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Presentation outline

@ Introduction to multi-objective optimization



Multi-Objective Optimization

A multi-objective optimization problem (MOP) consists of ‘simultaneously’
optimizing several objective functions (often conflicting):

fi(z)
min F(z) = :

st. zef

where
O ) C R"is the feasible set in decision space
@ R™ is the goal/objective space
Q F(Q)={F(zx):z € Q} CR™is the image of the feasible set.

Suyun Liu Introduction to multi-objective optimization



Pareto dominance

Let us consider a bi-objective discrete example where Q2 = {1,2,3,4,5,6}.

The functions f; and fo are defined by: f2
o1
Q11]2(3|4|5]|6 o3
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Pareto dominance

Let us consider a bi-objective discrete example where Q2 = {1,2,3,4,5,6}.

The functions f; and fo are defined by: f2
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@ There is no point that minimizes both functions.
@ 3 has no interest (2 is better in both objectives), the same with 6.

Q@ P ={1,2,4,5} C Q is the set of Pareto minimizers (or efficient or
nondominated points).
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Pareto dominance

Definition 1: z is a (weak) Pareto minimizer of F'in  if

PycQ suchthat F(y) < F(x).

Here, we are using an partial order induced by R’",

F(z) < F(y) & F(y) - F(x) € RY,.

The set of (weak) Pareto minimizers is given by

P={zeQ: JyeQ :F(y) < F(z)}.
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Pareto dominance

In the previous example, Ps = {2,4,5} is the set of strict Pareto

minimizers:
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In fact, point 1 is not a strict Pareto minimizer since

F2) < F(1) and  F(2) £ F(1).
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Pareto dominance
Definition 2: x is a strict Pareto minimizer of F' in  if

yecQ:F(y) < F(z) and F(y) # F(z).

The set of strict Pareto minimizers is thus given by

P ={xecQ: fyecQ :F(y) < F(z)and F(y) # F(x)}.

Theorem (Relationship between P and P;)
P, C P.
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Pareto dominance

Case (a): PsC P

Xy

QZ{(I‘l,ZEQ) € R2 21 <05, 22075, x4 a2 <1, 1,29 ZO}
fl(xl,ivz) = —T2

fa(z1,29) = 22 — 21
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Pareto dominance

Case (b): P = P

X1

QZ{(l‘l,JZg) € R2 1 <05, 22075, xpHae <1, x1,79 ZO}
fl((L'l,.’Eg) = —0.5{E1 — X2

fa(x1,22) = =221 — 22
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Pareto dominance

The existence of points in P and P; can be guaranteed in a classical way.

Theorem (existence and compactness)

If Q is compact and F' is R™-continuous, then

© P is nonempty and compact.

Q P; is nonempty.
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Pareto dominance

The existence of points in P and P; can be guaranteed in a classical way.

Theorem (existence and compactness)

If Q is compact and F' is R™-continuous, then

© P is nonempty and compact.

Q P; is nonempty.

Definition 3: x is local (strict) Pareto minimizer if there is a
neighborhood V' C €2 of & such that the point z is (strictly) nondominated.

Property 1: If Q is convex and F' is R™-convex, every local Pareto
minimizer is a global Pareto minimizer.
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Pareto fronts

Recall the image of the feasible set 2:

F(Q) = {F(z): 2 € Q)

Proposition 1: F(z),z € P is always on the boundary of F(2)

- ﬁ:j
“l ’ // E ﬁ Q/)/, .
Q \V‘/
/ fi(x)
P
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Pareto front

Denote Pareto front by F(P) = {F(z) : z € P}.

