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Problem formulation

Problem formulation

min
x∈Rn

f(x)

where f : Rn → R is

locally Lipschitz continuous

possibly non-smooth and with inf f = f∗

given by a stochastic oracle

F (x, ξ) ≃ f(x)

with oracle given by sampling over ξ.
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Some notation

Probability space (P,Ω,F)

w outcome of the sample space Ω

Our algorithms generate random processes:

gk direction realization (shorthand for Gk(w))

δk stepsize realization (shorthand for ∆k(w))

fk estimate realization for f(xk) (shorthand for Fk(w))

same for fg
k ≃ f(xk + δkgk)

Fk−1 is the σ−algebra of events up to the choice of gk

The acceptance criterion is fk − fg
k ≥ θδqk, for θ > 0, q > 1
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Tail-bound probabilistic condition

Assumption (Tail bound)

For some εq > 0 (independent of k):

P
(
|Fk − F g

k − (f(Xk)− f(Xk +∆kGk))| ≥ α∆q
k |Fk−1

)
≤ εq

αq/(q−1)

a.s. for every α > 0.

power law tail bound on error with exponent q/(q − 1)

satisfied, since if r-moment of noise is finite (r ≥ 2), then:

E(|Ak|r) ≤ Cr p
− r

2
k

when Ak = Fk − F g
k − (f(Xk)− f(Xk +∆kGk)) considers averaging

pk i.i.d. samples in Fk,F
g
k (and that estimator is unbiased)
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Sample bound for bounded moment – (i)

Assumption (Bounded moment)

For some r > 1, Eξ[|F (x, ξ)− f(x)|r] ≤ Mr < +∞

Theorem

Assume the estimator for Ak is unbiased (true if f(x) = Eξ[F (x, ξ)]).

When r = r(q) = q
q−1 , q ∈ (1, 2], the tail bound can be satisfied by

averaging

O
(
∆−2q

k

)
i.i.d. samples

for q = 1.5 (r = 3) only O(∆−3
k ) samples needed

for q = 2 (r = 2) the known bound is O(∆−4
k )
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Sample bound for bounded moment – (ii)

Use of r-th moment and q,r being conjugates:

P(|A| ≥ α∆
r

r−1 )

= P(|A|r ≥ αr∆
r2

r−1 )

≤ E[|A|r]
αr∆r2/(r−1)

≤ 2rCrMrp
− r

2

αr∆r2/(r−1)
=

εq
αr

for p = O(∆
−2r
r−1 ) = O(∆−2q).
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Correlated errors

Suppose we have access to the random number generator (we can fix ξ
and sample F (·, ξ)), and the errors are correlated in the form:

Assumption (Correlated error)

Let F̄ (x, ξ) = F (x, ξ)− f(x). For some r > 1:

Eξ[|F̄ (x, ξ)− F̄ (y, ξ)|r] ≤ Dr∥x− y∥r

ensured, for every r, when F (x, ξ) is a Gaussian process with

exponentiated quadratic kernel K(x, y) = σ2exp
(
−∥x−y∥2

2l2

)
in which case Varξ[F (x, ξ)] is constant and

Covξ(F (x, ξ), F (y, ξ)) ≥ O
(
1− ∥x− y∥2

)
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Sample bound for correlated errors

Theorem

Assume the estimator for Ak is unbiased (true if f(x) = Eξ[F (x, ξ)]).

