Direct search based on probabilistic feasible descent for bound and linearly constrained problems

> Luis Nunes Vicente University of Coimbra

FoCM Barcelona, Workshop on Continuous Optimization July 17, 2017

Direct-search methods

Definition

- Sample the objective function at a finite number of points at each iteration.
- Achieve descent by moving in the direction of potentially better points.
- In the smooth and deterministic case, these points are defined by directions in positive spanning sets (PSS):

Direct-search methods

Definition

- Sample the objective function at a finite number of points at each iteration.
- Achieve descent by moving in the direction of potentially better points.
- In the smooth and deterministic case, these points are defined by directions in positive spanning sets (PSS):

A class of DS methods

Choose: x_0 and α_0 .

For k = 0, 1, 2, ... (Until α_k is suff. small)

• Search step (optional)

A class of DS methods

Choose: x_0 and α_0 .

For k = 0, 1, 2, ... (Until α_k is suff. small)

- Search step (optional)
- **Poll step:** Select D_k PSS and find $x_k + \alpha_k d_k$ ($d_k \in D_k$):

 $f(x_k + \alpha_k d_k) < f(x_k) - \rho(\alpha_k)$ like $\rho(\alpha) = \alpha^2/2$.

A class of DS methods

Choose: x_0 and α_0 .

For k = 0, 1, 2, ... (Until α_k is suff. small)

- Search step (optional)
- **Poll step:** Select D_k PSS and find $x_k + \alpha_k d_k$ ($d_k \in D_k$):

$$f(x_k + \alpha_k d_k) < f(x_k) - \rho(\alpha_k)$$
 like $\rho(\alpha) = \alpha^2/2$.

- SUCCESS: Move $x_{k+1} = x_k + \alpha_k d_k$ and possibly increase $\alpha_{k+1} = \gamma \alpha_k \quad (\gamma = 1 \text{ or } 2).$
- UNSUCCESS: Stay $x_{k+1} = x_k$ and decrease $\alpha_{k+1} = \theta \alpha_k$ $(\theta = 1/2).$

• Positive spanning set (PSS)

• Positive spanning set (PSS)

 $\bullet\,$ Cosine measure of a PSS D

$$\operatorname{cm}(D) = \min_{0 \neq v \in \mathbb{R}^n} \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|} > 0.$$

• Positive spanning set (PSS)

 $\bullet\,$ Cosine measure of a PSS D

$$\operatorname{cm}(D) = \min_{0 \neq v \in \mathbb{R}^n} \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|} > 0.$$

• Positive spanning set (PSS)

• Cosine measure of a PSS D

$$\operatorname{cm}(D) = \min_{\substack{0 \neq v \in \mathbb{R}^n}} \max_{d \in D} \frac{d^{\top}v}{\|d\| \|v\|} > 0.$$

• Thus $\exists d \in D$ descent when $\nabla f(x_k) \neq 0$.

• Positive spanning set (PSS)

• Cosine measure of a PSS ${\cal D}$

$$\operatorname{cm}(D) = \min_{0 \neq v \in \mathbb{R}^n} \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|} > 0.$$

- Thus $\exists d \in D$ descent when $\nabla f(x_k) \neq 0$.
 - $\implies \alpha_k$ small leads to success!

Insight: (decrease in
$$f$$
) $\geq \mathcal{O}(\alpha_k^2) \geq \cdots \geq \mathcal{O}(\|\nabla f(x_{k_u})\|^2)$
success

unsuccess Kolda, Lewis, Torczon, 2003 SIREV

Insight: (decrease in
$$f$$
) $\geq \mathcal{O}(\alpha_k^2) \geq \cdots \geq \mathcal{O}(\alpha_{k_u}^2) \geq \mathcal{O}(\|\nabla f(x_{k_u})\|^2)$
success

unsuccess Kolda, Lewis, Torczon, 2003 SIREV

Theorem (LNV, 2013 EURO J. Comp. Optim.)

Any such DS method generates a sequence $\{x_k\}_{k\geq 0}$ such that:

$$\min_{0 \le j \le k} \|\nabla f(x_j)\| = \mathcal{O}(1/\sqrt{k})$$

Insight:
$$(\underbrace{\text{decrease in } f) \geq \mathcal{O}(\alpha_k^2)}_{\text{success}} \geq \cdots \geq \underbrace{\mathcal{O}(\alpha_{k_u}^2) \geq \mathcal{O}(\|\nabla f(x_{k_u})\|^2)}_{\text{success}}$$

unsuccess Kolda, Lewis, Torczon, 2003 SIREV

Theorem (LNV, 2013 EURO J. Comp. Optim.)

Any such DS method generates a sequence $\{x_k\}_{k\geq 0}$ such that:

$$\min_{0 \le j \le k} \|\nabla f(x_j)\| = \mathcal{O}(1/\sqrt{k})$$

and takes at most

$$k_{\epsilon} \leq \mathcal{O}\left(n \, \epsilon^{-2}\right)$$

iterations to reduce the gradient below $\epsilon \in (0, 1)$.

Insight:
$$(\underbrace{\text{decrease in } f) \geq \mathcal{O}(\alpha_k^2)}_{\text{success}} \geq \cdots \geq \underbrace{\mathcal{O}(\alpha_{k_u}^2) \geq \mathcal{O}(\|\nabla f(x_{k_u})\|^2)}_{\text{success}}$$

unsuccess Kolda, Lewis, Torczon, 2003 SIREV

Theorem (LNV, 2013 EURO J. Comp. Optim.)

