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Problem definition

Problem to be solved:
min
x∈Rn

f(x)

Assumptions:

f : Rn → R is nonsmooth but Lipschitz continuous

Mathematical representation of the objective function not available:
No knowledge about source of nonsmoothness

Function evaluations costly
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Coordinate search failure

Drawback

Method gets stuck ... no search direction is in the cone of descent
directions!

Convergence to non-stationary point
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Asymptotically dense sets of search directions

Trick

Enrich the set with new search directions
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How to handle black-box nonsmoothness?

Directional approaches based on random directions asymptotically
dense on the unit sphere:

[Audet, Dennis, 2006]
[LNV, Custódio, 2012]
[Fasano, Liuzzi, Lucidi, Rinaldi, 2014]

Approaches based on convex hull of (possibly randomly) sampled
approximate gradients:

[Bagirov, Karasozen, Sezer, 2006]
[Kiwiel, 2010]
[Hare, Nutini, 2013]

Other convergent approaches require knowledge of nonsmoothness
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Basic tools in non-smooth context

Clarke Directional Derivative

Given a point x ∈ Rn and a direction d ∈ Rn, the Clarke directional
derivative of f at x along d is defined as

f◦(x; d) = lim sup
y→x,t↓0

f(y + td)− f(y)

t

Clarke Stationary Point

A point x∗ ∈ Rn is Clarke stationary when f◦(x∗, d) ≥ 0, for all d ∈ Rn.
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DFO Trust-Region Algorithm for Nonsmooth Problems

Algorithm Basic DFO-TRNS

Initialization. Select x0 ∈ Rn, η > 0, 0 < γ1 < 1 ≤ γ2, ∆0 > 0, and p > 0.

For k = 0, 1 . . .

Generate randomly gk in the unit sphere. Build a symmetric matrix Bk.

Let
sk ∈ argmin

‖s‖2≤∆2
k

mk(s) = f(xk) + gk
>s+

1

2
s>Bks

ρk =
f(xk)− f(xk + sk)

‖sk‖1+p

If ρk ≥ η, Then (Success), xk+1 ← xk + sk, ∆k+1 ← γ2∆k.

Else (Failure), xk+1 ← xk, ∆k+1 ← γ1∆k.

End for
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Why will Clarke be nonnegative along limiting TR steps

Mechanism

Predicted reduction
o(‖sk‖) = θ‖s‖1+p

used in place of reduction in quadratic model mk(0)−mk(sk).

Reason

In unsuccessful iterations iterations, one has (ρk < η)

f(xk + sk)− f(xk) > −η‖sk‖1+p

or
f(xk + ‖sk‖(sk/‖sk‖))− f(xk)

‖sk‖
> −θ‖sk‖p

Taking limits will when ‖sk‖ −→ 0, will yield the Clark derivative
non-negative along limiting TR steps
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Asymptotic behavior of trust radius

Because in successful iterations we have

f(xk)− f(xk + sk) > η‖sk‖1+p > · · ·

Trust-region radius converges to zero

Assume that f is bounded from below. Any sequence {∆k} of trust-region
radii produced by Algorithm Basic DFO-TRNS is such that

lim
k→∞

∆k = 0

The result is true even if Bk is unbounded as long as bounded by a power
of ∆−qk , q ∈ (0, 1).
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Why will the TR steps also cover the unit sphere

Property

Any sequence {(xk, sk,∆k)} generated by Algorithm Basic DFO-TRNS
is such that

sk = −∆kDkgk

with Dk ∈ Rn×n satisfying

lim
k→∞

Dk = I

Theorem

Property is satisfied when TR subproblems are solved up to optimality
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Convergence analysis

Main result

{xk} sequence generated by Algorithm Basic DFO-TRNS. ASSUME:

x∗ limit point of {xk}K with K ⊆ {k : ∆k+1 < ∆k}

{gk}K dense in the unit sphere

Then x∗ Clarke stationary
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How to deal with nonsmoothness in practice?

