (3.11b) are satis�ed. These onditions ensure that suh anevent happens only when the step makes exellent progress toward the solution. Thestabilization (3.3),(3.4) ensures that the next iteration is still well de�ned, in the sensethat ~X and ~Z still have stritly positive diagonal elements after the step is taken.The \else" branh of the ondition statement ensures that the step length � ishosen to move no more than a fration � of the distane to the boundary along thealulated diretion. In onvex nonlinear programs, other onditions may be imposedon � and �, to enfore entrality or to balane the amounts by whih the respetiveKKT onditions (1.2a){(1.2) are violated by the urrent iterate (see, for example,Ralph and Wright [15, 16℄). In nononvex problems, derease of a merit funtion maybe required, and other modi�ations of the searh diretion (related to imposition ofa trust-region bound, for instane) may be imposed; see, for example, Byrd, Hribar,and Noedal [1℄, Forsgren and Gill [6℄, Gay, Overton, and Wright [8℄. Sine ourinterest is in loal onvergene behavior, we have not inluded in Algorithm 3.1 any6



of the safeguards that are needed to ensure desirable global onvergene behavior. Webelieve, however, that suh safeguards ould be inorporated without interfering withthe loal onvergene behavior that we desribe in the next setion. In partiular,if derease of a merit funtion is required for global onvergene, we expet that astep satisfying (3.11b) will derease the merit funtion, sine suh a step makes goodprogress toward the solution set S. (It is for this reason that we have inluded theondition (3.11b) among our aeptane riteria; this ondition is not needed for theloal onvergene theory developed in the next setion.)4. Convergene of the Stabilized Primal-Dual Method. In this setion,we establish rapid loal onvergene of Algorithm 3.1 one it enters a ertain neighbor-hood of the solution set S. The main tehnial result, Lemma 4.1, establishes that thelength of the step is O(�(x; �; z)) when alulated at any point in the neighborhoodin question, provided that the entering parameter � meets ertain requirements.Lemma 4.2 shows that the onditions (3.11a), (3.11b) are eventually satis�ed by thestep, while Theorem 4.3 essentially summarizes the result.Beause of Assumption A.3, there is a  > 0 suh that for eah � > 0 the followingneighborhood is nonempty:N(�) = n(x; �; z) : k(x; �; z)� (x�; ��; z�)k � � ;for some (��; z�) 2 SD with z�N � eo ;(4.1)where z�N is the subvetor of z� formed by the omponents in N . Loosely speaking,this set is a stritly omplementary neighborhood of the solution set S. Note that by(3.9) and (3.10), there is a onstant �0 suh that for all � suÆiently small, we have�(x; �; z) � �0� for all (x; �; z) 2 N(�):(4.2)Our main result on the length of the step obtained by solving the system (3.7) isas follows.Lemma 4.1. Let Assumptions A.1{A.5 hold, and suppose that for some onstantC we have � � C�(x; �; z)2:(4.3)Then for any  > 0, there exist positive onstants � and �1(�; ) suh thatk(�x;��;�z)k � �1(�; )�(x; �; z);(4.4)for all points (x; �; z) 2 N(�).Proof. Suppose  is suh that N(�) is nonempty for all � > 0. We show that thedesired result holds for some suÆiently small � and suÆiently large �1(�; ). Sinethe proof is long, we divide it into �ve setions labeled (A)-(E) and provide a briefdesriptive heading for eah setion. To simplify the notation, we drop the argument(x; �; z), using in partiular � to denote �(x; �; z).(A) Transforming the system (3.7) via a singular value deomposition (SVD) ofthe ative onstraint Jaobian. Using the partition f1; : : : ; ng = B [ N , the linear7



system (3.7) an be rewritten as follows:266666664 r2xx`BB r2xx`BN rgB �I 0r2xx`NB r2xx`NN rgN 0 �IrgTB rgTN 0 0 0~ZB 0 0 ~XB 00 ~ZN 0 0 ~XN
377777775266666664 �xB�xN���zB�zN

