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Problem definition

Problem to be solved:
min f(z)
z€eR™
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Problem definition

Problem to be solved:
min f(z)
z€eR™

Assumptions:

@ f:R™ — R is nonsmooth but Lipschitz continuous

@ Mathematical representation of the objective function not available:
No knowledge about source of nonsmoothness

@ Function evaluations costly
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Drawback

Method gets stuck ... no search direction is in the cone of descent
directions!

Convergence to non-stationary point
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How to handle black-box nonsmoothness?

@ Directional approaches based on random directions asymptotically
dense on the unit sphere:
[Audet, Dennis, 2006]
[LNV, Custédio, 2012]
[Fasano, Liuzzi, Lucidi, Rinaldi, 2014]
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@ Approaches based on convex hull of (possibly randomly) sampled
approximate gradients:
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How to handle black-box nonsmoothness?

@ Directional approaches based on random directions asymptotically
dense on the unit sphere:
[Audet, Dennis, 2006]
[LNV, Custédio, 2012]
[Fasano, Liuzzi, Lucidi, Rinaldi, 2014]

@ Approaches based on convex hull of (possibly randomly) sampled
approximate gradients:

[Bagirov, Karasozen, Sezer, 2006]
[Kiwiel, 2010]
[Hare, Nutini, 2013]

@ Other convergent approaches require knowledge of nonsmoothness
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Basic tools in non-smooth context

Clarke Directional Derivative

Given a point x € R™ and a direction d € R"”, the Clarke directional
derivative of f at x along d is defined as

f0($' d) — TFmn sup f(y T td) — f(y)
, y—z,tl0 t
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Basic tools in non-smooth context

Clarke Directional Derivative

Given a point x € R™ and a direction d € R"”, the Clarke directional
derivative of f at x along d is defined as

f°(z;d) = limsup fly+td) - f(y)
, y—a,tL0 t

Clarke Stationary Point
A point z* € R™ is Clarke stationary when f°(z*,d) > 0, for all d € R™.
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DFO Trust-Region Algorithm for Nonsmooth Problems

Algorithm Basic DFO-TRNS

Initialization. Select xo € R™", 7> 0,0 <7 <1< 79, Ag >0, and p > 0.

For k=0,1...
Generate randomly gg in the unit sphere. Build a symmetric matrix By.
Let 1
sp € argmin my(s) = f(x) + g1 5+ 55 Bis
Isl2<a? 2
op = flar) = fze + sk)
[[sk[[**7

If pr. > 71, Then (Success), Tj11 < Tk + sk, D1 < V2l
Else (Failure), 241 ¢ o5, Apr1 < 71 A%
End for
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Why will Clarke be nonnegative along limiting TR steps

Predicted reduction
ollskll) = 6ls|I**?

used in place of reduction in quadratic model my(0) — my(sg).
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Why will Clarke be nonnegative along limiting TR steps

Mechanism

Predicted reduction
ollskll) = 6ls|I**?

used in place of reduction in quadratic model my(0) — my(sg).

V.
Reason

In unsuccessful iterations iterations, one has (pr < 1)

flae+se) — flan) > —nllskll"T?
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Why will Clarke be nonnegative along limiting TR steps

Mechanism

Predicted reduction
ollskll) = 6ls|I**?

used in place of reduction in quadratic model my(0) — my(sg).

Reason

| \

In unsuccessful iterations iterations, one has (pr < 1)

flae+se) — flan) > —nllskll"T?

or
ok + skl (sk/lIskll) — /(@
o+ Nskll(se/llsell)) = flz) —0)| s |IP
skl
y
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Why will Clarke be nonnegative along limiting TR steps

Mechanism

Predicted reduction
ollskll) = 6ls|I**?

used in place of reduction in quadratic model my(0) — my(sg).

Reason

| \

In unsuccessful iterations iterations, one has (pr < 1)

flae+se) — flan) > —nllskll"T?

or
f(ak + sl (sk/lIskll) — f(zx)
skl
Taking limits will when ||sg|| — 0, will yield the Clark derivative
non-negative along limiting TR steps

> —0|sk”

LNV A basic TR method for black-box functions
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Asymptotic behavior of trust radius

Because in successful iterations we have

fla) = flae+sp) > nllse™™? > -
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Asymptotic behavior of trust radius

Because in successful iterations we have

fla) = flae+sp) > nllse™™? > -

Trust-region radius converges to zero

Assume that f is bounded from below. Any sequence {Aj} of trust-region
radii produced by Algorithm Basic DFO-TRNS is such that

lim Ay, = 0

k—00
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Asymptotic behavior of trust radius

