
Direct search based
on probabilistic feasible descent

for bound and linearly constrained problems

Luis Nunes Vicente
University of Coimbra

FoCM Barcelona, Workshop on Continuous Optimization

July 17, 2017

1/39



Direct-search methods

Definition

Sample the objective function at a finite number of points at each
iteration.

Achieve descent by moving in the direction of potentially better
points.

In the smooth and deterministic case, these points are defined by
directions in positive spanning sets (PSS):
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Coordinate search
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A class of DS methods

Choose: x0 and α0.

For k = 0, 1, 2, . . . (Until αk is suff. small)

Search step (optional)

Poll step: Select Dk PSS and find xk + αkdk (dk ∈ Dk):

f(xk + αkdk) < f(xk)− ρ(αk) like ρ(α) = α2/2.

SUCCESS: Move xk+1 = xk + αkdk and possibly increase
αk+1 = γ αk (γ = 1 or 2).

UNSUCCESS: Stay xk+1 = xk and decrease αk+1 = θ αk
(θ = 1/2).
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Deterministic approach

Positive spanning set (PSS)

Cosine measure of a PSS D

cm(D) = max
d∈D

d>v

‖d‖‖v‖
> 0.

Thus ∃ d ∈ D descent when ∇f(xk) 6= 0.

=⇒ αk small leads to success!
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WCC of DS (smooth case)

Insight: (decrease in f) ≥ O(α2
k)︸ ︷︷ ︸

success

≥ · · · ≥ O(α2
ku) ≥ O(‖∇f(xku)‖

2)︸ ︷︷ ︸
unsuccess

Kolda, Lewis, Torczon, 2003 SIREV

.

Theorem (LNV, 2013 EURO J. Comp. Optim.)

Any such DS method generates a sequence {xk}k≥0 such that:

min
0≤j≤k

‖∇f(xj)‖ = O(1/
√
k)

and takes at most
kε ≤ O

(
n ε−2

)
iterations to reduce the gradient below ε ∈ (0, 1).

The # of fevals must be multiplied by n: O
(
n2 ε−2

)
.

Bounds depend on L2
∇f (instead of L∇f as in gradient method).
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WCC of DS (smooth, convex case)

Ruling out cases where the supreme distance from the
initial level set Lf (x0) to the solution set Xf

∗ is infinite...

Theorem (M. Dodangeh and LNV, 2016 Math. Program.)

Any such DS method generates a sequence {xk}k≥0 such that:

f(xk)− f∗ = O(1/k) kε ≤ O
(
n ε−1

)
.

Again, the # of fevals must be multiplied by n: O
(
n2 ε−1

)
.

The n2 factor comes from |D|
cm(D)2

. For D = D⊕ one obtains

2n

(1/
√
n)2

= 2n2. Is this optimal?
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Optimality of the n2 factor

Theorem (M. Dodangeh, LNV, and Z. Zhang, 2016 Optim. Lett.)

The factor n2 is optimal since any PSS D in Rn satisfies

|D|
cm(D)2

≥ 1
ζ2
n2

4 = n2

8 = |D⊕|
cm(D⊕)2

m = |D|

Plot of

|D|
cm(D)2

≥ n2.

for the case n = 2 and
D’s with uniform angles,
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Global rate of DS (smooth, strongly convex case)

Theorem (M. Dodangeh and LNV, 2014 Math. Program.)

Any such DS method generates a sequence {xk}k≥0 such that:

f(xk)− f∗ < Crk,

where r ∈ (0, 1) and C > 0.

When f is SC (constant µ > 0), one has (k0 first unsucc.)

‖xk − x∗‖ ≤
√
L∇f/µ ‖xk0 − x∗‖.

A linear rate for the iterates can be derived from

1

2
µ‖x− x∗‖2 ≤ f(x)− f∗.
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Difficulties in the nonsmooth case

The cone of descent directions at the poll center is shaded.
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One possible fix: Combine DS with Smoothing

Essentially the WCC cost increases from O
(
ε−2
)

to O
(
ε−3
)

[R. Garmanjani and LNV, 2013 IMA J. Numer. Anal.].

The # of function evaluations increases from O
(
n2ε−2

)
to

O
(
n

5
2 ε−3

)
.
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Summary of DS global rates

Imposing sufficient decrease to accept new iterates:

O(− log(ε)) strongly convex — linear global rate for f , ∇f , and
absolute error in iterates.

O(ε−1) convex — global rate 1/k for f and ∇f .

O(ε−2) non-convex — global rate 1/
√
k for ∇f .

In terms of function evaluations: O(n2ε−1), O(n2ε−2). The factor n2

is proved approximately optimal.