377777775 = �266666664 rx`Brx`Ng(XZe)B � �eB(XZe)N � �eN
377777775 ;(4.5)where eB and eN denote vetors of the form (1; 1; : : : ; 1)T with jBj and jN j elements,respetively. We an eliminate �zB immediately to obtain�zB = � ~X�1B ~ZB�xB � ~X�1B XBZBeB + � ~X�1B eB:(4.6)By substituting in (4.5) and saling the last blok row by � ~Z�1N , we obtain266664 r2xx`BB + ~X�1B ~ZB r2xx`BN rgB 0r2xx`NB r2xx`NN rgN �IrgTB rgTN 0 00 �I 0 � ~XN ~Z�1N 377775 266664 �xB�xN���zN 377775= � 266664 rx`B + ~X�1B XBZBeB � � ~X�1B eBrx`Ng� ~Z�1N XNZNeN + � ~Z�1N eN 377775 :(4.7)At this point we require the SVD of the Jaobian matrix of the ative onstraintsat x�, whih we write as follows:" rg�BT rg�NT0 �I # = � U V � � S 00 0 � � ÛTV̂ T � ;(4.8)where U 2 IR(m+jNj)�p, V 2 IR(m+jNj)�(m+jNj�p), S 2 IRp�p, ÛT 2 IRp�n, V̂ T 2IR(n�p)�n, and p is the rank of the Jaobian matrix. By partitioning the rows of Vin an obvious way, we have from (4.8) that0 = � V T1 V T2 � � rg�BT rg�NT0 �I � = � V T1 rg�BT (V T1 rg�NT � V T2 ) � :(4.9)Let us apply a hange of variables to �xB , �xN , ��, and �zN using the orthog-onal bases given by U; V and Û ; V̂ :" �xB�xN # = ÛÛ + V̂ V̂ ; " ���zN # = UU + V V :With these expansions, the system (4.7) is equivalent to2666664 ÛTLÛ ÛTLV̂ ÛTJTU ÛTJTVV̂ TLÛ V̂ TLV̂ V̂ TJTU V̂ T JTVUTJÛ UTJV̂ UTMU UTMVV T JÛ V TJV̂ V TMU V TMV 3777775266664 ÛV̂UV 377775 = 266664 rÛrV̂rUrV 377775 ;(4.10) 8



where the matries L, J , and M are given byL = � r2xx`BB + ~X�1B ~ZB r2xx`BNr2xx`NB r2xx`NN � ;(4.11a) J = � rgTB rgTN0 �I � ;(4.11b) M = � 0 00 � ~XN ~Z�1N � ;(4.11)and the residuals rÛ , rV̂ , rU , and rV are given byrÛ = �ÛT � rx`B + ~X�1B XBZBeB � � ~X�1B eBrx`N � ;(4.12a) rV̂ = �V̂ T � rx`B + ~X�1B XBZBeB � � ~X�1B eBrx`N � ;(4.12b) rU = �UT � g� ~Z�1N XNZNeN + � ~Z�1N eN � ;(4.12) rV = �V T � g� ~Z�1N XNZNeN + � ~Z�1N eN � :(4.12d)(B) Examining V TMV and its inverse. Using (4.11), we write the bloks of(4.10) involving M as follows:� UV �T M � U V � = " UT1 UT2V T1 V T2 # � 0 00 � ~XN ~Z�1N � � U1 V1U2 V2 �= � � UT2 ~XN ~Z�1N U2 UT2 ~XN ~Z�1N V2V T2 ~XN ~Z�1N U2 V T2 ~XN ~Z�1N V2 �def= � �M11 �M12�MT12 �M22 � :(4.13)We are espeially interested in the blok �M22. For � suÆiently small, the de�nition(4.1) together with (3.10) and (4.2) implies that~zi = max(zi; �min) = zi � =2 > 0 ; for all i 2 N :(4.14)Moreover, (3.8) assures thatjxij = jmin(xi; zi)j � �(x; �; z) ; for all i 2 N :Sine ~xi = max(xi; �min) � �min and sine SD is ompat, we onlude from (3.10)that the matrix ~XN ~Z�1N is positive diagonal with all diagonal elements of magni-tude �(�). Hene all bloks in this system have size �(�). We now verify that the(2; 2) blok|the matrix �M22 = V T2 ~XN ~Z�1N V2|is symmetri positive de�nite withall eigenvalues of magnitude �(�). Sine the eigenvalues of ~XN ~Z�1N are positive andbehave like �(�), the same will be true for the eigenvalues of �M22 if V2 has full olumnrank. Suppose for ontradition that there is a vetor u 6= 0 suh that V2u = 0. Bymultiplying (4.9) from the left by uT , we obtain that0 = � rg�BV1urg�NV1u� V2u � = rg�V1u:9