When r = q
q−1 , q ∈ (1, 2], the tail bound can be satisfied by averaging:

O(∆2−2q
k ) i.i.d. samples

for q = 1.5 (r = 3) only O(∆−1
k ) samples needed

for q = 2 (r = 2) one gets O(∆−2
k )
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Numerical experiments – setup

tested the direct-search algorithm for q ∈ {1.5, 2}, for which
r(q) ∈ {3, 2}

algorithms tested on a set of 96 well known non-smooth problems

added Gaussian noise N(0, 10−2) in the general case, N(0, δk10
−2) in

the correlated one

for the moment bound case, number of samples was: ⌈δ−4
k ⌉ (q = 2)

and ⌈δ−3
k ⌉ (q = 1.5)

for the correlated errors case, number of samples was: ⌈δ−2
k ⌉ (q = 2)

and ⌈δ−1
k ⌉ (q = 1.5)

data and performance profiles
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Numerical experiments – bounded moment
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Numerical experiments – correlated errors
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Sample bound for bounded moment – (iii)

Is there an optimal q in (1,2]?
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Sample bound for bounded moment – (iv)

When F (x, ε)− f(x) ∼ N(0, σ), the tail bound condition is satisfied using

p = B(q) :=


4σ2M

2/r(q)
r(q)

ε
2/r(q)
q

∆−2q


where r(q) = q

q−1 and Mr(q) is the r(q)-th moment of a standard normal
distribution.

The continuous version of B(q) has always a minimum in (1, 2].
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Comparison with other assumptions – 1

kf -variance conditions [Audet et al., 2021]

E[|F g
k − f(Xk +∆kGk)|2 | Fk−1] ≤ k2f∆

4
k

E[|Fk − f(Xk)|2 | Fk−1] ≤ k2f∆
4
k

Proposition

Then tail bound condition is satisfied for εq = 4k2f and q = 2.

follows from Markov’s inequality
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Comparison with other assumptions – 2

β-probabilistically accurate function estimate [Chen et al. 2018]

P({|Fk − f(Xk)| ≤ τf∆
2
k} ∩ {|F g

k − f(Xk +∆kGk)| ≤ τf∆
2
k}| Fk−1) ≥ β

Proposition

If satisfied for all β in a chosen interval (and τf depending on β and
accuracy parameter ε), then tail bound is satisfied with εq depending on ε.

follows from the inclusion

{|Fk − F g
k − (f(Xk)− f(Xk +∆kGk))| < α∆2

k}
⊃ {|Fk − f(Xk)| ≤ τf∆

2
k} ∩ {|F g

k − f(Xk +∆kGk)| ≤ τf∆
2
k}

for any τf < α
2 .
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A simple stochastic direct-search scheme

Algorithm Stochastic direct search

1: Initialization. Choose a point x0, δ0, θ > 0, τ ∈ (0, 1), τ̄ ∈ [1, 1 + τ ].
2: For k = 0, 1 . . .
3: Select a direction gk in the unitary sphere.
4: Compute estimates fk and fg

k for f in xk and xk + δkgk.
5: If fk − fg

k ≥ θδqk, Then set xk+1 = xk + δkgk, δk+1 = τ̄ δk.
6: Else set xk+1 = xk, δk+1 = (1− τ)δk.
7: End if
8: End for
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Bad successful step

Figure: A bad successful step
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Tail-bound probabilistic condition (again)

Assumption (Tail bound)

For some εq > 0 (independent of k):

P
(
|Fk − F g

k − (f(Xk)− f(Xk +∆kGk))| ≥ α∆q
k |Fk−1

)
≤ εq

αq/(q−1)

a.s. for every α > 0.
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Convergence of stepsizes

Lemma

Under the tail bound condition, if θ > θds(q, τ, εq), then a.s.∑
∆q

k < +∞

let Φk = f(Xk)− f∗ + C1∆
q
k

the lemma follows from Robbins-Siegmund once we get to

E[Φk − Φk+1|Fk−1] ≥ C2∆
q
k

for a certain ρk, the above LHS is ≥ thanC3 − ρk(P in tail bound with α = ρk︸ ︷︷ ︸
≤ C4(1/ρk)

)

∆q
k
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Tail-bound probabilistic condition (again)
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An intermediate result

Lemma

Let K be the set of indices of unsuccessful iterations. Then under the tail
bound assumption and θ > θds we have a.s.

lim inf
k∈K, k→∞

f(Xk +∆kGk)− f(Xk)

∆k
≥ 0

need to prove |Fk − F g
k − (f(Xk)− f(Xk +∆kGk))|/∆k → 0

apply the tail bound assumption with α =
∆1−q

k
m

P(|Fk −F g
k − (f(Xk)− f(Xk +∆kGk))| ≥

∆k

m
| Fk−1) ≤ mr(q)∆q

kεq

conclusion from Borel-Cantelli’s First Lemma for every m
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Convergence to Clarke stationary points

Theorem

Let the tail bound assumption hold, θ > θds, and f Lipschitz continuous
around any limit point.

