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Multi-Objective Optimization

A multi-objective optimization problem (MOP) consists of ‘simultaneously’
optimizing several objective functions (often conflicting):

min F (x) =

 f1(x)
...

fm(x)


s.t. x ∈ Ω

where

1 Ω ⊆ Rn is the feasible set in decision space

2 Rm is the goal/objective space

3 F (Ω) = {F (x) : x ∈ Ω} ⊆ Rm is the image of the feasible set.
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Pareto dominance

Let us consider a bi-objective discrete example where Ω = {1, 2, 3, 4, 5, 6}.

The functions f1 and f2 are defined by:

Ω 1 2 3 4 5 6

f1 1 1 2 3 2 4

f2 6 3 4 1 2 2

f1

f2

1

2
3

4
5 6

1 There is no point that minimizes both functions.

2 3 has no interest (2 is better in both objectives), the same with 6.

3 P = {1, 2, 4, 5} ⊂ Ω is the set of Pareto minimizers (or efficient or
nondominated points).
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Pareto dominance

Definition 1: x is a (weak) Pareto minimizer of F in Ω if

@y ∈ Ω such that F (y) < F (x).

Here, we are using an partial order induced by Rm++

F (x) < F (y)⇔ F (y)− F (x) ∈ Rm++.

The set of (weak) Pareto minimizers is given by

P = {x ∈ Ω : @y ∈ Ω : F (y) < F (x)}.
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Pareto dominance

In the previous example, Ps = {2, 4, 5} is the set of strict Pareto
minimizers:

Ω 1 2 3 4 5 6

f1 1 1 2 3 2 4

f2 6 3 4 1 2 2

In fact, point 1 is not a strict Pareto minimizer since

F (2) ≤ F (1) and F (2) 6= F (1).
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Pareto dominance

Definition 2: x is a strict Pareto minimizer of F in Ω if

@y ∈ Ω : F (y) ≤ F (x) and F (y) 6= F (x).

The set of strict Pareto minimizers is thus given by

Ps = {x ∈ Ω : @y ∈ Ω : F (y) ≤ F (x) and F (y) 6= F (x)}.

Theorem (Relationship between P and Ps)

Ps ⊆ P .
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Pareto dominance

Case (a): Ps ( P

Ω = {(x1, x2) ∈ R2 : x1 ≤ 0.5, x2 ≤ 0.75, x1 + x2 ≤ 1, x1, x2 ≥ 0}

f1(x1, x2) = −x2

f2(x1, x2) = x2 − x1

Suyun Liu Introduction to multi-objective optimization 8/43



Pareto dominance

Case (b): P = Ps

Ω = {(x1, x2) ∈ R2 : x1 ≤ 0.5, x2 ≤ 0.75, x1 + x2 ≤ 1, x1, x2 ≥ 0}

f1(x1, x2) = −0.5x1 − x2

f2(x1, x2) = −2x1 − x2
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Pareto dominance

The existence of points in P and Ps can be guaranteed in a classical way.

Theorem (existence and compactness)

If Ω is compact and F is Rm-continuous, then

1 P is nonempty and compact.

2 Ps is nonempty.

Definition 3: x is local (strict) Pareto minimizer if there is a
neighborhood V ⊆ Ω of x such that the point x is (strictly) nondominated.

Property 1: If Ω is convex and F is Rm-convex, every local Pareto
minimizer is a global Pareto minimizer.
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Pareto fronts

Recall the image of the feasible set Ω:

F (Ω) = {F (x) : x ∈ Ω}

Proposition 1: F (x), x ∈ P is always on the boundary of F (Ω).

f1(x)

f 2
(x

)

F (Ω)

P
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Pareto front

Denote Pareto front by F (P ) = {F (x) : x ∈ P}.

(a) SP1 (b) FF1

(c) JOS2 (d) ZDT3

Figure: Different geometry shapes of Pareto fronts: (a) Convex; (b) Concave; (c)
Mixed (neither convex nor concave); (d) Disconnected.
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Weighted-sum method

According to a pre-defined preference given by a set of non-negative
weights µ1, . . . , µm, the general weighted-sum method is to solve

min

m∑
i=1

µifi(x) s.t. x ∈ Ω

Assume that

x∗ ∈ argmin
x∈Ω

m∑
i=1

µifi(x).