We must have V1u 6= 0, sine otherwise we would have V u = 0, whih would ontraditorthonormality of V . Hene it follows that V1u is a nonzero vetor in the null spaeof rg�. But this ontradits our assumption that rg� has full olumn rank. Heneno suh u exists, and we onlude that V2 has full olumn rank. Hene �M22 has alleigenvalues of magnitude �(�), and in partiular we have�M�122 = O(��1):(4.15)(C) Estimating other bloks in the matrix (4.10) and performing a blok elimina-tion with the lower right blok �M22. From (4.11b) and the estimatekx� x�k � dist ((x; �; z);S) = �(�(x; �; z));we have that� UV �T J � Û V̂ � = � UV �T (J � J�) � Û V̂ �+ � S 00 0 �= � S 00 0 �+O(�):(4.16)We have for � suÆiently small that~xi � xi � (1=2)x�i > 0; for all (x; �; z) 2 N(�) and all i 2 B:(4.17)Sine we an fore zi, i 2 B, to be arbitrarily small by appropriate hoie of �, wehave from (3.8) thatjzij = jmin(xi; zi)j � �(x; �; z); for all i 2 B,whih in turn implies, by (3.10), that ~zi = max(zi; �min) = �(�) for all i 2 B. Hene,we obtain ~X�1B ~ZB = �(�):(4.18)Moreover, we have r2xx`(x; �; z) = r2xx`(x�; �̂; ẑ) +O(�);where (�̂; ẑ) is the losest element in SD to the urrent iterate (�; z). It follows fromthis observation, (4.11a), and (4.18) that� ÛTLÛ ÛTLV̂V̂ TLÛ V̂ TLV̂ � = � ÛTr2xx`(x�; �̂; ẑ)Û ÛTr2xx`(x�; �̂; ẑ)V̂V̂ Tr2xx`(x�; �̂; ẑ)Û V̂ Tr2xx`(x�; �̂; ẑ)V̂ �+O(�):(4.19)By substituting (4.13), (4.16), and (4.19) into the matrix of (4.10), we obtain2664 ÛTr2xx`(x�; �̂; ẑ)Û ÛTr2xx`(x�; �̂; ẑ)V̂ S 0V̂ Tr2xx`(x�; �̂; ẑ)Û V̂ Tr2xx`(x�; �̂; ẑ)V̂ 0 0S 0 0 00 0 0 �M22 3775(4.20) + 2664 O(�) O(�) O(�) O(�)O(�) O(�) O(�) O(�)O(�) O(�) O(�) O(�)O(�) O(�) O(�) 0 3775 :10



Taking the last row of the matrix in (4.20), substituting into (4.10), and using theproperty (4.15), we have thatV = �M�122 �rV +O(�)Û +O(�)V̂ +O(�)U�= O(��1)rV +O(1)Û +O(1)Û +O(1)U :(4.21)By substituting this expression for V into (4.10), using the form of the matrix exposedin (4.20), we obtain, after some reordering, the following redued system:8<:24 S ÛTr2xx`(x�; �̂; ẑ)V̂ ÛTr2xx`(x�; �̂; ẑ)Û0 V̂ Tr2xx`(x�; �̂; ẑ)V̂ V̂ Tr2xx`(x�; �̂; ẑ)Û0 0 S 35+O(�)9=;24 UV̂Û 35(4.22) = 24 rÛrV̂rU 35+O(krV k):Beause of the seond-order ondition of Assumption A.4, the matrixV̂ Tr2xx`(x�; �̂; ẑ)V̂is uniformly nonsingular for all (�̂; ẑ) in the ompat set SD. Hene, the matrix in(4.22) is an O(�) perturbation of a nonsingular matrix.(D) Estimating the size of right-hand side omponents in (4.10). Beause of(4.17), we have that ~X�1B = O(1). We have too from (3.8), (3.10), and the ompat-ness of SD that jxizij = jmin(xi; zi)max(xi; zi)j= O(jmin(xi; zi)j)= O(�); all i = 1; 2; : : : ; n:(4.23)From (3.8) and (3.10), we have immediately that rx`(x; �; z) = O(�), while � =O(�2) from (4.3). By substituting all these estimates in (4.12a) and (4.12b), weobtain rÛ = O(�); rV̂ = O(�):(4.24)For rU , we have from (4.14) and the ompatness of SD that ~zi = zi = �(1) for alli 2 N and � suÆiently small. So, from (4.23), we get~Z�1N XNZNeN = xN = O(�):From (3.8) and (3.10) we have g(x) = O(�), while from (4.3) we have � = O(�2).By ombining (4.12) and these relationships, we obtainrU = O(�):(4.25)Finally, using (3.8), (3.10), (4.3), (4.9), and (4.14) in (4.12d), we have for rV thatrV = �V T � g(x)� ~Z�1N XNZNeN + � ~Z�1N eN �= �V T � g(x�) +rg(x�)T (x� x�) +O(kx� x�k2)�(Xe�X�e)N + � ~Z�1N eN �= �V T � rg�BT rg�NT0 �I � � xB � x�BxN � x�N �� V T � O(kx� x�k2)� ~Z�1N eN �= O(�2):(4.26) 11