IDEA: Embed Basic DFO-TRNS into an existing code

Exploit the fact that f differentiable almost everywhere

Combine Basic DFO-TRNS with approach for smooth problems (for
quadratic term 1

2s
>Bks):

DFO-TR Algorithm [A.S. Bandeira, K. Scheinberg, L.N. Vicente, 2012]

We weight the quadratic term of the model:

ω
1

2
s>Bks

with ω ∈ [0, 1]
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Numerical results

Test problems

51 nonsmooth problems

Dimension 10 ≤ n ≤ 30

From 2 different collections [L. Lukšan, J. Vlček, 2000]
[J.J. Moré, S. M. Wild, 2009]

Analysis of numerical performance

Performance and data profiles used [J.J. Moré, S. M. Wild, 2009]

Budget = 10000 function evaluations

Software Used

Basic DFO-TRNS (Combined with DFO-TR) ω = 0

NOMAD package [C. Audet et al.] without models
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Basic DFO-TRNS vs NOMAD (w/o models)
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Comments

Basic DFO-TRNS outperforms NOMAD (w/o models)

Randomly generating gk (when needed) helps!

However Basic DFO-TRNS wastes function evaluations

And NOMAD (WITH models) is more efficient...

QUESTION

How to improve performance of Basic DFO-TRNS?

ANSWER

Improve description of linear term in the model

IDEA

Use a Bundle-like approach to handle nonsmoothness
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How to handle nosmoothness in TR methods

Smooth setting

Trust-region model is given by the sum of a linear term and a quadratic one

m̄k(s) +
1

2
s>Bks = f(xk) +∇f(xk)

>s+
1

2
s>Bks

Nonsmooth setting

Use a new linear term mk(s) = f(xk) + f◦(xk; s)

m̄k(s) = max
ξ∈∂f(xk)

{
f(xk) + ξ>s

}

Remark

Since the set ∂f(xk) is unknown, the above model cannot be used in prac-
tice!
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Classic bundle approach (convex case)

How to replace ∂f(xk)

Exploit the information obtained on a set of points {yj : j ∈ Jk} approaching xk,
where Jk is an index set.

New model

Approximate model: m̄k(s) = max
ξ∈∂f(xk)

{
f(xk) + ξ>s

}
with the following model: m̄k(s) = max

j∈Jk

{
f(yj) + (ξj)>(xk + s− yj)

}
where ξj ∈ ∂f(yj), j ∈ Jk.

How to rewrite the model

Final model is

m̄k(s) = max
j∈Jk

{
f(xk) + (ξj)>s− βjk

}
with βjk = f(xk) + (ξj)>(yj − xk)− f(yj) displacement related to point yj .
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The derivative-free context

Main Issue

Element ξ ∈ ∂f(y) cannot be computed.

How to adapt the bundle approach to our derivative-free setting?

Idea: Replace the information of ξ

Use a set of randomly generated normalized directions

Gk = {gi : ‖gi‖ = 1, i ∈ Ik}

where Ik is another index set.
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A nonsmooth model

Displacements

Compute for each (i, j) ∈ Ik × Jk, the displacements

βijk = max
{

0, f(xk)− f(yjk) + (gi)
>(yjk − xk)

}

New model

Introduce the following model

m̄k(s) = max
i∈Ik

{
f(xk) + (gi)

>s− β̄ik
}

where
β̄ik = max

j∈Jk
{βijk }
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Example of our nonsmooth model in convex case

y1 xk y2

f(xk) + (g1)
>(x− xk)

f(xk) + (g1)
>(x− xk)− β̄1

k

β̄1
k
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Dealing with nonconvexity

Bundle idea

Hyperplanes might cut off solution.

Lower all hyperplanes down.

Amount will depend on the distance to the generating point.