Property 2:

1 If µi’s are not all zero (non-negative scalarization), then x∗ ∈ P .

2 If µi’s are all positive (positive scalarization), then x∗ ∈ Ps.
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Weighted-sum method

In the convex case the non-negative scalarization of P is necessary and
sufficient:

Theorem (sufficient and necessary condition)

Assume that F is Rm-convex (f1, . . . , fm are convex) on Ω convex. Then,

x∗ ∈ P

if and only if

∃ µ1, . . . , µm ≥ 0 not all zero x∗ ∈ argmin
x∈Ω

m∑
i=1

µifi(x).
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Weighted-sum method

However, the positive scalarization of Ps is not necessary.

Consider the example where:

m = 2, fi(x) = −xi, i = 1, 2 and Ω = {x ∈ R2 : x2
1 + x2

2 ≤ 1}.

In this example we have

Ps = P = {x ∈ R2 : x2
1 + x2

2 = 1, x1, x2 ≥ 0}.
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Weighted-sum method

Thus (1, 0) ∈ Ps. However

µ1f1(1, 0) + µ2f2(1, 0) = −µ1

and
min
y∈Ω

µ1f1(y) + µ2f2(y) = min
y∈Ω

−µ1y1 − µ2y2

are only equal when µ1 > 0 and µ2 = 0.

Therefore, just by varying the positive weight combinations, one might not
necessarily capture the whole Ps.
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Weighted-sum method

However, in the strictly convex case, the non-negative scalarization is also
necessary for Ps.

Theorem (Ps = P in strictly convex case)

Let F be Rm-strictly convex (f1, . . . , fm are strictly convex) on Ω convex.
Then

Ps = P.

By varying all non-negative weight combinations, we are able to get the
whole P and Ps.
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Weighted-sum method

Non-convexity in weighted-sum method
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ε-constrained method

The original MOP is converted into a constrained problem by optimizing
an objective from the satisfaction of the other

min f1(x)
s.t. x ∈ Ω,

f2(x) ≤ ε.

In this case, P can be computed solving these problems for

ε ∈

[
min
y∈Ω

f2(y), f2(argmin
y∈Ω

f1(y))

]
.
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ε-constrained method

f1(x)

f 2
(x

)

•

•

B

A

F (Ω)

1 ε = minx∈Ω f2(x), the optimal solution corresponds to A.

2 ε = f2(argminy∈Ω f1(y)), the optimal solution corresponds to B.
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ε-constrained method

ε-constrained method does not require any convexity assumption.

Consider the general ε-constrained problem (ε ∈ Rm)

min fl(x)
s.t. fi(x) ≤ εi, ∀i = 1, . . . ,m, and i 6= l

x ∈ Ω.
(1)

Theorem (sufficient and necessary condition)

1 Let ε be such that the feasible region of (1) is nonempty for a certain
l. If x∗ is an optimal solution of problem (1), then x∗ ∈ P .

2 A feasible point x∗ ∈ Ω is in Ps if and only if there is a vector ε∗ ∈ Rm
such that x∗ is an optimal solution for all problems (1), l = 1, . . . ,m.
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First order necessary condition

Consider a MOP
minF (x) x ∈ Rn.

where we assume F : Rn → Rm is continuously differentiable.

Pareto first-order stationary condition: x is Pareto stationary for F if

∀d ∈ Rn,we have JF (x)d ≮ 0.

where

JF (x) =

∇f1(x)>

...
∇fm(x)>

 ∈ Rm×n.
Equivalently,

max
i=1,...,m

∇fi(x)>d ≥ 0, ∀d ∈ Rn.
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First order necessary condition

Equivalently, if the convex hull of ∇fi(x)’s contains the origin, i.e.,

∃λ ∈ ∆m such that
m∑
i=1

λi∇fi(xk) = 0

where ∆m = {λ :
∑m

i=1 λi = 1, λi ≥ 0, ∀i = 1, ...,m} is the m-simplex set.

Note: when F is Rm-convex, x ∈ P ⇔ x is Pareto first-order stationary.
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Line search

For any non-stationary point x, there exists d ∈ Rn such that
∇fi(x)>d < 0,∀i = 1, . . . ,m.