(E) Estimating the size of the omponents U , Û , V̂ , and V . By the observeduniform nonsingularity of the matrix in (4.22) for all � suÆiently small, we havefrom (4.24) and (4.25) that U ; Û ; V̂ = O(�) :Now we appeal to (4.21), (4.26) and this last result to establishV = O(�):Sine the step (�x;��;�zN ) di�ers by orthogonal transformations from the vetor(Û ; V̂ ; U ; V ), we have shown so far thatk(�x;��;�zN )k = O(�):To omplete the proof, we show that �zB = O(�), where �zB is given by the formula(4.6). From (4.18), the �rst term on the right-hand side of (4.6) is of size O(�2). Sine~X�1B = O(1) and, from (4.23),XBZB = O(�), the seond term is of sizeO(�). Finally,we have from ~X�1B = O(1) and (4.3) that the last term is of size O(�2). Therefore�zB = O(�) and the proof is omplete.We have just proved that the norm of the solution (�x;��;�z) of the linearsystem (3.7) is bounded by a onstant times �, when the urrent iterate (x; �; z) liesinside N(�) for some � suÆiently small. We now examine the e�etiveness of thisstep in approahing the solution set S by looking at its e�et on the measure de�nedin (3.8).Lemma 4.2. Let Assumptions A.1{A.5 hold. Then given any  > 0 and � � 0,there exist positive onstants � and �2(�; ; �) suh that for all � with j1 � �j ���(x; �; z), we have k(x+ ��x; z + ��z)�k � �2(�; ; �)�(x; �; z)2;(4.27) �(x + ��x; � + ���; z + ��z) � �2(�; ; �)�(x; �; z)2;(4.28)for all points (x; �; z) 2 N(�).Proof. We again use � to denote �(x; �; z) in the proof. From the last row in(4.5), and using (4.4) and previous estimates, we have that�xN = � ~Z�1N ~XN�zN � ~Z�1N XNZNeN + � ~Z�1N eN = �xN +O(�2);so that (xN + ��xN ) = (1� �)xN +O(�2) = O(�2):(4.29)Similarly, we have from the seond-last row in (4.5) that�zB = �zB +O(�2);so that (zB + ��zB) = (1� �)zB +O(�2) = O(�2):(4.30)For the remaining omponents xB and zN , we have from (4.4) thatxB + ��xB = xB +O(�) � (1=2)x�B > 0(4.31) 12



and zN + ��zN = zN +O(�) � (=2)eN > 0;(4.32)for all � suÆiently small. By ombining (4.29), (4.30), (4.31), and (4.32), we obtain(4.27).To establish the other bound (4.28), we expand rx`(x+��x; �+���; z+��z)using Taylor series, use the �rst row in (3.7), and use (3.8), (4.4), the fat that1� � = O(�), and boundedness of N(�) to dedue thatrx`(x+ ��x; � + ���; z + ��z)= rf(x+ ��x) +rg(x+ ��x)(� + ���) � (z + ��z)= rf(x) + �r2f(x)�x +O(k�xk2) +rg(x)(� + ���)+� mXi=1(�+ ���)ir2gi(x)�x � (z + ��z) +O(k�xk2k�+ ���k)= (1� �)rx`(x; �; z) +O(k�xk2) +O(k�xkk��k)+ O(k�xk2k�+ ���k)= O(�2):A similar proedure for g(x+ ��x) providesg(x+ ��x) = g(x) + �rg(x)T�x+O(k��xk2) = (1� �)g(x) +O(�2) = O(�2):Finally, we note from (4.29) and (4.32) thatmin(xi + ��xi; zi + ��zi) = xi + ��xi = O(�2); for all i 2 N;while similarly from (4.30) and (4.31), we havemin(xi + ��xi; zi + ��zi) = zi + ��zi = O(�2); for all i 2 B:By substituting these estimates into (3.8), we obtain (4.28).Using Lemmas 4.1 and 4.2, we an now prove our �nal result.Theorem 4.3. Let Assumptions A.1{A.5 hold. Let  > 0 be given, and on-sider a value for � for whih Lemmas 4.1 and 4.2 are appliable. If the initial point(x0; �0; z0) belongs to N2(�=2) and�(x0; �0; z0) � min� 1�2(�; ; 0)1=(2��) ; 12�2(�; ; 0) ; �4�1(�; ) ; 2�1(�; )� ;(4.33)then the iterates (x; �; z) generated by Algorithm 3.1 remain inside the neighborhoodN(�) and onverge q-quadratially to a point (x�; ��; z�) 2 S.Proof. In the proof we denote�k def= �(xk ; �k; zk);where (xk ; �k; zk), k = 0; 1; 2 : : : are the iterates generated by Algorithm 3.1. We alsouse (�xk ;��k;�zk) to denote the step alulated from (3.7) at the iterate (xk; �k; zk).From (4.33) we have �2(�; ; 0)�20 � ��0 ;13