New displacements in the DFO case

Set

βijk = max{0, f(xk)− f(yjk)− (gi)
>(xk − yjk) + ? }

β̄ik = max
j
{βijk }
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Example of our nonsmooth model in nonconvex case

y1 xk y2

f(xk) + (g1)
>(x− xk)

f(xk) + (g1)
>(x− xk)− β̄1

kβ̄1
k

γ‖xk − y2‖2
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y1 xk y2

f(xk) + (g2)
>(x− xk)

f(xk) + (g2)
>(x− xk)− β̄2

k

f(xk) + (g1)
>(x− xk)− β̄1

k

β̄2
k

γ‖xk − y1‖2
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Our nonsmooth TR model

Nonsmooth approximating TR model

mk(s) = max
i∈Ik

{
f(xk) + (gi)

>s− β̃ik
}

+
1

2
s>Bks

where

Ik is an index set for generated directions gi

β̃ik are as in the pictures...

Bk is a symmetric matrix built out from interpolation or regression on
a sample set of points
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A revelation: the convex combination vector

The TR is equivalent to:

min
s,α

1
2s
>Bks+ α

s.t. [f(xk)− β̃ik] + (gi)
>s ≤ α, ∀ i ∈ Ik

‖s‖2 ≤ ∆2
k

Such a step solves an auxiliary problem:

min m̃k(s) = f(xk) + g̃k
>s+

1

2
s>Bks

s.t. ‖s‖2 ≤ ∆2
k

where

g̃k =
∑
i∈Ik

λigi with
∑
i∈Ik

λi = 1, and λi ≥ 0, ∀i ∈ Ik

and λ are the multipliers associated with the α constraints
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Our advanced algorithm

Algorithm Advanced DFO-TRNS

Initialization. Select x0 ∈ Rn, η, γ > 0, 0 < γ1 < 1 ≤ γ2, ε̄ > 0, ∆0 > 0, and
p > 0. Set G0 = ∅.
For k = 0, 1 . . .

Generate randomly gk in the unit sphere. Build a symmetric matrix Bk.
Set Gk = Gk−1 ∪ {gk}.
Let s be a solution of NTRS for this Gk, and λ the associate multipliers.

If ‖g̃k‖ < ε̄∆
1
2

k Then Reset Gk = {gk}. Let s be a solution of NTRS for Gk.

Set sk = s and ρk =
f(xk)− f(xk + sk)

‖sk‖p+1
.

If ρk ≥ η
Then set SUCCESS ← true, xk+1 ← xk + sk, ∆k+1 ← γ2∆k,
Else set SUCCESS ← false, xk+1 ← xk, ∆k+1 ← γ1∆k.

End If
End For
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Convergence analysis

Assumption on the sample set

Points in the sample set {yjk : j ∈ Jk} verify

‖xk − yjk‖ ≤ γ∆k, ∀j ∈ Jk

Comments

Assumptions and results are the SAME as for the basic version

Convergence analysis follows REMARKABLY the lines of the basic
version

Main difference: use of the convex combination vector g̃k instead
of gk
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Preliminary Numerical Results

Problems & Analysis

Same problems as before

Performance and data profiles used

Budget = 10000 function evaluations

Software Used

Basic DFO-TRNS (Combined with DFO-TR)

Advanced DFO-TRNS (Combined with DFO-TR)

NOMAD package [C. Audet et al.]

Details

Different ω for the quadratic term in the models

NOMAD used was WITH models
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Comparison of Adv. DFO-TRNS varying ω’s in ω
2s
>Bks
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Basic vs Adv. DFO-TRNS with ω = 1
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Adv. DFO-TRNS (ω = 1) vs NOMAD with models
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Conclusions

Proposed and analyzed model-based DFO methods for nonsmooth
black-box functions

Basic approach (random linear term):

Good results when compared with NOMAD w/o models
Quite robust but not really efficient

Bundle-like approach (random max-linear term):

Better than Basic approach
Good results when compared with NOMAD using models

Matlab code available upon request

Open questions: How to address larger instances? What if f is
stochastic?

For further details: G. Liuzzi, S. Lucidi, F. Rinaldi and L.N. Vicente, Trust-region

methods for the derivative-free optimization of nonsmooth black-box functions,

SIAM Journal on Optimization, 29 (2019) 3012-3035
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