Any such DS method generates a sequence $\{x_k\}_{k\geq 0}$ such that:

$$\min_{0 \le j \le k} \|\nabla f(x_j)\| = \mathcal{O}(1/\sqrt{k})$$

and takes at most

$$k_{\epsilon} \leq \mathcal{O}\left(n \, \epsilon^{-2}\right)$$

iterations to reduce the gradient below $\epsilon \in (0, 1)$.

• The # of fevals must be multiplied by $n: \mathcal{O}(n^2 \epsilon^{-2})$.

Insight: (decrease in
$$f$$
) $\geq \mathcal{O}(\alpha_k^2) \geq \cdots \geq \mathcal{O}(\alpha_{k_u}^2) \geq \mathcal{O}(\|\nabla f(x_{k_u})\|^2)$
success

unsuccess Kolda, Lewis, Torczon, 2003 SIREV

Theorem (LNV, 2013 EURO J. Comp. Optim.)

Any such DS method generates a sequence $\{x_k\}_{k\geq 0}$ such that:

$$\min_{0 \le j \le k} \|\nabla f(x_j)\| = \mathcal{O}(1/\sqrt{k})$$

and takes at most

$$k_{\epsilon} \leq \mathcal{O}\left(n \, \epsilon^{-2}\right)$$

iterations to reduce the gradient below $\epsilon \in (0, 1)$.

- The # of fevals must be multiplied by $n: \mathcal{O}(n^2 \epsilon^{-2})$.
- Bounds depend on $L^2_{\nabla f}$ (instead of $L_{\nabla f}$ as in gradient method).

Ruling out cases where the supreme distance from the initial level set $L_f(x_0)$ to the solution set X_*^f is infinite...

Theorem (M. Dodangeh and LNV, 2016 Math. Program.)

Any such DS method generates a sequence $\{x_k\}_{k\geq 0}$ such that:

$$f(x_k) - f_* = \mathcal{O}(1/k) \qquad k_\epsilon \leq \mathcal{O}(n \epsilon^{-1}).$$

Again, the # of fevals must be multiplied by $n: \mathcal{O}(n^2 \epsilon^{-1})$.

Ruling out cases where the supreme distance from the initial level set $L_f(x_0)$ to the solution set X^f_* is infinite...

Theorem (M. Dodangeh and LNV, 2016 Math. Program.)

Any such DS method generates a sequence $\{x_k\}_{k\geq 0}$ such that:

$$f(x_k) - f_* = \mathcal{O}(1/k) \qquad k_\epsilon \leq \mathcal{O}\left(n \, \epsilon^{-1}\right).$$

Again, the # of fevals must be multiplied by $n: \mathcal{O}(n^2 \epsilon^{-1})$.

The n^2 factor comes from $\frac{|D|}{\operatorname{cm}(D)^2}$.

Ruling out cases where the supreme distance from the initial level set $L_f(x_0)$ to the solution set X_*^f is infinite...

Theorem (M. Dodangeh and LNV, 2016 Math. Program.)

Any such DS method generates a sequence $\{x_k\}_{k\geq 0}$ such that:

$$f(x_k) - f_* = \mathcal{O}(1/k) \qquad k_\epsilon \leq \mathcal{O}(n \epsilon^{-1}).$$

Again, the # of fevals must be multiplied by $n: \mathcal{O}(n^2 \epsilon^{-1})$.

The n^2 factor comes from $\frac{|D|}{\operatorname{cm}(D)^2}$. For $D = D_\oplus$ one obtains

$$\frac{2n}{(1/\sqrt{n})^2} = 2n^2.$$
 Is this optimal?

Theorem (M. Dodangeh, LNV, and Z. Zhang, 2016 Optim. Lett.)

The factor n^2 is optimal since any PSS D in \mathbb{R}^n satisfies

 $\frac{|D|}{\operatorname{cm}(D)^2} \geq \frac{1}{\zeta^2} n^2$

Theorem (M. Dodangeh, LNV, and Z. Zhang, 2016 Optim. Lett.)

The factor n^2 is optimal since any PSS D in \mathbb{R}^n satisfies

 $\frac{|D|}{\operatorname{cm}(D)^2} \geq \frac{1}{\zeta^2} n^2$

Plot of $\frac{|D|}{\operatorname{cm}(D)^2} \ge n^2.$

for the case n = 2 and D's with uniform angles,

Global rate of DS (smooth, strongly convex case)

Theorem (M. Dodangeh and LNV, 2014 Math. Program.)

Any such DS method generates a sequence $\{x_k\}_{k\geq 0}$ such that:

$$f(x_k) - f_* < Cr^k,$$

where $r \in (0, 1)$ and C > 0.
Global rate of DS (smooth, strongly convex case)

Theorem (M. Dodangeh and LNV, 2014 Math. Program.)

Any such DS method generates a sequence $\{x_k\}_{k\geq 0}$ such that:

$$f(x_k) - f_* < Cr^k,$$

where $r \in (0, 1)$ and C > 0.

• When f is SC (constant $\mu > 0$), one has (k_0 first unsucc.)

$$||x_k - x_*|| \leq \sqrt{L_{\nabla f}/\mu ||x_{k_0} - x_*||}.$$

Global rate of DS (smooth, strongly convex case)

Theorem (M. Dodangeh and LNV, 2014 Math. Program.)