O(ε−3) non-smooth, non-convex — (using smoothing techniques).
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Descent condition and successful iterations

Assume the polling directions are normalized.

Lemma

If

cm
(
Dk,−∇f(xk)

)
≥ κ and αk <

2κ‖∇f(xk)‖
L∇f + 1

,

the k-th iteration is successful.

where cm(D, v) is the cosine measure of D given v, defined by

cm(D, v) = max
d∈D

d>v

‖d‖‖v‖

and L∇f is a Lipschitz constant of ∇f .
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Randomly generating ‘positive spanning sets’ ...

−∇f(xk)
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Randomly generating ‘positive spanning sets’ ...

−∇f(xk)

n+ 1 random polling directions

in this case not a PSS

−∇f(xk)

≤ n random polling directions

certainly not a PSS ...

cm
(
Dk,−∇f(xk)

)
≥ κ can be satisfied ‘probabilistically’ ...
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Numerical illustration

Relative performance for different sets of polling directions (n = 40).

[I −I] [Q −Q] 2n n+ 1 n/4 2 1

arglina 3.42 8.44 10.30 6.01 1.88 1.00 –
arglinb 20.50 10.35 7.38 2.81 1.85 1.00 2.04

broydn3d 4.33 6.55 6.54 3.59 1.28 1.00 –
dqrtic 7.16 9.37 9.10 4.56 1.70 1.00 –

engval1 10.53 20.89 11.90 6.48 2.08 1.00 2.08
freuroth 56.00 6.33 1.00 1.67 1.67 1.00 4.00
integreq 16.04 16.29 12.44 6.76 2.04 1.00 –

nondquar 6.90 30.23 7.56 4.23 1.87 1.00 –
sinquad – – 1.65 2.01 1.00 1.55 –
vardim 1.00 3.80 1.80 2.40 1.80 1.80 4.30

Solution accuracy was 10−3. Averages were taken over 10 independent runs.
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Probabilistic descent

From the definition of probabilistic models (Bandeira, LNV, Scheinberg,
2014 SIOPT):

Definition

The sequence {Dk} is (p, κ)-probabilistically descent if, for each k ≥ 0,

Pr
(
cm(Dk,−∇f(Xk)) ≥ κ | D0, . . . ,Dk−1

)
≥ p,

Let Zk be the indicator function of
{
cm
(
Dk,−∇f(Xk)

)
≥ κ

}
, and

p0 =
ln θ

ln(γ−1θ)
=

1

2
θ = 1/2, γ = 2.
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Global rate: Counting descent

For each realization of the DS algorithm, define

g̃k: the gradient with minimum norm among ∇f(x0), . . . ,∇f(xk),

kε: the smallest integer such that ‖∇f(xk)‖ ≤ ε.

Denote the corresponding random variables by G̃k and Kε.

Let z` denote the realization of Z` =
{
cm
(
D`,−∇f(X`)

)
≥ κ

}
(` ≥ 0).

Intuition: If ‖g̃k‖ is ‘big’, then
∑k−1

`=0 z` is probably ‘small’.
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Global rate: Counting descent

In fact, one can prove

k−1∑
`=0

z` ≤ O
(

1

‖g̃k‖2

)
+ p0k.
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In fact, one can prove
k−1∑
`=0

z` ≤ O
(

1

‖g̃k‖2

)
+ p0k.

It then results,{
‖G̃k‖ > ε

}
⊂

{
k−1∑
`=0

Z` ≤
[
O
( 1

kε2

)
+ p0

]
k

}
.

λ

Hence

Pr
(
‖G̃k‖ ≤ ε

)
= 1− Pr

(
‖G̃k‖ > ε

)
≥ 1− Pr

(
k−1∑
`=0

Z` ≤ λ k

)
︸ ︷︷ ︸

apply Chernoff
&Submartingale Theory

.
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Global rate and WCC bound

Theorem (Gratton, Royer, LNV, and Zhang, 2015 SIOPT)

Suppose that {Dk} is (p, κ)-probabilistically descent with p > p0. Then

Pr

(
‖G̃k‖ ≤ O

(
1

κ
√
k

))
≥ 1− exp [−O(k)] .

−→ O(1/
√
k) sublinear rate with overwhelmingly high probability.

Since Pr(Kε ≤ k) = Pr(‖G̃k‖ ≤ ε), we also get:

Theorem (Gratton, Royer, LNV, and Zhang, 2015 SIOPT)

Suppose that {Dk} is (p, κ)-probabilistically descent with p > p0. Then

Pr

(
Kε ≤

⌈
O
(
ε−2

κ2

)⌉)
≥ 1− exp

[
−O(ε−2)

]
.