If L ⊂ K is such that {Gk}k∈L is dense in the unit sphere and

lim
k∈L, k→∞

Xk = X∗

then X∗ is Clarke stationary (a.s.).

follows from last lemma and lim sup ≥ lim inf (and ∆k −→ 0)
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A simple stochastic trust-region scheme

Algorithm Stochastic DFO Trust-Region Algorithm

1: Initialization. Select x0 ∈ Rn, θ > 0, τ ∈ (0, 1), τ̄ ∈ [1, 1+τ ], δ0 > 0,
q > 1.

2: For k = 0, 1 . . .
3: Select a direction gk ̸= 0 and build a symmetric matrix Bk.
4: Compute sk ∈ argmin∥s∥≤δk

g⊤k s+
1

2
s⊤Bks.

5: Compute estimates fk ≃ f(xk) and fs
k ≃ f(xk + sk).

6: If
fk − fs

k

θ∥sk∥q
≥ 1

Then set xk+1 = xk + sk, δk+1 = τ̄ δk.
7: Else set xk+1 = xk, δk+1 = (1− τ)δk.
8: End For
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How to adapt the tail bound to TR

Assumption (Trust-region tail bound)

For some εq > 0 (independent of k):

P
(
|Fk − F g

k − (f(Xk)− f(Xk + Sk))| ≥ α∥Sk∥q |Fk−1

)
≤ εq

αq/(q−1)

a.s. every α > 0.

Sk, ∥Sk∥, F s
k replace ∆kGk, ∆k, F

g
k

same improved sampling bounds of direct-search case
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Convergence to Clarke stationary points – 1

Under the tail bound condition∑
∥Sk∥q < +∞

for a different lower bound θ > θtr(q, τ, εq, ρ).

Assumption (Hessian bound 1)

There exists ρ ∈ (0, 1] such that, for every k,

∥Bk∥ ≤ 1

ρ

∥Gk∥
∆k

when ∥Gk∥ = 1, Hessian is “unbounded” by 1/∆k

it implies ∥Sk∥ ≥ ρ∆k, which then gives
∑

∆q
k < +∞
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Convergence to Clarke stationary points – 2

Assumption (Hessian bound 2)

There exists a sequence {ak} ↓ 0 and such that, for every k,

∥Bk∥ ≤ ak
∥Gk∥
∆k

Lemma (asymptotic alignment)

If Sk solves the trust-region subproblem,

lim
k→∞

Gk

∥Gk∥
+

Sk

∥Sk∥
= 0

a.s. (it holds for every realization, actually).

for k large, Sk becomes aligned with −Gk
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Convergence to Clarke stationary points – 3

Theorem

Let the tail bound assumption hold, θ > θtr, f Lipschitz continuous
around any limit point, and Hessian bound 2.

If L ⊂ K is such that {Gk}k∈L is dense in the unit sphere and

lim
k∈L, k→∞

Xk = X∗

then X∗ is Clarke stationary (a.s.).

corollary of analogous DS result for
{

Sk
∥Sk∥

}
+ asymptotic alignment
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Conclusions and extensions

Conclusions

introduced a tail bound condition tailored to acceptance criterion

proved improved bounds on the corresponding number of samples

proved convergence of a direct-search and a trust-region schemes

Extensions

more general random trust-region models (e.g. piecewise linear)

composition of smooth function with known non-smooth function

numerical experiments for trust-region method
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