Any such DS method generates a sequence $\{x_k\}_{k\geq 0}$ such that:

$$f(x_k) - f_* < Cr^k,$$

where $r \in (0, 1)$ and C > 0.

• When f is SC (constant $\mu > 0$), one has (k_0 first unsucc.)

$$||x_k - x_*|| \le \sqrt{L_{\nabla f}/\mu ||x_{k_0} - x_*||}.$$

• A linear rate for the iterates can be derived from

$$\frac{1}{2}\mu \|x - x_*\|^2 \leq f(x) - f_*.$$

Difficulties in the nonsmooth case

The cone of descent directions at the poll center is shaded.

• Essentially the WCC cost increases from $\mathcal{O}(\epsilon^{-2})$ to $\mathcal{O}(\epsilon^{-3})$ [R. Garmanjani and LNV, 2013 IMA J. Numer. Anal.].

• Essentially the WCC cost increases from $\mathcal{O}(\epsilon^{-2})$ to $\mathcal{O}(\epsilon^{-3})$ [R. Garmanjani and LNV, 2013 IMA J. Numer. Anal.].

• The # of function evaluations increases from $\mathcal{O}\left(n^{2}\epsilon^{-2}\right)$ to $\mathcal{O}\left(n^{\frac{5}{2}}\epsilon^{-3}\right)$.

• $\mathcal{O}(-\log(\epsilon))$ strongly convex — linear global rate for f, ∇f , and absolute error in iterates.

- $\mathcal{O}(-\log(\epsilon))$ strongly convex linear global rate for f, ∇f , and absolute error in iterates.
- $\mathcal{O}(\epsilon^{-1})$ convex global rate 1/k for f and ∇f .

- $\mathcal{O}(-\log(\epsilon))$ strongly convex linear global rate for f, ∇f , and absolute error in iterates.
- $\mathcal{O}(\epsilon^{-1})$ convex global rate 1/k for f and ∇f .
- $\mathcal{O}(\epsilon^{-2})$ non-convex global rate $1/\sqrt{k}$ for ∇f .

- $\mathcal{O}(-\log(\epsilon))$ strongly convex linear global rate for f, ∇f , and absolute error in iterates.
- $\mathcal{O}(\epsilon^{-1})$ convex global rate 1/k for f and ∇f .
- $\mathcal{O}(\epsilon^{-2})$ non-convex global rate $1/\sqrt{k}$ for ∇f .
- In terms of function evaluations: $\mathcal{O}(n^2 \epsilon^{-1})$, $\mathcal{O}(n^2 \epsilon^{-2})$. The factor n^2 is proved approximately optimal.

- $\mathcal{O}(-\log(\epsilon))$ strongly convex linear global rate for f, ∇f , and absolute error in iterates.
- $\mathcal{O}(\epsilon^{-1})$ convex global rate 1/k for f and ∇f .
- $\mathcal{O}(\epsilon^{-2})$ non-convex global rate $1/\sqrt{k}$ for ∇f .
- In terms of function evaluations: $\mathcal{O}(n^2 \epsilon^{-1})$, $\mathcal{O}(n^2 \epsilon^{-2})$. The factor n^2 is proved approximately optimal.

• $\mathcal{O}(\epsilon^{-3})$ non-smooth, non-convex — (using smoothing techniques).

Descent condition and successful iterations

Assume the polling directions are normalized.

Lemma
If

$$\operatorname{cm}(D_k, -\nabla f(x_k)) \geq \kappa \text{ and } \alpha_k < \frac{2\kappa \|\nabla f(x_k)\|}{L_{\nabla f} + 1},$$

the k-th iteration is successful.

Descent condition and successful iterations

Assume the polling directions are normalized.

Lemma If $\operatorname{cm}(D_k, -\nabla f(x_k)) \geq \kappa \text{ and } \alpha_k < \frac{2\kappa \|\nabla f(x_k)\|}{L_{\nabla f} + 1},$ the k-th iteration is successful.

where cm(D, v) is the cosine measure of D given v, defined by

$$\operatorname{cm}(D, v) = \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|}$$

and $L_{\nabla f}$ is a Lipschitz constant of ∇f .

 $-\nabla f(x_k)$

n+1 random polling directions

in this case not a PSS

 $n+1 \ {\rm random} \ {\rm polling} \ {\rm directions}$

in this case not a $\ensuremath{\mathsf{PSS}}$

 $n+1 \ {\rm random} \ {\rm polling} \ {\rm directions}$

in this case not a $\ensuremath{\mathsf{PSS}}$

 $\leq n$ random polling directions

certainly not a PSS ...

 $-\nabla f(x_k)$

 $n+1 \ {\rm random} \ {\rm polling} \ {\rm directions}$

in this case not a PSS

 $\leq n$ random polling directions

certainly not a PSS ...

 $\operatorname{cm}(D_k, -\nabla f(x_k)) \geq \kappa$ can be satisfied 'probabilistically' ...

	[I - I]	[Q - Q]	2n	n+1	n/4	2	1
arglina	3.42	8.44	10.30	6.01	1.88	1.00	-
arglinb	20.50	10.35	7.38	2.81	1.85	1.00	2.04
broydn3d	4.33	6.55	6.54	3.59	1.28	1.00	_
dqrtic	7.16	9.37	9.10	4.56	1.70	1.00	_
engval1	10.53	20.89	11.90	6.48	2.08	1.00	2.08
freuroth	56.00	6.33	1.00	1.67	1.67	1.00	4.00
integreq	16.04	16.29	12.44	6.76	2.04	1.00	_
nondquar	6.90	30.23	7.56	4.23	1.87	1.00	_
sinquad	_	-	1.65	2.01	1.00	1.55	_
vardim	1.00	3.80	1.80	2.40	1.80	1.80	4.30

Relative performance for different sets of polling directions (n = 40).