−→ O(ε−2) bound for # of iter. with overwhelmingly high probability.
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Two uniform directions are enough, one is not

g

g

d1 d2

d1 ∼ U(S1)⇒ ∀κ ∈ (0, 1), Pr
(
cm (d1, g) = d>1 g ≥ κ

)
< 1/2.

d1, d2 ∼ U(S1)⇒ ∃κ∗ ∈ (0, 1), Pr (cm ({d1, d2} , g) ≥ κ∗) > 1/2.
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Worst case complexity: Dependence on the dimension

Then, when r = |D| > 1, {Dk} is p-probabilistically (1/
√
n)-descent for

some p > p0 = 1/2 independent of n.

Plugging κ = 1/
√
n into the WCC bound, one obtains

WCC (number of function evaluations)

Pr
(
Kf
ε ≤

⌈
O
(
nε−2

)⌉
r
)
≥ 1− exp

[
−O(ε−2)

]
.

The WCC bound is O(rnε−2), better than when O(n2ε−2) when r � n.

Theory admits r = 2, leading to

O(nε−2) !!!
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A more detailed look at the numerical experiments

Relative performance for different sets of polling directions (n = 40).

[I −I] [Q −Q] 2 (γ = 2) 4 (γ = 1.1)

arglina 1.00 3.17 5.86 6.73
arglinb 34.12 5.34 1.00 2.02

broydn3d 1.00 1.91 2.04 3.47
dqrtic 1.18 1.36 1.00 1.48

engval1 1.05 1.00 2.29 2.89
freuroth 17.74 7.39 1.35 1.00
integreq 1.54 1.49 1.00 1.34

nondquar 1.00 2.82 1.37 1.73
sinquad – 1.26 1.00 –
vardim 20.31 11.02 1.00 1.84

Now γ = 1 for [I −I] and [Q −Q].
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A more detailed look at the numerical experiments

Relative performance for different sets of polling directions (n = 100).

[I −I] [Q −Q] 2 (γ = 2) 4 (γ = 1.1)

arglina 1.00 3.86 5.86 7.58
arglinb 138.28 107.32 1.00 1.99

broydn3d 1.00 2.57 1.92 3.21
dqrtic 3.01 3.25 1.00 1.46

engval1 1.04 1.00 2.06 2.84
freuroth 31.94 17.72 1.36 1.00
integreq 1.83 1.66 1.00 1.22

nondquar 1.18 2.83 1.00 1.17
sinquad – – – –
vardim 112.22 19.72 1.00 2.36

Now γ = 1 for [I −I] and [Q −Q].
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So, a new proof technique

A new proof technique for establishing global rates and WCC bounds for
randomized algorithms for which

the new iterate depends on some object (directions, models),

the quality of the object is favorable with a certain probability.

The technique is based on:

counting the number of iterations for which the quality is favorable,

examining the probabilistic behavior of this number.

It is thus possible to obtain a rate of O(1/
√
k), with overwhelmingly high

probability, also for the TRM based on probabilistic models [Gratton,
Royer, LNV, and Zhang, 2017].
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Two linearly constrained problems

Linear equality constraints{
minx∈Rn f(x)
s.t. Ax = b.

Equivalent to the unconstrained problem minx̃∈Rn−m f (x0 +Wx̃)
with W ∈ Rn×(n−m) orthonormal basis for null(A) and Ax0 = b.

Deterministic and probabilistic approaches/analyses apply!

Bounds {
minx∈Rn f(x)
s.t. l ≤ x ≤ u.

Deterministic practice: Uses D⊕ = {e1, . . . , en,−e1, . . . ,−en} to
guarantee convergence and moves parallel to the constraints.
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A class of DS methods (linear constraints)

Choose: x0 and α0.

For k = 0, 1, 2, . . . (Until αk is suff. small)

Search step (optional)

Poll step: Select Dk (. . .) and find xk + αkdk FEASIBLE (dk ∈ Dk):

f(xk + αkdk) < f(xk)− ρ(αk) like ρ(α) = α2/2.

SUCCESS: Move xk+1 = xk + αkdk and possibly increase
αk+1 = γ αk (γ = 1 or 2).

UNSUCCESS: Stay xk+1 = xk and decrease αk+1 = θ αk
(θ = 1/2).
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Nearby / approximate active constraints

Using the bounds case as example, where the feasible set is
F = {l ≤ x ≤ u}, one has

Nearby constraints

The indexes
Iu(x, α) = {i : |ui − [x]i| ≤ α}
Il(x, α) = {i : |li − [x]i| ≤ α}

define the nearby constraints at x ∈ F given α > 0.