.. |
(a) SP1 (b) FF1
5 L
\ \
N \ \
N\, \
(c) JOS2 (d) zDT3

Figure: Different geometry shapes of Pareto fronts: (a) Convex; (b) Concave; (c)
Mixed (neither convex nor concave); (d) Disconnected.
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Presentation outline

© Scalarization methods (entire Pareto front)
o Weighted-sum method
@ e-constrained method



Weighted-sum method

According to a pre-defined preference given by a set of non-negative
weights p1, . .., ttm, the general weighted-sum method is to solve

min Zuzfz(x) st. €
i=1

Assume that

m
Ty € argminZuifi(x).
zeQr T

Property 2:

O If p;'s are not all zero (non-negative scalarization), then z, € P.

@ If w;'s are all positive (positive scalarization), then z, € Ps.
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Weighted-sum method

In the convex case the non-negative scalarization of P is necessary and
sufficient:

Theorem (sufficient and necessary condition)

Assume that F' is R™-convex (fi,..., fm are convex) on ) convex. Then,
T, € P
if and only if

m
3 w1,y fbm > 0 not all zero x, € argminz,uifi(x).
z€Q i—1
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Weighted-sum method

However, the positive scalarization of P; is not necessary.

Consider the example where:

m=2, fi(zx) = —z;,i=1,2 and Q = {x €R*:2? +23 <1}.

In this example we have
P, =P = {zcR%: 22422=1, 21,20 > 0}.

\% pP,=Pr
-
! -

X1

A
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Weighted-sum method

Thus (1,0) € P;. However
p1fi(1,0) + p2fo(1,0) = —m

and
min 1% + 1% f = min — K —
o) lfl (y) 2 2(1/) veQ 191 2Y2

are only equal when g1 > 0 and uo = 0.

Therefore, just by varying the positive weight combinations, one might not
necessarily capture the whole P.
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Weighted-sum method

However, in the strictly convex case, the non-negative scalarization is also
necessary for Ps.

Theorem (P; = P in strictly convex case)

Let F' be R™-strictly convex (fi,..., fm are strictly convex) on §) convex.
Then
P, = P.

By varying all non-negative weight combinations, we are able to get the
whole P and P;.
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Weighted-sum method

Non-convexity in weighted-sum method

10
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e-constrained method

The original MOP is converted into a constrained problem by optimizing
an objective from the satisfaction of the other

min  fi(7)
s.t. x €,
fg(:U) S €.

In this case, P can be computed solving these problems for

€ € |min fo(y), f2(argmin fi(y))
ye yeN
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e-constrained method
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Q ¢ = mingcq f2(z), the optimal solution corresponds to A.
Q ¢ = fa(argmin,q f1(y)), the optimal solution corresponds to B.
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e-constrained method

e-constrained method does not require any convexity assumption.

Consider the general e-constrained problem (e € R™)

min  fi(x)
st. fi(z) <e,Vi=1,...,m, and i #1 (1)
x €.

Theorem (sufficient and necessary condition)

Q Let € be such that the feasible region of (1) is nonempty for a certain
l. If z is an optimal solution of problem (1), then x, € P.

Q A feasible point x, € ) is in Ps if and only if there is a vector ¢, € R™
such that x, is an optimal solution for all problems (1), 1 =1,...,m.
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Presentation outline

© Gradient-based methods (single Pareto point)
o Multi-objective steepest descent method
@ Multi-objective Newton's method



First order necessary condition

Consider a MOP
min F(z) x € R".

where we assume F': R™ — R"™ is continuously differentiable.
Pareto first-order stationary condition: x is Pareto stationary for F' if

Vd € R", we have JF(x)d £ 0.

where
Vfi(z)"
JF(z) = : e R™",
me(a;)T

Equivalently,

max Vfi(z)'d>0, VdeR"

i=1,....m
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First order necessary condition

Equivalently, if the convex hull of V f;(z)'s contains the origin, i.e.,

IX € A™ such that > AV fi(wx) = 0

i=1

where A™ = {X: 3" X\, =1, > 0,Vi=1,..,m} is the m-simplex set.

Note: when F' is R™-convex, z € P < x is Pareto first-order stationary.
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Line search

For any non-stationary point x, there exists d € R" such that
Vix)d<0,Vi=1,...,m.