Solution accuracy was 10^{-3} . Averages were taken over 10 independent runs.

Probabilistic descent

From the definition of probabilistic models (Bandeira, LNV, Scheinberg, 2014 SIOPT):

Definition

The sequence $\{\mathfrak{D}_k\}$ is (p,κ) -probabilistically descent if, for each $k \geq 0$,

 $\Pr\left(\operatorname{cm}(\mathfrak{D}_k, -\nabla f(X_k)) \geq \kappa \mid \mathfrak{D}_0, \dots, \mathfrak{D}_{k-1}\right) \geq p,$

Probabilistic descent

From the definition of probabilistic models (Bandeira, LNV, Scheinberg, 2014 SIOPT):

Definition

The sequence $\{\mathfrak{D}_k\}$ is (p,κ) -probabilistically descent if, for each $k \ge 0$,

 $\Pr\left(\operatorname{cm}(\mathfrak{D}_k, -\nabla f(X_k)) \geq \kappa \mid \mathfrak{D}_0, \dots, \mathfrak{D}_{k-1}\right) \geq p,$

Let Z_k be the indicator function of $\{\operatorname{cm}(\mathfrak{D}_k, -\nabla f(X_k)) \geq \kappa\}$, and

$$p_0 = \frac{\ln \theta}{\ln(\gamma^{-1}\theta)} = \frac{1}{2} \qquad \theta = 1/2, \ \gamma = 2$$

For each realization of the DS algorithm, define

• \tilde{g}_k : the gradient with minimum norm among $\nabla f(x_0), \ldots, \nabla f(x_k)$,

For each realization of the DS algorithm, define

- \tilde{g}_k : the gradient with minimum norm among $\nabla f(x_0), \ldots, \nabla f(x_k)$,
- k_{ϵ} : the smallest integer such that $\|\nabla f(x_k)\| \leq \epsilon$.

For each realization of the DS algorithm, define

- \tilde{g}_k : the gradient with minimum norm among $\nabla f(x_0), \ldots, \nabla f(x_k)$,
- k_{ϵ} : the smallest integer such that $\|\nabla f(x_k)\| \leq \epsilon$.

Denote the corresponding random variables by \tilde{G}_k and K_{ϵ} .

For each realization of the DS algorithm, define

- \tilde{g}_k : the gradient with minimum norm among $abla f(x_0),\ldots,
 abla f(x_k)$,
- k_{ϵ} : the smallest integer such that $\|\nabla f(x_k)\| \leq \epsilon$.

Denote the corresponding random variables by \tilde{G}_k and K_{ϵ} .

Let z_{ℓ} denote the realization of $Z_{\ell} = \{ \operatorname{cm}(\mathfrak{D}_{\ell}, -\nabla f(X_{\ell})) \geq \kappa \} \ (\ell \geq 0).$

Intuition: If $\|\tilde{g}_k\|$ is 'big', then $\sum_{\ell=0}^{k-1} z_\ell$ is probably 'small'.

In fact, one can prove

$$\sum_{\ell=0}^{k-1} z_{\ell} \leq \mathcal{O}\left(\frac{1}{\|\tilde{g}_k\|^2}\right) + p_0 k.$$

In fact, one can prove

$$\sum_{\ell=0}^{k-1} z_{\ell} \leq \mathcal{O}\left(\frac{1}{\|\tilde{g}_k\|^2}\right) + p_0 k.$$

It then results,

$$\left\{\|\tilde{G}_k\| > \epsilon\right\} \subset \left\{\sum_{\ell=0}^{k-1} Z_\ell \le \left[\mathcal{O}\left(\frac{1}{k\epsilon^2}\right) + p_0\right]k\right\}.$$

In fact, one can prove

$$\sum_{\ell=0}^{k-1} z_{\ell} \leq \mathcal{O}\left(\frac{1}{\|\tilde{g}_k\|^2}\right) + p_0 k.$$

It then results,

$$\left\{ \|\tilde{G}_k\| > \epsilon \right\} \subset \left\{ \sum_{\ell=0}^{k-1} Z_\ell \le \underbrace{\left[\mathcal{O}\left(\frac{1}{k\epsilon^2}\right) + p_0 \right]}_{\lambda} k \right\}.$$

In fact, one can prove

$$\sum_{\ell=0}^{k-1} z_{\ell} \leq \mathcal{O}\left(\frac{1}{\|\tilde{g}_k\|^2}\right) + p_0 k.$$

It then results,

$$\left\{ \|\tilde{G}_k\| > \epsilon \right\} \subset \left\{ \sum_{\ell=0}^{k-1} Z_\ell \le \underbrace{\left[\mathcal{O}\left(\frac{1}{k\epsilon^2}\right) + p_0\right]}_{\lambda} k \right\}.$$

Hence

$$\Pr\left(\|\tilde{G}_k\| \le \epsilon\right) = 1 - \Pr\left(\|\tilde{G}_k\| > \epsilon\right) \ge 1 - \Pr\left(\sum_{\ell=0}^{k-1} Z_\ell \le \lambda k\right)$$

apply Chernoff & Submartingale Theory

.