α
x α x
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Approximate tangent/normal cones

Approximate normal cone N(x, α): Positive span of

{ei}i∈Iu(x,α) ∪ {−ei}i∈Il(x,α) .

Approximate tangent cone T (x, α): polar of N(x, α).

x

N(x, α)

T (x, α)

T (x, α)

N(x, α)

x
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Feasible descent property

Recall the cosine measure that identifies descent sets

cm(D,−∇f(x)) = max
d∈D

d>[−∇f(x)]
‖d‖‖ − ∇f(x)‖

≥ κ.

Feasible descent property

D is a κ-feasible descent set for T (x, α) if D ⊂ T (x, α) and

cmT (x,α)(D,−∇f(x)) = max
d∈D

d>[−∇f(x)]
‖d‖‖PT (x,α)[−∇f(x)]‖

≥ κ.

Using κ-feasible descent sets guarantees both convergence and
complexity (analysis similar to the unconstrained case).

For bounds only, D⊕ ∩ T (x, α) is always 1√
n

-feasible descent.
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Probabilistic feasible descent

Definition

The sequence {Dk} is (p, κ)-probabilistically feasible descent if, for each
k ≥ 0,

Pr (cmTk (Dk,−∇f(Xk)) ≥ κ | D0, . . . ,Dk−1) ≥ p.

where Tk = T (Xk, Ak).

Convergence and Complexity

If {Dk} is (p, κ)-probabilistically feasible descent with p > p0,

almost-sure convergence towards stationary points,

complexity bound for ε-stationarity:

Pr

(
Kε ≤

⌈
O
(
ε−2

κ2

)⌉)
≥ 1− exp

[
−O(ε−2)

]
.
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Possible direction generation techniques

Random subset of the generators

1 Compute a deterministic set of positive generators Vk for Tk.

2 Take a random sample Dk of Vk of size > |Vk|p0.

3 Then {Dk} is (p, κ)-probabilistically feasible descent with p > p0.

31/39



Possible direction generation techniques

Random subset of the generators
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2 Take a random sample Dk of Vk of size > |Vk|p0.

3 Then {Dk} is (p, κ)-probabilistically feasible descent with p > p0.

p0 = 1/2

31/39



Using fewer directions by exploiting subspaces

Idea

In unconstrained optimization, probabilistic descent can use very few
directions... and directions/cones lie in Rn...

We thus need to identify subspaces in the approximate tangent cones!

Lemma

Let Sk be a linear subspace within a cone Tk. Then

Tk = Sk + T ck ,

where T ck is a cone lying in S⊥k .
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Using fewer directions by exploiting subspaces (2)

Two types of directions

Subspace Sk: Generate directions randomly.

Orthogonal part T ck : Use a random subset of its positive generators.

xk
Sk = ∅

T ck p0 = 1/2
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Complexity (function evaluations)

The general bound for Kf
ε is O

(
rκ−2ε−2

)
.

The linear constrained cased is as the unconstrained one (with
n ←→ n−m ).

In the bounds case:

Only nb < n variables are bounded

Method r κ Bound

Determ. 2n 1√
n

O
(
n2ε−2

)
Proba. 1 O(2np0) 1√

n
O
(
n2ε−2

)
Proba. 2 (subspace) O(1) +O (nb p0)

1√
n
O
(
nnbε

−2)
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Numerical experiments — Bound constraints

Comparison with MATLAB built-in patternsearch function.

Four solvers

Name Polling in T (xk, αk) = Tk = Sk + T ck Guarantee

dspfd-0 Shuffled D⊕ ∩ Tk Deterministic
dspfd-1 Random subset of D⊕ ∩ Tk Probabilistic
dspfd-2 (Two) random vectors in Sk Probabilistic

Random subset of D⊕ ∩ T ck
patternsearch D⊕ ∩ Tk Deterministic

Performance profiles

Criterion: # of function evaluations (budget of 2000n) to satisfy

f(xk)− fbest < 10−3(f(x0)− fbest).

Benchmark: Problems from the CUTEst collection.
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Profiles for bound-constrained problems

Performance on 63 problems with bounds, small dimensions:
2 ≤ n ≤ 20.
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Profiles for bound-constrained problems (2)

Performance on 31 problems with bounds constraints, larger
dimensions: 20 ≤ n ≤ 52.
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Extension to general linear constraints

Direction generation technique

Linear equalities: Reduce the problem to the null space of the
constraint matrix.

Linear inequalities: Replace D⊕ ∩ Tk by a set of positive generators
for Tk. Replace D⊕ ∩ T ck by a set of positive generators for T ck .
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Profiles for linearly constrained problems

Performance on 106 problems with linear constraints: 2 ≤ n ≤ 96.
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