A Review of Multi-Objective Optimization: Theory and Algorithms

Suyun Liu & Luis Nunes Vicente

ISE Department, Lehigh University

April 21, 2020

Introduction to multi-objective optimization

2) Scalarization methods (entire Pareto front)

- Weighted-sum method
- ϵ -constrained method

Gradient-based methods (single Pareto point)

- Multi-objective steepest descent method
- Multi-objective Newton's method

Outline of the various algorithmic classes

Multi-Objective Optimization

A multi-objective optimization problem (MOP) consists of 'simultaneously' optimizing several objective functions (often conflicting):

min
$$F(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix}$$

s.t. $x \in \Omega$

where

- $\label{eq:second} \mathbf{0} \ \ \Omega \subseteq \mathbb{R}^n \ \text{is the feasible set in decision space}$
- 2 \mathbb{R}^m is the goal/objective space
- $\label{eq:product} {\bf 0} \ F(\Omega) = \{F(x): x \in \Omega\} \subseteq \mathbb{R}^m \text{ is the image of the feasible set.}$

Let us consider a bi-objective discrete example where $\Omega = \{1, 2, 3, 4, 5, 6\}$.

The functions f_1 and f_2 are defined by:

Ω	1	2	3	4	5	6
f_1	1	1	2	3	2	4
f_2	6	3	4	1	2	2

Let us consider a bi-objective discrete example where $\Omega = \{1, 2, 3, 4, 5, 6\}$.

The functions f_1 and f_2 are defined by:

Ω	1	2	3	4	5	6
f_1	1	1	2	3	2	4
f_2	6	3	4	1	2	2

- There is no point that minimizes both functions.
- **2** 3 has no interest (2 is better in both objectives), the same with 6.
- P = {1, 2, 4, 5} ⊂ Ω is the set of Pareto minimizers (or efficient or nondominated points).

Definition 1: x is a (weak) Pareto minimizer of F in Ω if

 $\nexists y \in \Omega$ such that F(y) < F(x).

Here, we are using an partial order induced by \mathbb{R}^m_{++}

$$F(x) < F(y) \Leftrightarrow F(y) - F(x) \in \mathbb{R}^m_{++}.$$

The set of (weak) Pareto minimizers is given by

$$P = \{ x \in \Omega : \nexists y \in \Omega : F(y) < F(x) \}.$$

In the previous example, $P_s=\{2,4,5\}$ is the set of strict Pareto minimizers:

Ω	1	2	3	4	5	6
f_1	1	1	2	3	2	4
f_2	6	3	4	1	2	2

In fact, point $1 \mbox{ is not a strict Pareto minimizer since }$

 $F(2) \leq F(1)$ and $F(2) \neq F(1)$.

Definition 2: x is a strict Pareto minimizer of F in Ω if

 $\nexists y \in \Omega : F(y) \leq F(x) \text{ and } F(y) \neq F(x).$

The set of strict Pareto minimizers is thus given by

 $P_s = \{ x \in \Omega : \nexists y \in \Omega : F(y) \le F(x) \text{ and } F(y) \ne F(x) \}.$

Theorem (Relationship between P and P_s)

 $P_s \subseteq P$.

Case (a): $P_s \subsetneq P$

 $\Omega = \{ (x_1, x_2) \in \mathbb{R}^2 : x_1 \le 0.5, \quad x_2 \le 0.75, \quad x_1 + x_2 \le 1, \quad x_1, x_2 \ge 0 \}$ $f_1(x_1, x_2) = -x_2$ $f_2(x_1, x_2) = x_2 - x_1$

Case (b): $P = P_s$

 $\Omega = \{ (x_1, x_2) \in \mathbb{R}^2 : x_1 \le 0.5, \quad x_2 \le 0.75, \quad x_1 + x_2 \le 1, \quad x_1, x_2 \ge 0 \}$ $f_1(x_1, x_2) = -0.5x_1 - x_2$

$$f_2(x_1, x_2) = -2x_1 - x_2$$

The existence of points in P and P_s can be guaranteed in a classical way.