Theorem (Gratton, Royer, LNV, and Zhang, 2015 SIOPT)

Suppose that $\{\mathfrak{D}_k\}$ is (p,κ) -probabilistically descent with $p > p_0$. Then

$$\Pr\left(\| ilde{G}_k\| \leq \mathcal{O}\left(rac{1}{\kappa\sqrt{k}}
ight)
ight) \geq 1 - \exp\left[-\mathcal{O}(k)
ight]$$

Global rate and WCC bound

Theorem (Gratton, Royer, LNV, and Zhang, 2015 SIOPT)

Suppose that $\{\mathfrak{D}_k\}$ is (p,κ) -probabilistically descent with $p > p_0$. Then

$$\Pr\left(\| ilde{G}_k\| \leq \mathcal{O}\left(rac{1}{\kappa\sqrt{k}}
ight)
ight) \ \geq \ 1 - \exp\left[-\mathcal{O}(k)
ight].$$

 $\longrightarrow \mathcal{O}(1/\sqrt{k})$ sublinear rate with overwhelmingly high probability.

Theorem (Gratton, Royer, LNV, and Zhang, 2015 SIOPT)

Suppose that $\{\mathfrak{D}_k\}$ is (p,κ) -probabilistically descent with $p > p_0$. Then

$$\Pr\left(\| ilde{G}_k\| \leq \mathcal{O}\left(rac{1}{\kappa\sqrt{k}}
ight)
ight) \ \geq \ 1 - \exp\left[-\mathcal{O}(k)
ight].$$

 $\longrightarrow \mathcal{O}(1/\sqrt{k})$ sublinear rate with overwhelmingly high probability.

Since $Pr(K_{\epsilon} \leq k) = Pr(\|\tilde{G}_k\| \leq \epsilon)$, we also get:

Theorem (Gratton, Royer, LNV, and Zhang, 2015 SIOPT)

Suppose that $\{\mathfrak{D}_k\}$ is (p,κ) -probabilistically descent with $p > p_0$. Then

$$\Pr\left(K_{\epsilon} \leq \left\lceil \mathcal{O}\left(\frac{\epsilon^{-2}}{\kappa^{2}}\right) \right\rceil\right) \geq 1 - \exp\left[-\mathcal{O}(\epsilon^{-2})\right].$$

Theorem (Gratton, Royer, LNV, and Zhang, 2015 SIOPT)

Suppose that $\{\mathfrak{D}_k\}$ is (p,κ) -probabilistically descent with $p > p_0$. Then

$$\Pr\left(\| ilde{G}_k\| \leq \mathcal{O}\left(rac{1}{\kappa\sqrt{k}}
ight)
ight) \ \geq \ 1 - \exp\left[-\mathcal{O}(k)
ight].$$

 $\longrightarrow \mathcal{O}(1/\sqrt{k})$ sublinear rate with overwhelmingly high probability.

Since $\Pr(K_{\epsilon} \leq k) = \Pr(\|\tilde{G}_k\| \leq \epsilon)$, we also get:

Theorem (Gratton, Royer, LNV, and Zhang, 2015 SIOPT)

Suppose that $\{\mathfrak{D}_k\}$ is (p,κ) -probabilistically descent with $p > p_0$. Then

$$\Pr\left(K_{\epsilon} \leq \left\lceil \mathcal{O}\left(\frac{\epsilon^{-2}}{\kappa^{2}}\right) \right\rceil\right) \geq 1 - \exp\left[-\mathcal{O}(\epsilon^{-2})\right].$$

 $\longrightarrow \mathcal{O}(\epsilon^{-2})$ bound for # of iter. with overwhelmingly high probability.

Two uniform directions are enough, one is not

Two uniform directions are enough, one is not

 $\mathfrak{d}_1 \sim \mathcal{U}(\mathbb{S}^1) \Rightarrow \forall \kappa \in (0,1), \quad \Pr\left(\operatorname{cm}\left(\mathfrak{d}_1,g\right) = \mathfrak{d}_1^\top g \geq \kappa\right) < 1/2.$

Two uniform directions are enough, one is not

 $\mathfrak{d}_1 \sim \mathcal{U}(\mathbb{S}^1) \Rightarrow \forall \kappa \in (0,1), \quad \Pr\left(\operatorname{cm}\left(\mathfrak{d}_1,g\right) = \mathfrak{d}_1^\top g \ge \kappa\right) < 1/2.$

Two uniform directions are enough, one is not

 $\mathfrak{d}_1,\mathfrak{d}_2\sim\mathcal{U}(\mathbb{S}^1)\Rightarrow\exists\kappa^*\in(0,1),\quad\Pr\left(\operatorname{cm}\left(\left\{\mathfrak{d}_1,\mathfrak{d}_2\right\},g\right)\geq\kappa^*\right)>1/2.$

Then, when r = |D| > 1, $\{\mathfrak{D}_k\}$ is *p*-probabilistically $(1/\sqrt{n})$ -descent for some $p > p_0 = 1/2$ independent of *n*.

Then, when r = |D| > 1, $\{\mathfrak{D}_k\}$ is *p*-probabilistically $(1/\sqrt{n})$ -descent for some $p > p_0 = 1/2$ independent of *n*.

Plugging $\kappa = 1/\sqrt{n}$ into the WCC bound, one obtains

Then, when r = |D| > 1, $\{\mathfrak{D}_k\}$ is *p*-probabilistically $(1/\sqrt{n})$ -descent for some $p > p_0 = 1/2$ independent of *n*.