Because in successful iterations we have

fla) = flae+sp) > nllse™™? > -

Trust-region radius converges to zero

Assume that f is bounded from below. Any sequence {Aj} of trust-region
radii produced by Algorithm Basic DFO-TRNS is such that

lim Ay, = 0

k—00

The result is true even if By is unbounded as long as bounded by a power
of A% ¢qe(0,1).
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Why will the TR steps also cover the unit sphere

Any sequence {(zy, sk, Ax)} generated by Algorithm Basic DFO-TRNS

is such that
s, = —ApDygy

with Dy, € R™™ satisfying

lim Dy = 1

k—o00
.
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Why will the TR steps also cover the unit sphere

Any sequence {(zy, sk, Ax)} generated by Algorithm Basic DFO-TRNS

is such that
s, = —ApDygy

with Dy, € R™™ satisfying

lim Dy = 1

k—o00
.

Property is satisfied when TR subproblems are solved up to optimality I

12/44
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Convergence analysis

Main result

{z1} sequence generated by Algorithm Basic DFO-TRNS. ASSUME:
o z* limit point of {zx}x with K C {k: A1 < Ay}

® {gr}x dense in the unit sphere

Then z* Clarke stationary
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How to deal with nonsmoothness in practice?

IDEA: Embed Basic DFO-TRNS into an existing code

o Exploit the fact that f differentiable almost everywhere

e Combine Basic DFO-TRNS with approach for smooth problems (for

quadratic term %sTBks):

o DFO-TR Algorithm [A.S. Bandeira, K. Scheinberg, L.N. Vicente, 2012]
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How to deal with nonsmoothness in practice?

IDEA: Embed Basic DFO-TRNS into an existing code

o Exploit the fact that f differentiable almost everywhere

e Combine Basic DFO-TRNS with approach for smooth problems (for

quadratic term %sTBks):

o DFO-TR Algorithm [A.S. Bandeira, K. Scheinberg, L.N. Vicente, 2012]

We weight the quadratic term of the model:
1
w—sTBks
2

with w € [0, 1]
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Numerical results

Test problems

@ 51 nonsmooth problems
@ Dimension 10 < n < 30

o From 2 different collections  [L. Luk3an, J. VIgek, 2000]
[J.J. Moré, S. M. Wild, 2009]
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Numerical results

Test problems

@ 51 nonsmooth problems
@ Dimension 10 < n < 30

o From 2 different collections  [L. Luk3an, J. VIgek, 2000]
[J.J. Moré, S. M. Wild, 2009]

Analysis of numerical performance
o Performance and data profiles used  [J.J. Moré, S. M. Wild, 2009]
o Budget = 10000 function evaluations
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Numerical results

Test problems

@ 51 nonsmooth problems
@ Dimension 10 < n < 30

o From 2 different collections  [L. Luk3an, J. VIgek, 2000]
[J.J. Moré, S. M. Wild, 2009]

Analysis of numerical performance
o Performance and data profiles used  [J.J. Moré, S. M. Wild, 2009]
o Budget = 10000 function evaluations

Software Used

o Basic DFO-TRNS (Combined with DFO-TR) w = 0
o NOMAD package [C. Audet et al.] without models
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Basic DFO-TRNS vs NOMAD (w/o models)
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Comments

e Basic DFO-TRNS outperforms NOMAD (w/o models)

e Randomly generating gi (when needed) helps!

LNV A basic TR method for black-box functions 17/44



Comments

e Basic DFO-TRNS outperforms NOMAD (w/o models)
e Randomly generating gi (when needed) helps!
o However Basic DFO-TRNS wastes function evaluations

o And NOMAD (WITH models) is more efficient...

LNV A basic TR method for black-box functions 17/44



Comments

e Basic DFO-TRNS outperforms NOMAD (w/o models)
e Randomly generating gi (when needed) helps!
o However Basic DFO-TRNS wastes function evaluations

o And NOMAD (WITH models) is more efficient...

How to improve performance of Basic DFO-TRNS? l

LNV A basic TR method for black-box functions 17/44



Comments

e Basic DFO-TRNS outperforms NOMAD (w/o models)
e Randomly generating gi (when needed) helps!
o However Basic DFO-TRNS wastes function evaluations

o And NOMAD (WITH models) is more efficient...

How to improve performance of Basic DFO-TRNS? l
Improve description of linear term in the model I

LNV A basic TR method for black-box functions 17/44




Comments

e Basic DFO-TRNS outperforms NOMAD (w/o models)
e Randomly generating gi (when needed) helps!
o However Basic DFO-TRNS wastes function evaluations

o And NOMAD (WITH models) is more efficient...

