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Problem formulation

Problem formulation

min f(z)

where f:R™ — R is
o locally Lipschitz continuous

@ possibly non-smooth and with inf f = f*

@ given by a stochastic oracle

Bz, &) ~ f(z)

with oracle given by sampling over &.
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LNV

o Probability space (P, 2, F)
@ w outcome of the sample space €2

@ Our algorithms generate random processes:

o g direction realization (shorthand for Gy (w))
o ) stepsize realization (shorthand for Ay (w))
o fj estimate realization for f(zy) (shorthand for F(w))

o same for f7 ~ f(xi + Orgr)
@ Fj_1 is the o—algebra of events up to the choice of g

o The acceptance criterion is f;, — f > 05}, for § > 0,¢q > 1
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Tail-bound probabilistic condition

Assumption (Tail bound)
For some ¢, > 0 (independent of k):

€q

P (1Fk = F = (F(Xk) = f(Xp + DeGR))| 2 @A |Fi1) <~

a.s. for every a > 0.

@ power law tail bound on error with exponent ¢/(q — 1)




Tail-bound probabilistic condition

Assumption (Tail bound)
For some ¢, > 0 (independent of k):

€
P (1Fk = F = (F(Xk) = f(Xp + DeGR))| 2 @A |Fi1) <~

a.s. for every a > 0.
o

@ power law tail bound on error with exponent ¢/(q — 1)

e satisfied, since if »-moment of noise is finite (r > 2), then:

E(|A") < Crpy”

when Ay = Fj, — FY — (f(X) — f(Xg + ArGy)) considers averaging
pr 1.i.d. samples in F,, F} (and that estimator is unbiased)




Sample bound for bounded moment — (i)

Assumption (Bounded moment)

For some r > 1, E¢[|F(x, &) — f(=)]"] £ M, < +o0

The tail bound probabilistic condition & sample sizing



Sample bound for bounded moment — (i)

Assumption (Bounded moment)

For some r > 1, E¢[|F(z,&) — f(2)|"] £ M, < 400

Assume the estimator for Ay, is unbiased (true if f(x) = E¢[F(z,§)]).

When r =r(q) = q%’l, q € (1,2], the tail bound can be satisfied by
averaging
0 (A,fq) iid. samples

o for ¢ = 1.5 (r = 3) only O(A,®) samples needed
for ¢ =2 (r = 2) the known bound is O(A,;‘l)




Sample bound for bounded moment — (ii)

Use of r-th moment and ¢,r being conjugates:

P(|A] > aA™T)

The tail bound probabilistic condition & sample sizing



Sample bound for bounded moment — (ii)

Use of r-th moment and ¢,r being conjugates:

T 7‘2
P(IA[ = aAr=1) = P(JA]" > a"A-T)
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Sample bound for bounded moment — (ii)

Use of r-th moment and ¢,r being conjugates:

T ’r2
P(|A| =z aA™T) = P(JA[" = a"A7T)
E[|A["]
- aTAr?/(r-1)
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Sample bound for bounded moment — (ii)

Use of r-th moment and ¢,r being conjugates:

T ’r2
P(|A| =z aA™T) = P(JA[" = a"A7T)
E[|A|"] 2"Cp M,p ™2
— aTAr/(r=1) — arAT?/(r=1)
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Sample bound for bounded moment — (ii)

Use of r-th moment and ¢,r being conjugates:

T ’r2
P(|A| =z aA™T) = P(JA[" = a"A7T)
E[|A|"] 2"CM,p~ 2 _ &g
— aTAr/(r=1) — arAT?/(r=1) T ar

for p= O(A™1) = O(A~24).

The tail bound probabilistic condition & sample sizing



Correlated errors

Suppose we have access to the random number generator (we can fix &
and sample F'(-,£)), and the errors are correlated in the form:

Assumption (Correlated error)

Let F(x,&) = F(x,€) — f(x). For somer > 1:

Ee[|F(z,€) — F(y, "] < Dpllz —yll"

The tail bound probabilistic condition & sample sizing




Correlated errors

Suppose we have access to the random number generator (we can fix &
and sample F'(-,£)), and the errors are correlated in the form:

Assumption (Correlated error)

Let F(z,£) = F(x,&) — f(x). For somer > 1:

Ee[|F(z,€) — F(y, "] < Dpllz —yll"

@ ensured, for every r, when F(z,&) is a Gaussian process with
_ 12
exponentiated quadratic kernel K (x,y) = o%exp (—%)

in which case Varg[F(x,€)] is constant and

Cove (F(x,£), F(y,€)) > O(1—|lz —y[?)