Plugging $\kappa = 1/\sqrt{n}$ into the WCC bound, one obtains

WCC (number of function evaluations) $\Pr\left(K_{\epsilon}^{f} \leq \left\lceil \mathcal{O}\left(n\epsilon^{-2}\right) \right\rceil r\right) \geq 1 - \exp\left[-\mathcal{O}(\epsilon^{-2})\right].$

Then, when r = |D| > 1, $\{\mathfrak{D}_k\}$ is *p*-probabilistically $(1/\sqrt{n})$ -descent for some $p > p_0 = 1/2$ independent of *n*.

Plugging $\kappa = 1/\sqrt{n}$ into the WCC bound, one obtains

WCC (number of function evaluations) $\Pr\left(K_{\epsilon}^{f} \leq \left\lceil \mathcal{O}\left(n\epsilon^{-2}\right) \right\rceil r\right) \geq 1 - \exp\left[-\mathcal{O}(\epsilon^{-2})\right].$

The WCC bound is $\mathcal{O}(rn\epsilon^{-2})$, better than when $\mathcal{O}(n^2\epsilon^{-2})$ when $r \ll n$.

Then, when r = |D| > 1, $\{\mathfrak{D}_k\}$ is *p*-probabilistically $(1/\sqrt{n})$ -descent for some $p > p_0 = 1/2$ independent of *n*.

Plugging $\kappa = 1/\sqrt{n}$ into the WCC bound, one obtains

WCC (number of function evaluations) $\Pr\left(K_{\epsilon}^{f} \leq \left\lceil \mathcal{O}\left(n\epsilon^{-2}\right) \right\rceil r\right) \geq 1 - \exp\left[-\mathcal{O}(\epsilon^{-2})\right].$

The WCC bound is $\mathcal{O}(rn\epsilon^{-2})$, better than when $\mathcal{O}(n^2\epsilon^{-2})$ when $r \ll n$.

Theory admits r = 2, leading to

 $\mathcal{O}(n\epsilon^{-2})$!!!

Relative performance for different sets of polling directions (n = 40).

	[I - I]	[Q - Q]	$2 (\gamma = 2)$	$4 (\gamma = 1.1)$
arglina	1.00	3.17	5.86	6.73
arglinb	34.12	5.34	1.00	2.02
broydn3d	1.00	1.91	2.04	3.47
dqrtic	1.18	1.36	1.00	1.48
engval1	1.05	1.00	2.29	2.89
freuroth	17.74	7.39	1.35	1.00
integreq	1.54	1.49	1.00	1.34
nondquar	1.00	2.82	1.37	1.73
sinquad	-	1.26	1.00	-
vardim	20.31	11.02	1.00	1.84

Now $\gamma = 1$ for $[I \ -I]$ and $[Q \ -Q]$.

Relative performance for different sets of polling directions (n = 100).

	[I - I]	[Q - Q]	$2 (\gamma = 2)$	$4 (\gamma = 1.1)$
arglina	1.00	3.86	5.86	7.58
arglinb	138.28	107.32	1.00	1.99
broydn3d	1.00	2.57	1.92	3.21
dqrtic	3.01	3.25	1.00	1.46
engval1	1.04	1.00	2.06	2.84
freuroth	31.94	17.72	1.36	1.00
integreq	1.83	1.66	1.00	1.22
nondquar	1.18	2.83	1.00	1.17
sinquad	_	_	_	_
vardim	112.22	19.72	1.00	2.36

Now $\gamma = 1$ for $[I \ -I]$ and $[Q \ -Q]$.

- the new iterate depends on some object (directions, models),
- the quality of the object is favorable with a certain probability.

- the new iterate depends on some object (directions, models),
- the quality of the object is favorable with a certain probability.

The technique is based on:

- counting the number of iterations for which the quality is favorable,
- examining the probabilistic behavior of this number.

- the new iterate depends on some object (directions, models),
- the quality of the object is favorable with a certain probability.

The technique is based on:

- counting the number of iterations for which the quality is favorable,
- examining the probabilistic behavior of this number.

It is thus possible to obtain a rate of $\mathcal{O}(1/\sqrt{k})$, with overwhelmingly high probability, also for the TRM based on probabilistic models [Gratton, Royer, LNV, and Zhang, 2017].

Linear equality constraints

$$\begin{array}{ll} \min_{x \in \mathbb{R}^n} & f(x) \\ \text{s.t.} & Ax = b. \end{array}$$

- Equivalent to the unconstrained problem $\min_{\tilde{x} \in \mathbb{R}^{n-m}} f(x_0 + W\tilde{x})$ with $W \in \mathbb{R}^{n \times (n-m)}$ orthonormal basis for $\operatorname{null}(A)$ and $Ax_0 = b$.
- Deterministic and probabilistic approaches/analyses apply!

Linear equality constraints

$$\begin{array}{ll} \min_{x \in \mathbb{R}^n} & f(x) \\ \text{s.t.} & Ax = b. \end{array}$$

- Equivalent to the unconstrained problem $\min_{\tilde{x} \in \mathbb{R}^{n-m}} f(x_0 + W\tilde{x})$ with $W \in \mathbb{R}^{n \times (n-m)}$ orthonormal basis for $\operatorname{null}(A)$ and $Ax_0 = b$.
- Deterministic and probabilistic approaches/analyses apply!