One further has

il td) — i)
t—0 t

= Vfi(x)'d < 0, Vi

i.e., Jtg such that F'(z + td) < F(x) holds for all ¢ € (0, to.

Lemma (sufficient decrease condition)

Given any o € (0,1), there exists ty > 0 such that

F(z+td) < F(z) + ot JF(z)d Vte (0,%)
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The multi-objective steepest descent method

Steepest descent direction is computed by (Fliege and Svaiter, 2000)
. T 1,
d(x) = argmax cpn _min —Vfi(z)' d+ §|]d|| .

This subproblem is uniformly convex.

Its dual problem is
AMz) = argmln HZ/\ Vii)|* st. Ae A™

And we have

d(z) = = > (M@))iV fi().

Note: when m = 1, one recovers d(z) = —V fi(x).
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The multi-objective steepest descent method

Steepest descent direction is computed by (Fliege and Svaiter, 2000)

1
d(z) = argmin max Vfi(z) d+ =|d|
derRr  =1,...m 2

This subproblem is uniformly convex.

Its dual problem is

M) = argmin HZA Vfi(@)|? st. e A™
AER™

And we have

d(w) = =25 (A(@))iV fi(z).
Note: when m = 1, one recovers d(z) = —V fi(x).
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Multi-objective steepest descent method

Let §(z) be the optimal value of the subproblem

o) = max V() dw) + 3 a(e)]

i=1,....m

Proposition (Fliege and Svaiter (2000))

Q 9(z) <0, VzeR"

@ The following conditions are equivalent:

e x Is non-stationary
° 9(1‘) <0
o d(z)#£0

Hence, x is stationary if and only if §(z) = 0 (or if and only if d(x) = 0).
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The multi-objective steepest descent algorithm

Algorithm 1 MSDM with backtracking

1. Choose ¢ € (0,1) and zp € R™.
2: for k=0,1,... do
3: Compute dj by solving a convex constrained subproblem

. 1 2
min B+ zlld]|
s.t. sz(:ck)TdSﬂ,zz 1,....,m.

4: If 6(d;) = 0, then stop.
: Choose stepsize oy, as the largest a € {1/27 : j € N} such that

F(zr + ady) < F(xg) + 0 o JF(v)dg.

6: Update iterate zp4+1 = o + agdi
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Convergence and complexity of MSDM

Theorem (Lip. continuous gradients, Fliege and Svaiter (2000))

Let {x}} be a sequence generated by Algorithm 1. Every accumulation
point of the sequence, if any, is a stationary point.

Theorem (F' is R™-nonconvex, Fliege et al. (2019))

Assume at least one of functions f;,i = 1,...,m, is bounded below, the
sequence {xy} generated by Algorithm 1 satisfies

min {|d;]| < O1/VEk).

0<i<k

Correspondingly, for the non-stationarity measure, we have

0(zx)| < O1/VE).
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Convergence and complexity of MSDM

Assume the sequence {x} converges to z, associated with the weights \*.

Q@ F'is R™-strongly convex

o A linear rate in terms of iterates: ||z — z.| < O(c¥),c € (0,1)

o A linear rate for optimality gap using weighted-sum function:

Y A film) = L X fila) < O(cF).

@ F is R™-convex: O(1/k) sublinear rate for optimality gap defined by
a weaker form of weighted-sum function

Y AT i) = X AT i) < O(1/k)

Ve—1 1 k—1 ]
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Multi-objective Newton's method

Assume F' is R™-strongly convex and twice continuous differentiable.

Newton direction s(x) is computed by (Fliege et al., 2009)

s(x) = argmin max Vfi(z)" s+ %STVin(:E)S

seRn  1=1,...,m

Here, we are approximating max;—1, ., fi(z + s) — fi(z) using maximum
over local quadratic model.