The tail bound probabilistic condition & sample sizing




Sample bound for correlated errors

Assume the estimator for Ay, is unbiased (true if f(x) = E¢[F(x,£)]).

When r = q%l, q € (1,2], the tail bound can be satisfied by averaging:

O(A;29) i.i.d. samples

o for g =1.5 (r =3) only O(A;!) samples needed
for ¢ = 2 (r = 2) one gets O(A, %)

The tail bound probabilistic condition & sample sizing



Numerical experiments — setup

o tested the direct-search algorithm for ¢ € {1.5,2}, for which
r(g) € {3,2}

@ algorithms tested on a set of 96 well known non-smooth problems

@ added Gaussian noise N(0,1072) in the general case, N(0,6,1072) in
the correlated one

o for the moment bound case, number of samples was: [3; 4] (¢ = 2)
and [0,%] (¢ = 1.5)

o for the correlated errors case, number of samples was: [4, %] (¢ = 2)
and [0, 1] (¢ = 1.5)

@ data and performance profiles
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Numerical experiments — bounded moment
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Figure: From left to right, data and performance profiles. From top to bottom,
tolerance 1072 and 10~*
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Numerical experiments — correlated errors
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Figure: From left to right, data and performance profiles. From top to bottom,
tolerance 1072 and 104
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Sample bound for bounded moment — (jii)

s there an optimal ¢ in (1,2]?




Sample bound for bounded moment — (iv)

When F(z,e) — f(x) ~ N(0,0), the tail bound condition is satisfied using

402 M2
— — 4 —2q
p = B(q) = 63/7,((1) A

where r(q) = %7 and M,y is the r(g)-th moment of a standard normal
distribution.

The continuous version of B(q) has always a minimum in (1, 2].
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Comparison with other assumptions — 1

k ¢-variance conditions [Audet et al., 2021]
ElIFY — f( Xk + ApGr)|? | Fro1] < k3A
E[|Fy, — f(Xi)? | Fior] < KFAG

Proposition

Then tail bound condition is satisfied for ¢, = 41312c and g = 2.

o follows from Markov's inequality
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Comparison with other assumptions — 2

[-probabilistically accurate function estimate [Chen et al. 2018]

P({|Fx — f(Xx)| < 1A} N {|FP — f(Xk + AxGr)| < 74 AZY Fim1) > B

Proposition

If satisfied for all 3 in a chosen interval (and 7y depending on 3 and
accuracy parameter ¢), then tail bound is satisfied with €, depending on ¢.

o follows from the inclusion

{|Fx — F = (f(X3) — f(Xx + ArGr))| < aAF}
D {|Fx = f(Xp)| < e ALY N{IFY = F(Xk + AkGr)| < 74A7)

for any 7y < 5.
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A simple stochastic direct-search scheme

Algorithm Stochastic direct search

1. Initialization. Choose a point zg, 09,0 >0, 7 € (0,1), 7 € [1,1 4 7].
2. For k=0,1...

3:  Select a direction g in the unitary sphere.

4. Compute estimates fi and f} for f in zj and xj, + 0k gx.

5 If fr — f;j > 052, Then set 211 = xf + 0k 9k, 5k+1 = T0.

6: Else set 11 = zy, 6k+1 = (1 — T)(Sk
7. Endif
8: End for
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Bad successful step

Fxe) - 667 fi

fie —|06% i
e

Xk X + Ok
Figure: A bad successful step
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Tail-bound probabilistic condition (again)

Assumption (Tail bound)

For some ¢, > 0 (independent of k):

€
P (|F — F{ = (F(Xk) = f(Xe + AkGr))| 2 aA} [Frr) < — i

a.s. for every a > 0.
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Convergence of stepsizes

Under the tail bound condition, if § > 6%(q, 7,¢,), then a.s.