Bounds

$$\begin{cases} \min_{x \in \mathbb{R}^n} & f(x) \\ \text{s.t.} & l \le x \le u. \end{cases}$$

Deterministic practice: Uses D_⊕ = {e₁,..., e_n, -e₁,..., -e_n} to guarantee convergence and moves parallel to the constraints.

A class of DS methods (linear constraints)

Choose: x_0 and α_0 .

For k = 0, 1, 2, ... (Until α_k is suff. small)

• Search step (optional)

A class of DS methods (linear constraints)

Choose: x_0 and α_0 .

For k = 0, 1, 2, ... (Until α_k is suff. small)

- Search step (optional)
- **Poll step:** Select D_k (...) and find $x_k + \alpha_k d_k$ **FEASIBLE** $(d_k \in D_k)$:

$$f(x_k + \alpha_k d_k) < f(x_k) - \rho(\alpha_k)$$
 like $\rho(\alpha) = \alpha^2/2$.

A class of DS methods (linear constraints)

Choose: x_0 and α_0 .

For k = 0, 1, 2, ... (Until α_k is suff. small)

- Search step (optional)
- **Poll step:** Select D_k (...) and find $x_k + \alpha_k d_k$ **FEASIBLE** $(d_k \in D_k)$:

$$f(x_k + \alpha_k d_k) < f(x_k) - \rho(\alpha_k)$$
 like $\rho(\alpha) = \alpha^2/2$.

- SUCCESS: Move $x_{k+1} = x_k + \alpha_k d_k$ and possibly increase $\alpha_{k+1} = \gamma \alpha_k \quad (\gamma = 1 \text{ or } 2).$
- UNSUCCESS: Stay $x_{k+1} = x_k$ and decrease $\alpha_{k+1} = \theta \alpha_k$ $(\theta = 1/2).$

Nearby / approximate active constraints

Using the bounds case as example, where the feasible set is $\mathcal{F}=\{l\leq x\leq u\},$ one has

Nearby constraints

The indexes

$$\begin{split} I_u(x, \alpha) &= \{i : |u_i - [x]_i| \le \alpha \} \\ I_l(x, \alpha) &= \{i : |l_i - [x]_i| \le \alpha \} \end{split}$$

define the nearby constraints at $x \in \mathcal{F}$ given $\alpha > 0$.

Approximate tangent/normal cones

• Approximate normal cone $N(x, \alpha)$: Positive span of

$$\{e_i\}_{i\in I_u(x,\alpha)}\cup\{-e_i\}_{i\in I_l(x,\alpha)}.$$

• Approximate tangent cone $T(x, \alpha)$: polar of $N(x, \alpha)$.

Feasible descent property

• Recall the cosine measure that identifies descent sets

$$\operatorname{cm}(D, -\nabla f(x)) = \max_{d \in D} \frac{d^{\top}[-\nabla f(x)]}{\|d\|\| - \nabla f(x)\|} \geq \kappa.$$

Feasible descent property

• Recall the cosine measure that identifies descent sets

$$\operatorname{cm}(D, -\nabla f(x)) = \max_{d \in D} \frac{d^{\top}[-\nabla f(x)]}{\|d\|\| - \nabla f(x)\|} \geq \kappa.$$

Feasible descent property

D is a $\kappa\text{-feasible}$ descent set for $T(x,\alpha)$ if $D\subset T(x,\alpha)$ and

$$\operatorname{cm}_{T(x,\alpha)}(D, -\nabla f(x)) = \max_{d \in D} \frac{d^{\top}[-\nabla f(x)]}{\|d\| \|P_{T(x,\alpha)}[-\nabla f(x)]\|} \geq \kappa.$$

• Recall the cosine measure that identifies descent sets

$$\operatorname{cm}(D, -\nabla f(x)) = \max_{d \in D} \frac{d^{\top}[-\nabla f(x)]}{\|d\|\| - \nabla f(x)\|} \geq \kappa.$$

Feasible descent property

D is a $\kappa\text{-feasible}$ descent set for $T(x,\alpha)$ if $D\subset T(x,\alpha)$ and

$$\operatorname{cm}_{T(x,\alpha)}(D, -\nabla f(x)) = \max_{d \in D} \frac{d^{\top}[-\nabla f(x)]}{\|d\| \|P_{T(x,\alpha)}[-\nabla f(x)]\|} \geq \kappa.$$

- Using κ-feasible descent sets guarantees both convergence and complexity (analysis similar to the unconstrained case).
- For bounds only, $D_{\oplus} \cap T(x, \alpha)$ is always $\frac{1}{\sqrt{n}}$ -feasible descent.

Definition

The sequence $\{\mathfrak{D}_k\}$ is $(p,\kappa)\text{-probabilistically feasible descent if, for each <math display="inline">k\geq 0,$

$$\Pr\left(\operatorname{cm}_{T_k}\left(\mathfrak{D}_k, -\nabla f(X_k)\right) \ge \kappa \mid \mathfrak{D}_0, \dots, \mathfrak{D}_{k-1}\right) \ge p.$$

where $T_k = T(X_k, A_k)$.

Definition

The sequence $\{\mathfrak{D}_k\}$ is (p,κ) -probabilistically feasible descent if, for each $k\geq 0$,

$$\Pr\left(\operatorname{cm}_{T_k}\left(\mathfrak{D}_k,-\nabla f(X_k)\right)\geq\kappa\mid\mathfrak{D}_0,\ldots,\mathfrak{D}_{k-1}\right)\ \geq\ p.$$

where $T_k = T(X_k, A_k)$.