Theorem (existence and compactness)

If Ω is compact and F is \mathbb{R}^m -continuous, then

- *P* is nonempty and compact.
- **2** P_s is nonempty.

The existence of points in P and P_s can be guaranteed in a classical way.

Theorem (existence and compactness)

If Ω is compact and F is \mathbb{R}^m -continuous, then

• *P* is nonempty and compact.

2 P_s is nonempty.

Definition 3: x is local (strict) Pareto minimizer if there is a neighborhood $V \subseteq \Omega$ of x such that the point x is (strictly) nondominated.

Property 1: If Ω is convex and F is \mathbb{R}^m -convex, every local Pareto minimizer is a global Pareto minimizer.

Pareto fronts

Recall the image of the feasible set Ω :

$$F(\Omega) = \{F(x) : x \in \Omega\}$$

Proposition 1: $F(x), x \in P$ is always on the boundary of $F(\Omega)$.

Pareto front

Denote Pareto front by $F(P) = \{F(x) : x \in P\}.$

Figure: Different geometry shapes of Pareto fronts: (a) Convex; (b) Concave; (c) Mixed (neither convex nor concave); (d) Disconnected.

Suyun Liu

Introduction to multi-objective optimization

Introduction to multi-objective optimization

Scalarization methods (entire Pareto front)

- Weighted-sum method
- ϵ -constrained method

Gradient-based methods (single Pareto point)

- Multi-objective steepest descent method
- Multi-objective Newton's method

Outline of the various algorithmic classes

According to a pre-defined preference given by a set of non-negative weights μ_1, \ldots, μ_m , the general weighted-sum method is to solve

$$\min \sum_{i=1}^{m} \mu_i f_i(x) \qquad \text{s.t. } x \in \Omega$$

Assume that

$$x_* \in \operatorname*{argmin}_{x \in \Omega} \sum_{i=1}^m \mu_i f_i(x).$$

Property 2:

1 If μ_i 's are not all zero (non-negative scalarization), then $x_* \in P$.

2 If μ_i 's are all positive (positive scalarization), then $x_* \in P_s$.

In the convex case the non-negative scalarization of ${\cal P}$ is necessary and sufficient:

Theorem (sufficient and necessary condition)

Assume that F is \mathbb{R}^m -convex $(f_1, \ldots, f_m \text{ are convex})$ on Ω convex. Then,

$$x_* \in P$$

if and only if

$$\exists \mu_1, \dots, \mu_m \ge 0 \text{ not all zero } x_* \in \operatorname*{argmin}_{x \in \Omega} \sum_{i=1}^m \mu_i f_i(x).$$

However, the positive scalarization of P_s is not necessary.

Consider the example where:

m = 2, $f_i(x) = -x_i$, i = 1, 2 and $\Omega = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1\}$. In this example we have

$$P_s = P = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1, x_1, x_2 \ge 0\}.$$

Thus $(1,0) \in P_s$. However

$$\mu_1 f_1(1,0) + \mu_2 f_2(1,0) = -\mu_1$$

and

$$\min_{y \in \Omega} \mu_1 f_1(y) + \mu_2 f_2(y) = \min_{y \in \Omega} -\mu_1 y_1 - \mu_2 y_2$$

are only equal when $\mu_1 > 0$ and $\mu_2 = 0$.

Therefore, just by varying the positive weight combinations, one might not necessarily capture the whole P_s .

However, in the strictly convex case, the non-negative scalarization is also necessary for P_{s} .