One further has

lim
t→0

fi(x+ td)− fi(x)

t
= ∇fi(x)>d < 0, ∀i

i.e., ∃t0 such that F (x+ td) < F (x) holds for all t ∈ (0, t0].

Lemma (sufficient decrease condition)

Given any σ ∈ (0, 1), there exists t̄0 > 0 such that

F (x+ td) < F (x) + σ t JF (x)d ∀t ∈ (0, t̄0]
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The multi-objective steepest descent method

Steepest descent direction is computed by (Fliege and Svaiter, 2000)

d(x) = argmaxd∈Rn min
i=1,...,m

−∇fi(x)>d+
1

2
‖d‖2.

This subproblem is uniformly convex.

Its dual problem is

λ(x) = argmin
λ∈Rm

‖
m∑
i=1

λi∇fi(x)‖2 s.t. λ ∈ ∆m.

And we have
d(x) = −

∑m
i=1(λ(x))i∇fi(x).

Note: when m = 1, one recovers d(x) = −∇f1(x).
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Multi-objective steepest descent method

Let θ(x) be the optimal value of the subproblem

θ(x) = max
i=1,...,m

∇fi(x)>d(x) +
1

2
‖d(x)‖2.

Proposition (Fliege and Svaiter (2000))

1 θ(x) ≤ 0, ∀ x ∈ Rn

2 The following conditions are equivalent:

x is non-stationary

θ(x) < 0

d(x) 6= 0

Hence, x is stationary if and only if θ(x) = 0 (or if and only if d(x) = 0).

Suyun Liu Gradient-based methods (single Pareto point) 28/43



The multi-objective steepest descent algorithm

Algorithm 1 MSDM with backtracking

1: Choose σ ∈ (0, 1) and x0 ∈ Rn.
2: for k = 0, 1, . . . do
3: Compute dk by solving a convex constrained subproblem

min
β,d

β + 1
2‖d‖

2

s.t. ∇fi(xk)>d ≤ β, i = 1, . . . ,m.

4: If θ(dk) = 0, then stop.
5: Choose stepsize αk as the largest α ∈ {1/2j : j ∈ N} such that

F (xk + αdk) ≤ F (xk) + σ α JF (xk)dk.

6: Update iterate xk+1 = xk + αkdk
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Convergence and complexity of MSDM

Theorem (Lip. continuous gradients, Fliege and Svaiter (2000))

Let {xk} be a sequence generated by Algorithm 1. Every accumulation
point of the sequence, if any, is a stationary point.

Theorem (F is Rm-nonconvex, Fliege et al. (2019))

Assume at least one of functions fi, i = 1, . . . ,m, is bounded below, the
sequence {xk} generated by Algorithm 1 satisfies

min
0≤i≤k−1

‖di‖ ≤ O(1/
√
k).

Correspondingly, for the non-stationarity measure, we have

|θ(xk)| ≤ O(1/
√
k).
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Convergence and complexity of MSDM

Assume the sequence {xk} converges to x∗ associated with the weights λ∗.

1 F is Rm-strongly convex

A linear rate in terms of iterates: ‖xk − x∗‖ ≤ O(ck), c ∈ (0, 1)

A linear rate for optimality gap using weighted-sum function:∑m
i=1 λ

∗
i fi(xk)−

∑m
i=1 λ

∗
i fi(x∗) ≤ O(ck).

2 F is Rm-convex: O(1/k) sublinear rate for optimality gap defined by
a weaker form of weighted-sum function

∑m
i=1 λ̄

k−1
i fi(xk)−

∑m
i=1 λ̄

k−1
i fi(x∗) ≤ O(1/k)

where λ̄k−1 = 1
k

∑k−1
l=1 λ

l
i.
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Multi-objective Newton’s method

Assume F is Rm-strongly convex and twice continuous differentiable.

Newton direction s(x) is computed by (Fliege et al., 2009)

s(x) = argmin
s∈Rn

max
i=1,...,m

∇fi(x)>s+
1

2
s>∇2fi(x)s

Here, we are approximating maxi=1,...,m fi(x+ s)− fi(x) using maximum
over local quadratic model.