ZAZ < 400

o let &y = f(Xi) — f*+ ClAZ
@ the lemma follows from Robbins-Siegmund once we get to

E[®), — ®py1]|Fr1] > C2A]

o for a certain py, the above LHS is > than

C3 — pi(P in tail bound with a = py) | Af

< Ci(1/pr)

LNV A simple stochastic direct-search scheme
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Tail-bound probabilistic condition (again)

Assumption (Tail bound)

For some ¢, > 0 (independent of k):

€
P (|F — F{ = (F(Xk) = f(Xe + AkGr))| 2 aA} [Frr) < — i

a.s. for every a > 0.
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An intermediate result

Let K be the set of indices of unsuccessful iterations. Then under the tail
bound assumption and 6 > 6% we have a.s.

lim inf f(Xk L Aka) _ f(Xk) >
kEK, k—oo Ap

o need to prove |F, — FY — (f(Xk) — f(Xk + ArGr))|/Ar — 0
1—q

@ apply the tail bound assumption with o = Afn

A
P(1F — Ff = (/(X0) = F(Xi+ MG))| = =5 | Fioor) <D A e,

@ conclusion from Borel-Cantelli's First Lemma for every m
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Convergence to Clarke stationary points

Let the tail bound assumption hold, 8 > 0%, and f Lipschitz continuous
around any limit point.

If L C K is such that {Gy}rer is dense in the unit sphere and

lim X, = X*
keL, k— o0

then X* is Clarke stationary (a.s.).

o follows from last lemma and lim sup > liminf (and Ay — 0)
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A simple stochastic trust-region scheme

Algorithm Stochastic DF0 Trust-Region Algorithm

1. Initialization. Select 2o € R", 0 >0, 7 € (0,1), 7 € [1,147], do > 0,
q> 1

2. For k=0,1...

3:  Select a direction gi # 0 and build a symmetric matrix By.

4 Compute s € argmin”SHS(skg,:s + isTBks.

5. Compute estimates f; ~ f(z) and f7 ~ f(zk + si).

If
e =1

Ollsk /|7

Then set x4 1 = o) + Sk, Opr1 = 7Ok
7. Else set xp11 = xg, Op+1 = (1 — 7)0p.
8: End For
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How to adapt the tail bound to TR

Assumption (Trust-region tail bound)

For some ¢, > 0 (independent of k):

P (1B — Y = (f(Xk) = f(Xk + S)) > ol Sel? [Fia) < =

a.s. every a > 0.

o Sk, |ISk|l, F§ replace AGy, Ay, Ff

@ same improved sampling bounds of direct-search case
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Convergence to Clarke stationary points — 1

Under the tail bound condition
> ISk]l? < 400

for a different lower bound 6 > 6'"(q, 7,4, p).

Assumption (Hessian bound 1)

There exists p € (0,1] such that, for every k,

1iGs
Bl < -
B4l < - FRE

@ when |G|l = 1, Hessian is “unbounded” by 1/A

o it implies ||Sk|| > pA, which then gives > A < 400
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Convergence to Clarke stationary points — 2

Assumption (Hessian bound 2)

There exists a sequence {ay} | 0 and such that, for every k,

G|l
Bl < ap———
1Bl < ax R
Lemma (asymptotic alignment)
If Si. solves the trust-region subproblem,
. Gy Sk
lim T =0
koo [|Gill ISkl
a.s. (it holds for every realization, actually).

o for k large, Sy becomes aligned with —G,
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Convergence to Clarke stationary points — 3

Let the tail bound assumption hold, 6 > 0'", f Lipschitz continuous
around any limit point, and Hessian bound 2.

If L C K is such that {G}}rer is dense in the unit sphere and

lim X = X*
keL, k—oo

then X* is Clarke stationary (a.s.).

@ corollary of analogous DS result for {”:g:”} + asymptotic alignment
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Conclusions and extensions

@ introduced a tail bound condition tailored to acceptance criterion

@ proved improved bounds on the corresponding number of samples

@ proved convergence of a direct-search and a trust-region schemes

@ more general random trust-region models (e.g. piecewise linear)

@ composition of smooth function with known non-smooth function

@ numerical experiments for trust-region method
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