Theorem ($P_s = P$ in strictly convex case)

Let F be \mathbb{R}^m -strictly convex $(f_1, \ldots, f_m \text{ are strictly convex})$ on Ω convex. Then

$$P_s = P.$$

By varying all non-negative weight combinations, we are able to get the whole ${\cal P}$ and ${\cal P}_{\rm s}.$

Non-convexity in weighted-sum method

The original MOP is converted into a constrained problem by optimizing an objective from the satisfaction of the other

$$\begin{array}{ll} \min & f_1(x) \\ \text{s.t.} & x \in \Omega, \\ & f_2(x) \le \epsilon. \end{array}$$

In this case, P can be computed solving these problems for

$$\epsilon \in \left[\min_{y \in \Omega} f_2(y), \ f_2(\operatorname*{argmin}_{y \in \Omega} f_1(y))\right]$$

ϵ -constrained method

 $f_1(x)$

ϵ = min_{x∈Ω} f₂(x), the optimal solution corresponds to A.
 ϵ = f₂(argmin_{y∈Ω} f₁(y)), the optimal solution corresponds to B.

 ϵ -constrained method does not require any convexity assumption.

Consider the general ϵ -constrained problem ($\epsilon \in \mathbb{R}^m$)

$$\begin{array}{ll} \min & f_l(x) \\ \text{s.t.} & f_i(x) \leq \epsilon_i, \forall i = 1, \dots, m, \text{ and } i \neq l \\ & x \in \Omega. \end{array}$$
 (1)

Theorem (sufficient and necessary condition)

- Let ϵ be such that the feasible region of (1) is nonempty for a certain l. If x_* is an optimal solution of problem (1), then $x_* \in P$.
- **2** A feasible point $x_* \in \Omega$ is in P_s if and only if there is a vector $\epsilon_* \in \mathbb{R}^m$ such that x_* is an optimal solution for all problems (1), $l = 1, \ldots, m$.

Presentation outline

Introduction to multi-objective optimization

- Scalarization methods (entire Pareto front)
 - Weighted-sum method
 - ϵ -constrained method

Gradient-based methods (single Pareto point)

- Multi-objective steepest descent method
- Multi-objective Newton's method

Outline of the various algorithmic classes

Consider a MOP

 $\min F(x) \quad x \in \mathbb{R}^n.$

where we assume $F : \mathbb{R}^n \to \mathbb{R}^m$ is continuously differentiable.

Pareto first-order stationary condition: x is Pareto stationary for F if

 $\forall d \in \mathbb{R}^n$, we have $JF(x)d \not\leq 0$.

where

$$JF(x) = \begin{bmatrix} \nabla f_1(x)^\top \\ \vdots \\ \nabla f_m(x)^\top \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

Equivalently,

$$\max_{i=1,\dots,m} \nabla f_i(x)^\top d \ge 0, \quad \forall d \in \mathbb{R}^n.$$

Equivalently, if the convex hull of $\nabla f_i(x)$'s contains the origin, i.e.,

$$\exists \lambda \ \in \ \Delta^m \ {
m such that} \ \sum_{i=1}^m \lambda_i
abla f_i(x_k) \ = \ 0$$

where $\Delta^m = \{\lambda : \sum_{i=1}^m \lambda_i = 1, \lambda_i \ge 0, \forall i = 1, ..., m\}$ is the *m*-simplex set.

Note: when F is \mathbb{R}^m -convex, $x \in P \Leftrightarrow x$ is Pareto first-order stationary.

Line search

For any non-stationary point x, there exists $d \in \mathbb{R}^n$ such that $\nabla f_i(x)^\top d < 0, \forall i = 1, ..., m$.

One further has

$$\lim_{t \to 0} \frac{f_i(x+td) - f_i(x)}{t} = \nabla f_i(x)^\top d < 0, \quad \forall i$$

i.e., $\exists t_0$ such that F(x + td) < F(x) holds for all $t \in (0, t_0]$.