The subproblem can be framed into a convex quadratically constrained
problem:

min t

s.t. ∇fi(x)>s+ 1
2s
>∇2fi(x)s− t ≤ 0, ∀i = 1, . . . ,m

(t, s) ∈ R× Rn
(2)
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Multi-objective Newton’s method

Lemma (Newton direction, Fliege et al. (2009))

s(x) = −

[
m∑
i=1

λ(x)i∇2fi(x)

]−1 m∑
i=1

λ(x)i∇fi(x)

where λ(x) is the Lagrange coefficient associated with problem (2).

Let t(x) be the optimal value of the subproblem

t(x) = max
i=1,...,m

∇fi(x)>s(x) +
1

2
s(x)>∇2fi(x)s(x)
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Multi-objective Newton’s method

Proposition (Fliege et al. (2009))

1 ∀x ∈ Rn, t(x) ≤ 0

2 The following conditions are equivalent:

x is not Pareto stationary

t(x) < 0

s(x) 6= 0

Hence, x is stationary if and only if t(x) = 0 (or if and only if s(x) = 0).
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Multi-objective Newton’s method

Algorithm 2 MNM with backtracking

1: Choose σ ∈ (0, 1) and x0 ∈ Rn.
2: for k = 0, 1, . . . do
3: Compute sk by solving a convex constrained subproblem

min t
s.t. ∇fi(xk)>s+ 1

2s
>∇2fi(xk)s− t ≤ 0, ∀i = 1, . . . ,m

(t, s) ∈ R× Rn

4: If tk = 0, then stop.
5: Choose stepsize αk as the largest α ∈ {1/2j : j ∈ N} such that

F (xk + αsk) ≤ F (xk) + σ α JF (xk)sk.

6: Update iterate xk+1 = xk + αkdk
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Multi-objective Newton’s method

Theorem (Local quadratic convergence rate, Fliege et al. (2009))

Assume the Hessians ∇2fi,∀i are uniformly positive definite and Lipschitz
continuous.

Let x0 be sufficiently close to a Pareto stationary point x∗. The sequence
{xk} generated by Algorithm 2 satisfies

1 {xk} converges to x∗ with a q-quadratic rate.

2 ‖s(xk)‖ converges to 0 with a r-superlinear rate.
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Outline of the various algorithmic classes

Deterministic multi-objective optimization

1 A priori methods: preference selection before optimization

weighted-sum methods (non-convexity is an issue)
ε-constrained methods (infeasibility is an issue)
other methods based on utility functions or expressions of preference:
reference point methods, goal programming. . .

2 A posteriori methods: preference selection after optimization

Most of them work by iteratively updating lists of non-dominated
points:

evolutionary algorithms (e.g., NSGA-II and AMOSA) which have no
theoretical convergence guarantee.

mathematical programming based algorithms (e.g., Section 3 of this
talk), convergence guaranteed for one point on the Pareto front.
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Illustration of a list updating strategy

f1

f2

(a) Adding perturbed points.

f1

f2

(b) Applying descent steps.

f1

f2

(c) Removing dominated pts.

f1

f2

(d) Moving front.
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Outline of the various algorithmic classes

Stochastic multi-objective optimization

“Multi-objective methods”: they convert the original problem into an
approximated deterministic multi-objective one (e.g., using SAA).

“Stochastic methods”: they convert the original problem into a
single-objective stochastic one (e.g., by the weighting method).
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Metrics for Pareto front comparison

Purity: an accuracy measure

P1: a set of computed Pareto minimizers by solver 1

P2: a set of computed Pareto minimizers by solver 2

P̄ : the set of nondominated points in P1 ∪ P2

Purity(P1) = |P1 ∩ P̄ |/|P̄ | ∈ [0, 1]

which calculates the percentage of nondominated solutions.

Maximum size of holes

P : the set of N computed Pareto minimizers

Assume each list of objective function values {fi,j}Nj=1 is sorted in order

Γ(P ) = maxi∈{1,...,m}
(
maxj∈{1,...,N}{δi,j}

)
,

where δi,j = fi,j+1 − fi,j .
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Metrics for Pareto front comparison

Spread

∆(P ) = max
i∈{1,...,m}

(
δi,0 + δi,N +

∑N−1
j=1 |δi,j − δ̄i|

δi,0 + δi,N + (N − 1)δ̄i

)
,

where two extreme points indexed by 0 and N + 1 are added, and δ̄i is the
average of δi,j over j = 1, . . . , N − 1.

The lower Γ and ∆ are, the more well distributed the Pareto front is.
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