How to improve performance of Basic DFO-TRNS? l
Improve description of linear term in the model I
Use a Bundle-like approach to handle nonsmoothness I

LNV A basic TR method for black-box functions 17/44




Presentation outline

© An advanced TR model



How to handle nosmoothness in TR methods

Smooth setting

Trust-region model is given by the sum of a linear term and a quadratic one

1 1
mi(s) + §8TBkS = fzr) + V() s + §3TBk5
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How to handle nosmoothness in TR methods

Trust-region model is given by the sum of a linear term and a quadratic one
= L T T 1 T
mi(s) + 58 Bes = flaw) + Vf(zk) s+ 55 Bys

v

Nonsmooth setting

Use a new linear term my(s) = f(zx) + f°(zk; 9)

§€of(zr)

mp(s) = max {f($k)+§Ts}
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How to handle nosmoothness in TR methods

Trust-region model is given by the sum of a linear term and a quadratic one
= L T T 1 T
mi(s) + 58 Bes = flaw) + Vf(zk) s+ 55 Bys

v

Nonsmooth setting

Use a new linear term my(s) = f(zx) + f°(zk; 9)

§€of(zr)

mp(s) = max {f(xk)—l—{Ts}

v

Remark

Since the set df(xy) is unknown, the above model cannot be used in prac-
tice!

v
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Classic bundle approach (convex case)

How to replace O f(xx)

Exploit the information obtained on a set of points {3/ : j € Ji} approaching zp,
where J} is an index set.
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Classic bundle approach (convex case)

How to replace O f(xx)

Exploit the information obtained on a set of points {3/ : j € Ji} approaching zp,
where J} is an index set.

v

New model

Approximate model: mg(s) = max {f(xk) —|—§Ts}
§€0f(zr)

with the following model: my(s) = néajx{f(y]) + () (g + s — yj)}
J€Jk

where &7 € Of(y?),j € Ji.
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Classic bundle approach (convex case)

How to replace O f(xx)

Exploit the information obtained on a set of points {3/ : j € Ji} approaching zp,
where J} is an index set.

New model

|

Approximate model: mg(s) = max {f(xk) —|—§Ts}
§€0f(zr)

with the following model: my(s) = néajx{f(y]) + () (g + s — yj)}
J€Jk

where &7 € Of(y?),j € Ji.

How to rewrite the model

|

Final model is

JEJk

) — maX{f(xk)Jr(ﬁj)Ts—ﬂi}

with 8] = f(zg) + (&) T (7 — 2x) — f(y7) displacement related to point 7.
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The derivative-free context

o Element £ € Of(y) cannot be computed.

@ How to adapt the bundle approach to our derivative-free setting?
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The derivative-free context

o Element £ € Of(y) cannot be computed.

@ How to adapt the bundle approach to our derivative-free setting?

Idea: Replace the information of &

Use a set of randomly generated normalized directions
Gr = {9 llgill = 1,3 € Ix}

where [}, is another index set.
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A nonsmooth model

Displacements

Compute for each (i,7) € I x J, the displacements

87 = max {0, f(ax) - £(5}) + (90 (6] — on) }
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A nonsmooth model

Displacements

Compute for each (i,7) € I x J, the displacements
8¢ = max {0, f(zx) = £lul) + (90 (] — =)}

o

New model

Introduce the following model
mn(s) = maxf o) + (o) 75— B}
ZEIk
where

Bi = max{8}

Jje€Jx
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Example of our nonsmooth model in convex case

flar) + (91) " (z — )
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Example of our nonsmooth model in convex case

LNV

An advanced TR model
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Example of our nonsmooth model in convex case

Af () + (g2) T (z — p) — B?
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Example of our nonsmooth model in convex case

LNV

Af () + (g2) " (z — p) — 57

An advanced TR model
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Example of our nonsmooth model in convex case
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Example of our nonsmooth model in convex case

LNV

Af () + (g2) " (z — p) — 57
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Example of our nonsmooth model in convex case

LNV

Af () + (g2) " (z — p) — 57

An advanced TR model

\ /’ ~
7
E/' \ I\
ot N ) + (g3) " (2 — )
”/ \\
AY
\
AY
AY
\
N .
P 2
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Dealing with nonconvexity

Bundle idea

@ Hyperplanes might cut off solution.
@ Lower all hyperplanes down.

o Amount will depend on the distance to the generating point.
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Dealing with nonconvexity

Bundle idea

@ Hyperplanes might cut off solution.

@ Lower all hyperplanes down.

o Amount will depend on the distance to the generating point.

New displacements in the DFO case
Set

| \

By = max{0, f(zx) — f(y]) — (g:) " (wr — y}) + i }

B, = m;tx{ﬁ,?
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Dealing with nonconvexity

Bundle idea

@ Hyperplanes might cut off solution.