so aording to (4.27), (4.28), the tests (3.11) are satis�ed by � = 1, so the unit stepwill be aepted by the algorithm. Beause (x0; �0; z0) 2 N2(�=2), and beause S isompat, there exists (x�; �̂; ẑ) 2 S suh thatk(x0 � x�; �0 � �̂; z0 � ẑ)k � �=2:(4.34)Using (4.4), (4.34), and the hoie of �0, we have thatk(x0 +�x0 � x�; �0 +��0 � �̂; z0 +�z0 � ẑ)k � �=2 + �1(�; )�0 � 3�=4;(4.35)Using (4.33) again, we obtain from Lemma 4.1 thatk�z0Nk � �1(�=2; 2)�0 � �1(�; )�0 � =2(4.36)where we have used the relationship �1(�=2; 2) � �1(�; ), whih is a onsequene ofN2(�=2) � N(�). From (4.36) we havez0N +�z0N � 2e� (=2)e = (3=2)e:(4.37)Sine the full step is taken to obtain (x1; �1; z1), we onlude from (4.35) and (4.37)that (x1; �1; z1) 2 N3=2(3�=4). Moreover, beause of (4.28) and (4.33), we have alsothat�1 � �2(�; ; 0)�20 � �02 � min� 1�2(�; ; 0)1=(2��) ; 12�2(�; ; 0) ; �8�1(�; ) ; 4�1(�; )� :Considering the next iteration, we an show in a similar fashion that the steplength � = 1 is aeptable for (�x1;��1;�z1), that (x2; �2; z2) 2 N5=4(7�=8), andthat �2 � �12 � min� 1�2(�; ; 0)1=(2��) ; 12�2(�; ; 0) ; �16�1(�; ) ; 8�1(�; )� :By using indution, we obtain that (xk ; �k; zk) 2 N(�) and �k+1 � �2(�; ; 0)�2kfor all k. Sine �(xk; �k ; zk) ! 0 (so that dist �(xk; �k ; zk);S� ! 0), and sine S isompat, all limit points of the sequene �(xk ; �k; zk)	 lie in S. However, it is easyto see from (4.4) and the property �k+1 � �k=2 for all k that the sequene of iteratesis Cauhy. Hene, there is a single limit point (x�; ��; z�) 2 S.5. Disussion. Our assumption that some iterate (xk ; �k; zk) eventually entersa neighborhood of the form N(�) (4.1) is a signi�ant one. In general, it will beneessary to add enhanements to Algorithm 3.1 to ensure that it holds. The keyrequirement is that the iterates should avoid the situation in whih for some indexi we have both xki !k 0 and zki !k 0. The ondition that (x; �; z) remain in aentral path neighborhood, whih we do not assume in our analysis, serves to meetthis requirement in the onvex ase.An alternative approah would be to inlude an enhanement that makes expliitguesses of the index sets B and N , and then modi�es the iterates in a way that keepsthem lose to the set S but moves the omponents zi for i 2 N away from theirlower bound of zero where neessary. Strategies that make expliit guesses have beenproposed for linear omplementary problems in whih the solutions fail to satisfystrit omplementarity; see for example Potra and Sheng [14℄. It follows that anadded advantage of this approah would be to extend our tehnique to the ase in14
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