The subproblem can be framed into a convex quadratically constrained
problem:

min ¢
st. Vfi(z) s+ 3s'V2ifi(z)s—t <0, Vi=1,...,m (2)
(t,s) e RxR"
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Multi-objective Newton's method

Lemma (Newton direction, Fliege et al. (2009))

- [ZA(@NM(Q:)I Z)\ Vii(x

where \(x) is the Lagrange coefficient associated with problem (2).

Let ¢(x) be the optimal value of the subproblem

o) = max Vi) s(x) + s(a) V2 fi(a)s()

i=1,....,m
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Multi-objective Newton's method

Proposition (Fliege et al. (2009))
Q Vz e R" t(x) <0
@ The following conditions are equivalent:

e x is not Pareto stationary
o t(x) <0
o s(z)#0

Hence, x is stationary if and only if ¢(z) = 0 (or if and only if s(xz) = 0).
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Multi-objective Newton's method

Algorithm 2 MNM with backtracking

1. Choose ¢ € (0,1) and zo € R™.
2: for k=0,1,... do

3 Compute si by solving a convex constrained subproblem
min ¢
st. Vfi(xk) s+ %STVin(ask)s —t<0, Vi=1,...,m
(t,s) e R x R"

: If tx, = 0, then stop.
5: Choose stepsize oy, as the largest o € {1/27 : j € N} such that

F(zp + asg) < F(zg) + 0 a JF(xg)sg.

6: Update iterate xx41 = xf + ardy
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Multi-objective Newton's method

Theorem (Local quadratic convergence rate, Fliege et al. (2009))

Assume the Hessians V2 f;, Vi are uniformly positive definite and Lipschitz
continuous.

Let xg be sufficiently close to a Pareto stationary point x.. The sequence
{zx} generated by Algorithm 2 satisfies

Q {zy} converges to x, with a g-quadratic rate.

Q |[|s(zy)|| converges to 0 with a r-superlinear rate.
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Outline of the various algorithmic classes

Deterministic multi-objective optimization

@ A priori methods: preference selection before optimization

o weighted-sum methods (non-convexity is an issue)

o e-constrained methods (infeasibility is an issue)

o other methods based on utility functions or expressions of preference:
reference point methods, goal programming. ..

@ A posteriori methods: preference selection after optimization

Most of them work by iteratively updating lists of non-dominated
points:
o evolutionary algorithms (e.g., NSGA-Il and AMOSA) which have no
theoretical convergence guarantee.

o mathematical programming based algorithms (e.g., Section 3 of this
talk), convergence guaranteed for one point on the Pareto front.
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[llustration of a list updating strategy

f2

fi f

(a) Adding perturbed points. (b) Applying descent steps.

fa fo

f1 f

(c) Removing dominated pts. (d) Moving front.
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Outline of the various algorithmic classes

Stochastic multi-objective optimization

@ “Multi-objective methods”: they convert the original problem into an
approximated deterministic multi-objective one (e.g., using SAA).

@ “Stochastic methods”: they convert the original problem into a
single-objective stochastic one (e.g., by the weighting method).
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Metrics for Pareto front comparison

Purity: an accuracy measure

P;: a set of computed Pareto minimizers by solver 1
P,: a set of computed Pareto minimizers by solver 2
P: the set of nondominated points in P; U P»

Purity(Py) = |PL N P|/|P| € [0,1]
which calculates the percentage of nondominated solutions.

Maximum size of holes

P: the set of N computed Pareto minimizers

Assume each list of objective function values {fi7j}§y:1 is sorted in order

P = maX;c{1, .. m} (mane{l,...,N}{éi,j})’

where 0;; = fijt1— fi;-
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Metrics for Pareto front comparison

Spread

A(P) = max %i0 + N + E;V;ll 16 — dil
ie{lm} i0+ din + (N — 1) ’

where two extreme points indexed by 0 and N + 1 are added, and ; is the
average of 9; j over j =1,...,N — 1.

The lower I" and A are, the more well distributed the Pareto front is.
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