@ Lower all hyperplanes down.

o Amount will depend on the distance to the generating point.

New displacements in the DFO case
Set

| \

B = max{0, f(ax) = F(u}) = (90)" (@x = y) + I — yII*}

B, = m;tx{ﬁ,?
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Dealing with nonconvexity

Bundle idea

@ Hyperplanes might cut off solution.

@ Lower all hyperplanes down.

o Amount will depend on the distance to the generating point.

New displacements in the DFO case
Set

| \

B = max{0, f(ax) = F(}) = (90) " (@ — y) + Yl — 1%}

B, = m;tx{ﬁ,?
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Example of our nonsmooth model in nonconvex case
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Example of our nonsmooth model in nonconvex case

.

A F@w) + (9) (@ — @) — B
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Example of our nonsmooth model in nonconvex case

.

LNV An advanced TR model

A F@w) + (9) (@ — @) — B
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Example of our nonsmooth model in nonconvex case

.

A F@w) + (9) (@ — @) — B
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Example of our nonsmooth model in nonconvex case

///f(\lfk> +(g1) " (x — 1) — Bt
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Our nonsmooth TR model

Nonsmooth approximating TR model

mg(s) = maX{f(ﬂﬁk) + (1) 's — B/i} I %STBkS

icly,
where
@ [ is an index set for generated directions g;
o [3i are as in the pictures...

@ By is a symmetric matrix built out from interpolation or regression on
a sample set of points

v
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A revelation: the convex combination vector

The TR is equivalent to:

min is"Bis+ a
S, 2

st. [flzr) = Bi]+(9:)Ts < o, Vi€l
Isl? < A
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A revelation: the convex combination vector
The TR is equivalent to:

min is"Bis+ a
S, 2

st. [flzr) = Bi]+(9:)Ts < o, Vi€l
Isl? < A

Such a step solves an auxiliary problem:
1
min () = f(ak) + Gp ' s + §5TBks
st |Is||? < A2

where

ge = > Nigi with > X\ =1, and X\ >0, Vi€l

&y, 1€l

and A are the multipliers associated with the o constraints
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Our advanced algorithm

Algorithm Advanced DFO-TRNS

Initialization. Select x9 € R", 77,7 >0,0< v <1 <75, €>0, Ay >0, and
p > 0. Set Gy = 0.
For k=0,1...

Generate randomly gg in the unit sphere. Build a symmetric matrix By.

Set G, = Gp_1 U {gk}

Let s be a solution of NTRS for this G, and A the associate multipliers.

If gkl < EA,% Then Reset G, = {gx}. Let s be a solution of NTRS for G,.
flan) = fze + sk)

Set s, = s and pj, = [| sk P+

If pp >
Then set SUCCESS < true, Tpi+1 Tk + Sk, Dgr1 — Y20k,
Else set SUCCESS < false, xpt1 ¢ Tk, Apt1 — 71 A%,
End If
End For
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Convergence analysis
Assumption on the sample set

Points in the sample set {yi : J € Ji} verify

ok — il < YAk, Vi€ J

V.

Comments

@ Assumptions and results are the SAME as for the basic version

@ Convergence analysis follows REMARKABLY the lines of the basic
version

o Main difference: use of the convex combination vector g instead
of gk
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Preliminary Numerical Results
Problems & Analysis

@ Same problems as before
@ Performance and data profiles used
o Budget = 10000 function evaluations

v

Software Used

o Basic DFO-TRNS (Combined with DFO-TR)
o Advanced DFO-TRNS (Combined with DFO-TR)
o NOMAD package [C. Audet et al.]

o Different w for the quadratic term in the models

o NOMAD used was WITH models
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sic vs Adv. DFO-TRNS with w =
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Adv. DFO-TRNS (w = 1) vs NOMAD with models
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Conclusions

@ Proposed and analyzed model-based DFO methods for nonsmooth
black-box functions
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Conclusions

@ Proposed and analyzed model-based DFO methods for nonsmooth
black-box functions
Basic approach (random linear term):

o Good results when compared with NOMAD w/o models
o Quite robust but not really efficient

Bundle-like approach (random max-linear term):

o Better than Basic approach
o Good results when compared with NOMAD using models

Matlab code available upon request
@ Open questions: How to address larger instances? What if f is
stochastic?

For further details: G. Liuzzi, S. Lucidi, F. Rinaldi and L.N. Vicente, Trust-region
methods for the derivative-free optimization of nonsmooth black-box functions,
SIAM Journal on Optimization, 29 (2019) 3012-3035

LNV An advanced TR model 44/44



	Introduction
	A basic TR method for black-box functions
	An advanced TR model