Lemma (sufficient decrease condition)

Given any $\sigma \in (0,1)$, there exists $\overline{t}_0 > 0$ such that

 $F(x+td) < F(x) + \sigma \ t \ JF(x)d \quad \forall t \in (0,\bar{t}_0]$

The multi-objective steepest descent method

Steepest descent direction is computed by (Fliege and Svaiter, 2000)

$$d(x) = \operatorname{argmax}_{d \in \mathbb{R}^n} \min_{i=1,...,m} -\nabla f_i(x)^\top d + \frac{1}{2} ||d||^2.$$

This subproblem is uniformly convex.

Its dual problem is

$$\lambda(x) = \underset{\lambda \in \mathbb{R}^m}{\operatorname{argmin}} \| \sum_{i=1}^m \lambda_i \nabla f_i(x) \|^2 \text{ s.t. } \lambda \in \Delta^m.$$

And we have

$$d(x) = -\sum_{i=1}^{m} (\lambda(x))_i \nabla f_i(x).$$

Note: when m = 1, one recovers $d(x) = -\nabla f_1(x)$.

The multi-objective steepest descent method

Steepest descent direction is computed by (Fliege and Svaiter, 2000)

$$d(x) = \underset{d \in \mathbb{R}^n}{\operatorname{argmin}} \max_{i=1,...,m} \nabla f_i(x)^\top d + \frac{1}{2} ||d||^2.$$

This subproblem is uniformly convex.

Its dual problem is

$$\lambda(x) = \underset{\lambda \in \mathbb{R}^m}{\operatorname{argmin}} \| \sum_{i=1}^m \lambda_i \nabla f_i(x) \|^2 \text{ s.t. } \lambda \in \Delta^m.$$

And we have

$$d(x) = -\sum_{i=1}^{m} (\lambda(x))_i \nabla f_i(x).$$

Note: when m = 1, one recovers $d(x) = -\nabla f_1(x)$.

Multi-objective steepest descent method

Let $\theta(x)$ be the optimal value of the subproblem

$$\theta(x) = \max_{i=1,\dots,m} \nabla f_i(x)^\top d(x) + \frac{1}{2} \|d(x)\|^2.$$

Proposition (Fliege and Svaiter (2000))

- $0 \theta(x) \leq 0, \ \forall \ x \in \mathbb{R}^n$
- 2 The following conditions are equivalent:
 - x is non-stationary
 - $\theta(x) < 0$
 - $d(x) \neq 0$

Hence, x is stationary if and only if $\theta(x) = 0$ (or if and only if d(x) = 0).

Algorithm 1 MSDM with backtracking

- 1: Choose $\sigma \in (0,1)$ and $x_0 \in \mathbb{R}^n$.
- 2: for k = 0, 1, ... do
- 3: Compute d_k by solving a convex constrained subproblem

$$\min_{\substack{\beta,d\\} \text{s.t.}} \quad \beta + \frac{1}{2} \|d\|^2 \\ \text{s.t.} \quad \nabla f_i(x_k)^\top d \le \beta, i = 1, \dots, m.$$

- 4: If $\theta(d_k) = 0$, then stop.
- 5: Choose stepsize α_k as the largest $\alpha \in \{1/2^j : j \in \mathbb{N}\}$ such that

$$F(x_k + \alpha d_k) \le F(x_k) + \sigma \alpha JF(x_k)d_k.$$

6: Update iterate
$$x_{k+1} = x_k + \alpha_k d_k$$

Theorem (Lip. continuous gradients, Fliege and Svaiter (2000))

Let $\{x_k\}$ be a sequence generated by Algorithm 1. Every accumulation point of the sequence, if any, is a stationary point.

Theorem (F is \mathbb{R}^m -nonconvex, Fliege et al. (2019))

Assume at least one of functions f_i , i = 1, ..., m, is bounded below, the sequence $\{x_k\}$ generated by Algorithm 1 satisfies

$$\min_{0 \le i \le k-1} \|d_i\| \le \mathcal{O}(1/\sqrt{k}).$$

Correspondingly, for the non-stationarity measure, we have

 $|\theta(x_k)| \le \mathcal{O}(1/\sqrt{k}).$

Convergence and complexity of MSDM

Assume the sequence $\{x_k\}$ converges to x_* associated with the weights λ^* .

