PROGRAMAÇÃO NÃO LINEAR - Exame - 09/07/02

DEPARTAMENTO DE MATEMÁTICA DA F.C.T.U.C.

Duração: 2h30m

Atenção: Justifique todas as suas respostas. Podem-se consultar o livro adoptado e os apontamentos das aulas.

1. Uma técnica de globalização deve deixar o passo de Newton ser aceite perto de um ponto a satisfazer as condições que garantem a taxa de convergência q-quadrática do método de Newton.

Descreva os resultados que indicam que este comportamento acontece, de facto, nas técnicas de procura unidireccional e de região de confiança.

2. Seja x^* um ponto de \mathbb{R}^n e f uma função de \mathbb{R}^n para \mathbb{R} tais que a Hessiana de f é contínua à Lipschitz num aberto contendo x^* e definida positiva em x^* ($n \in \mathbb{N}$). Seja $\{x_k\}$ uma sucessão de \mathbb{R}^n a convergir para x^* , gerada da seguinte forma:

$$x_{k+1} = x_k + p_k$$
 com $\nabla^2 f(x_k) p_k = -\nabla f(x_k) + r_k$,

em que r_k é um vector não nulo de \mathbb{R}^n e $p_k \neq 0$ para todo o inteiro não negativo k. Assuma, para facilitar a apresentação, que a Hessiana de f é definida positiva em todos os pontos da sucessão $\{x_k\}$.

- (a) Indique uma condição suficiente para que p_k seja uma direcção de descida.
- (b) Considere a função objectivo $f(x_1, x_2) = 1/2(x_1^2 + x_2^2)$ e o ponto $x_0 = (1, 1)^{\top}$. Seja $r_0 = (-2, 1)^{\top}$. Com base no sinal de $\nabla f(x_0)^{\top} r_0$, diga por que é que p_0 é uma direcção de descida.
- (c) Mostre que p_k satisfaz:

$$\left(\nabla^2 f(x_k) - \frac{r_k p_k^{\top}}{p_k^{\top} p_k}\right) p_k = -\nabla f(x_k).$$

(d) Recorrendo ao resultado da alínea anterior, prove que $\{x_k\}$ converge q-superlinearmente para x^* se e só se

$$\lim_{k \to +\infty} \frac{\|r_k\|}{\|p_k\|} = 0.$$

3. Considere o seguinte problema de regiões de confiança:

min
$$f + g^{\top} s + \frac{1}{2} s^{\top} B s$$
 s.a. $||s||_2 \le \Delta_1$ e $||s - a||_2 \le \Delta_2$,

em que g e a são vectores de \mathbb{R}^n , B é uma matriz simétrica $n \times n$, f é um real e Δ_1 e Δ_2 são reais positivos $(n \in \mathbb{N})$. Assuma que $||a||_2 \leq \Delta_1$.

Mostre que um minimizante local s deste problema para o qual $||s||_2 < \Delta_1$ satisfaz

$$(B + \lambda_2 I) s = -g + \lambda_2 a$$

em que λ_2 é um real não negativo.

4. Considere o seguinte problema de programação não linear:

min
$$\frac{1}{2}(x_1-2)^2 + \frac{1}{2}(x_2-1)^2$$
 s.a. $x_1 + x_2 \le 2$, $x_1 \le 1$, $x_2 \le 1$.

- (a) Resolva o problema geometricamente, confirmando, depois, que no minimizante obtido, o simétrico do gradiente da função objectivo pertence ao cone normal.
- (b) Escreva as condições necessárias de primeira ordem no ponto obtido anteriormente, indicando qual a qualificação de restrições que é verificada.
- (c) Será possível encontrar um vector de multiplicadores tal que a condição de complementaridade estrita é verificada? E se a função objectivo fosse $\frac{1}{2}(x_1-2)^2 + \frac{1}{2}(x_2-2)^2$?
- (d) Escreva a função de barreira logarítmica para este problema. Como é que encontraria, numericamente, um ponto inicial para o método da barreira logarítmica?