Convergence and Complexity

- If $\{\mathfrak{D}_k\}$ is (p,κ) -probabilistically feasible descent with $p>p_0$,
 - almost-sure convergence towards stationary points,
 - complexity bound for ϵ -stationarity:

$$\Pr\left(K_{\epsilon} \leq \left\lceil \mathcal{O}\left(\frac{\epsilon^{-2}}{\kappa^{2}}\right) \right\rceil\right) \geq 1 - \exp\left[-\mathcal{O}(\epsilon^{-2})\right].$$

Random subset of the generators

• Compute a deterministic set of positive generators V_k for T_k .

Possible direction generation techniques

Random subset of the generators

- Compute a deterministic set of positive generators V_k for T_k .
- 2 Take a random sample \mathfrak{D}_k of V_k of size $> |V_k|p_0$.
- Then $\{\mathfrak{D}_k\}$ is (p,κ) -probabilistically feasible descent with $p > p_0$.

Using fewer directions by exploiting subspaces

Idea

- In unconstrained optimization, probabilistic descent can use very few directions... and directions/cones lie in Rⁿ...
- We thus need to identify subspaces in the approximate tangent cones!

Using fewer directions by exploiting subspaces

d	e	а

- In unconstrained optimization, probabilistic descent can use very few directions... and directions/cones lie in Rⁿ...
- We thus need to identify subspaces in the approximate tangent cones!

Lemma

Let S_k be a linear subspace within a cone T_k . Then

$$T_k = S_k + T_k^c,$$

where T_k^c is a cone lying in S_k^{\perp} .

Using fewer directions by exploiting subspaces (2)

Two types of directions

- Subspace S_k : Generate directions randomly.
- Orthogonal part T_k^c : Use a random subset of its positive generators.

Using fewer directions by exploiting subspaces (2)

Two types of directions

- Subspace S_k : Generate directions randomly.
- Orthogonal part T_k^c : Use a random subset of its positive generators.

Using fewer directions by exploiting subspaces (2)

Two types of directions

- Subspace S_k : Generate directions randomly.
- Orthogonal part T_k^c : Use a random subset of its positive generators.

Complexity (function evaluations)

• The general bound for K^f_{ϵ} is $\mathcal{O}\left(r\kappa^{-2}\epsilon^{-2}\right)$.

Complexity (function evaluations)

- The general bound for K^f_{ϵ} is $\mathcal{O}\left(r\kappa^{-2}\epsilon^{-2}\right)$.
- The linear constrained cased is as the unconstrained one (with $n \leftrightarrow n m$).

Complexity (function evaluations)

- The general bound for K^f_{ϵ} is $\mathcal{O}\left(r\kappa^{-2}\epsilon^{-2}\right)$.
- The linear constrained cased is as the unconstrained one (with $n \leftrightarrow n m$).
- In the bounds case:

Only $n_b < n$ variables are bounded

Method	r	κ	Bound
Determ.	2n	$\frac{1}{\sqrt{n}}$	$\mathcal{O}\left(n^2\epsilon^{-2} ight)$
Proba. 1	$\mathcal{O}(2np_0)$	$\frac{1}{\sqrt{n}}$	$\mathcal{O}\left(n^{2}\epsilon^{-2} ight)$
Proba. 2 (subspace)	$\mathcal{O}(1) + \mathcal{O}\left(n_b p_0\right)$	$\frac{1}{\sqrt{n}}$	$\mathcal{O}\left(n n_b \epsilon^{-2}\right)$
Numerical experiments — Bound constraints

• Comparison with MATLAB built-in patternsearch function.

Four solvers		
Name	Polling in $T(x_k, \alpha_k) = T_k = S_k + T_k^c$	Guarantee
dspfd-0	Shuffled $D_\oplus \cap T_k$	Deterministic
dspfd-1	Random subset of $D_\oplus \cap T_k$	Probabilistic
dspfd-2	(Two) random vectors in S_k	Probabilistic
	Random subset of $D_\oplus \cap T_k^c$	
patternsearch	$D_\oplus \cap T_k$.	Deterministic

• Comparison with MATLAB built-in patternsearch function.

Four solvers		
Name	Polling in $T(x_k, \alpha_k) = T_k = S_k + T_k^c$	Guarantee
dspfd-0	Shuffled $D_\oplus \cap T_k$	Deterministic
dspfd-1	Random subset of $D_\oplus \cap T_k$	Probabilistic
dspfd-2	(Two) random vectors in S_k	Probabilistic
	Random subset of $D_\oplus \cap T_k^c$	
patternsearch	$D_\oplus \cap T_k$	Deterministic

Performance profiles

• Criterion: # of function evaluations (budget of 2000n) to satisfy

$$f(x_k) - f_{best} < 10^{-3} (f(x_0) - f_{best}).$$

• Benchmark: Problems from the CUTEst collection.

Profiles for bound-constrained problems

• Performance on 63 problems with bounds, small dimensions: $2 \le n \le 20.$

Profiles for bound-constrained problems (2)

Performance on 31 problems with bounds constraints, larger dimensions: 20 ≤ n ≤ 52.

Direction generation technique

- Linear equalities: Reduce the problem to the null space of the constraint matrix.
- Linear inequalities: Replace D_⊕ ∩ T_k by a set of positive generators for T_k. Replace D_⊕ ∩ T^c_k by a set of positive generators for T^c_k.

Profiles for linearly constrained problems

• Performance on 106 problems with linear constraints: $2 \le n \le 96$.