- F is \mathbb{R}^m -strongly convex
 - A linear rate in terms of iterates: $||x_k x_*|| \le \mathcal{O}(c^k), c \in (0, 1)$
 - A linear rate for optimality gap using weighted-sum function: $\sum_{i=1}^{m} \lambda_i^* f_i(x_k) \sum_{i=1}^{m} \lambda_i^* f_i(x_*) \leq \mathcal{O}(c^k).$
- **2** F is \mathbb{R}^m -convex: $\mathcal{O}(1/k)$ sublinear rate for optimality gap defined by a weaker form of weighted-sum function

$$\sum_{i=1}^{m} \bar{\lambda}_i^{k-1} f_i(x_k) - \sum_{i=1}^{m} \bar{\lambda}_i^{k-1} f_i(x_*) \leq \mathcal{O}(1/k)$$
where $\bar{\lambda}^{k-1} = \frac{1}{k} \sum_{l=1}^{k-1} \lambda_i^l$.

Multi-objective Newton's method

Assume F is \mathbb{R}^m -strongly convex and twice continuous differentiable.

Newton direction s(x) is computed by (Fliege et al., 2009)

$$s(x) = \operatorname*{argmin}_{s \in \mathbb{R}^n} \max_{i=1,\dots,m} \nabla f_i(x)^\top s + \frac{1}{2} s^\top \nabla^2 f_i(x) s$$

Here, we are approximating $\max_{i=1,...,m} f_i(x+s) - f_i(x)$ using maximum over local quadratic model.

The subproblem can be framed into a convex quadratically constrained problem:

min
$$t$$

s.t. $\nabla f_i(x)^\top s + \frac{1}{2}s^\top \nabla^2 f_i(x)s - t \le 0, \quad \forall i = 1, \dots, m$ (2)
 $(t, s) \in \mathbb{R} \times \mathbb{R}^n$

Multi-objective Newton's method

Lemma (Newton direction, Fliege et al. (2009))

$$s(x) = -\left[\sum_{i=1}^{m} \lambda(x)_i \nabla^2 f_i(x)\right]^{-1} \sum_{i=1}^{m} \lambda(x)_i \nabla f_i(x)$$

where $\lambda(x)$ is the Lagrange coefficient associated with problem (2).

Let t(x) be the optimal value of the subproblem

$$t(x) = \max_{i=1,...,m} \nabla f_i(x)^{\top} s(x) + \frac{1}{2} s(x)^{\top} \nabla^2 f_i(x) s(x)$$

Multi-objective Newton's method

Proposition (Fliege et al. (2009))

- 2 The following conditions are equivalent:
 - x is not Pareto stationary
 - t(x) < 0
 - $s(x) \neq 0$

Hence, x is stationary if and only if t(x) = 0 (or if and only if s(x) = 0).

Algorithm 2 MNM with backtracking

- 1: Choose $\sigma \in (0,1)$ and $x_0 \in \mathbb{R}^n$.
- 2: for k = 0, 1, ... do
- 3: Compute s_k by solving a convex constrained subproblem

min
$$t$$

s.t. $\nabla f_i(x_k)^\top s + \frac{1}{2}s^\top \nabla^2 f_i(x_k)s - t \le 0, \quad \forall i = 1, \dots, m$
 $(t,s) \in \mathbb{R} \times \mathbb{R}^n$

- 4: If $t_k = 0$, then stop.
- 5: Choose stepsize α_k as the largest $\alpha \in \{1/2^j : j \in \mathbb{N}\}$ such that

$$F(x_k + \alpha s_k) \le F(x_k) + \sigma \alpha JF(x_k)s_k.$$

6: Update iterate $x_{k+1} = x_k + \alpha_k d_k$

Theorem (Local quadratic convergence rate, Fliege et al. (2009))

Assume the Hessians $\nabla^2 f_i$, $\forall i$ are uniformly positive definite and Lipschitz continuous.

Let x_0 be sufficiently close to a Pareto stationary point x_* . The sequence $\{x_k\}$ generated by Algorithm 2 satisfies

- **(** $\{x_k\}$ converges to x_* with a q-quadratic rate.
- **2** $||s(x_k)||$ converges to 0 with a *r*-superlinear rate.

Presentation outline

Introduction to multi-objective optimization

Scalarization methods (entire Pareto front)

- Weighted-sum method
- ϵ -constrained method

3 Gradient-based methods (single Pareto point)

- Multi-objective steepest descent method
- Multi-objective Newton's method

Outline of the various algorithmic classes

Outline of the various algorithmic classes

Deterministic multi-objective optimization

A priori methods: preference selection before optimization

- weighted-sum methods (non-convexity is an issue)
- *e*-constrained methods (infeasibility is an issue)
- other methods based on utility functions or expressions of preference: reference point methods, goal programming...
- A posteriori methods: preference selection after optimization Most of them work by iteratively updating lists of non-dominated points:
 - evolutionary algorithms (e.g., NSGA-II and AMOSA) which have no theoretical convergence guarantee.
 - mathematical programming based algorithms (e.g., Section 3 of this talk), convergence guaranteed for one point on the Pareto front.

Illustration of a list updating strategy

Suyun Liu

Stochastic multi-objective optimization

- "Multi-objective methods": they convert the original problem into an approximated deterministic multi-objective one (e.g., using SAA).
- "Stochastic methods": they convert the original problem into a single-objective stochastic one (e.g., by the weighting method).

Purity: an accuracy measure

 P_1 : a set of computed Pareto minimizers by solver 1 P_2 : a set of computed Pareto minimizers by solver 2 \overline{P} : the set of nondominated points in $P_1 \cup P_2$

$$Purity(P_1) = |P_1 \cap \bar{P}| / |\bar{P}| \in [0, 1]$$

which calculates the percentage of nondominated solutions.

Maximum size of holes

P: the set of *N* computed Pareto minimizers Assume each list of objective function values $\{f_{i,j}\}_{j=1}^N$ is sorted in order

$$\Gamma(P) = \max_{i \in \{1,\dots,m\}} \left(\max_{j \in \{1,\dots,N\}} \{\delta_{i,j}\} \right),$$

where $\delta_{i,j} = f_{i,j+1} - f_{i,j}$.

Metrics for Pareto front comparison

Spread

$$\Delta(P) = \max_{i \in \{1,...,m\}} \left(\frac{\delta_{i,0} + \delta_{i,N} + \sum_{j=1}^{N-1} |\delta_{i,j} - \bar{\delta}_i|}{\delta_{i,0} + \delta_{i,N} + (N-1)\bar{\delta}_i} \right),$$

where two extreme points indexed by 0 and N + 1 are added, and $\bar{\delta}_i$ is the average of $\delta_{i,j}$ over j = 1, ..., N - 1.

The lower Γ and Δ are, the more well distributed the Pareto front is.

- M. Ehrgott. <u>Multicriteria Optimization</u>, volume 491. Springer Science & Business Media, Berlin, 2005.
- J. Fliege and B. F. Svaiter. Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res., 51:479–494, 2000.
- J. Fliege, L. G. Drummond, and B. F. Svaiter. Newton's method for multiobjective optimization. SIAM J. Optim., 20:602–626, 2009.
- J. Fliege, A. I. F. Vaz, and L. N. Vicente. Complexity of gradient descent for multiobjective optimization. <u>Optim. Methods Softw.</u>, 34:949–959, 2019.
- E. H. Fukuda and L. M. G. Drummond. A survey on multiobjective descent methods. <u>Pesquisa Operacional</u>, 34:585–620, 2014.