Interpolation-Based Trust-Region Methods for DFO

Luis Nunes Vicente University of Coimbra

(joint work with A. Bandeira, A. R. Conn, S. Gratton, and K. Scheinberg)

July 27, 2010 — ICCOPT, Santiago

http//www.mat.uc.pt/~lnv

Some of the reasons to apply derivative-free optimization are the following:

• Nowadays computer hardware and mathematical algorithms allows increasingly large simulations.

- Nowadays computer hardware and mathematical algorithms allows increasingly large simulations.
- Functions are noisy (one cannot trust derivatives or approximate them by finite differences).

- Nowadays computer hardware and mathematical algorithms allows increasingly large simulations.
- Functions are noisy (one cannot trust derivatives or approximate them by finite differences).
- Binary codes (source code not available) and random simulations making automatic differentiation impossible to apply.

- Nowadays computer hardware and mathematical algorithms allows increasingly large simulations.
- Functions are noisy (one cannot trust derivatives or approximate them by finite differences).
- Binary codes (source code not available) and random simulations making automatic differentiation impossible to apply.
- Legacy codes (written in the past and not maintained by the original authors).

- Nowadays computer hardware and mathematical algorithms allows increasingly large simulations.
- Functions are noisy (one cannot trust derivatives or approximate them by finite differences).
- Binary codes (source code not available) and random simulations making automatic differentiation impossible to apply.
- Legacy codes (written in the past and not maintained by the original authors).
- Lack of sophistication of the user (users need improvement but want to use something simple).

Limitations of Derivative-Free Optimization

In DFO convergence/stopping is typically slow (per function evaluation):

For a recent talk on Direct Search (8th EUROPT, 2010) see:

http://www.mat.uc.pt/~lnv/talks

For a recent talk on Direct Search (8th EUROPT, 2010) see:

http://www.mat.uc.pt/~lnv/talks

Ana Luisa Custodio — Talk WA04 10:30.

Ismael Vaz — Talk WB04 13:30.

 A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization, MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2009.

• One typically minimizes a model m in a trust region $B_p(x; \Delta)$:

Trust-region subproblem	
$\min_{y\in B_p(x;\Delta)}m(y)$	

• One typically minimizes a model m in a trust region $B_p(x; \Delta)$:

Trust-region subproblem	
$\min_{y\in B_p(x;\Delta)}m(y)$	

In derivative-based optimization, one could use:

• One typically minimizes a model m in a trust region $B_p(x; \Delta)$:

Trust-region subproblem	
$\min_{y\in B_p(x;\Delta)}m(y)$	

In derivative-based optimization, one could use:

1st order Taylor:

$$m(y) = f(x) + \nabla f(x)^{\top} (y - x)$$

• One typically minimizes a model m in a trust region $B_p(x; \Delta)$:

Trust-region subproblem	
$\min_{y\in B_p(x;\Delta)}m(y)$	

In derivative-based optimization, one could use:

1st order Taylor:

$$m(y) = f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2} (y - x)^{\top} H(y - x)$$

• One typically minimizes a model m in a trust region $B_p(x; \Delta)$:

Trust-region subproblem	
$\min_{y\in B_p(x;\Delta)}m(y)$	

In derivative-based optimization, one could use:

2nd order Taylor:

$$m(y) = f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2} (y - x)^{\top} \nabla^2 f(x) (y - x)$$

Given a point x and a trust-region radius Δ , a model m(y) around x is called fully linear if

Given a point x and a trust-region radius $\Delta,$ a model m(y) around x is called fully linear if

• It is \mathcal{C}^1 with Lipschitz continuous gradient.

Given a point x and a trust-region radius $\Delta,$ a model m(y) around x is called fully linear if

- It is \mathcal{C}^1 with Lipschitz continuous gradient.
- The following error bounds hold:

 $\begin{aligned} \|\nabla f(y) - \nabla m(y)\| &\leq \kappa_{eg} \Delta \qquad \forall y \in B(x; \Delta) \\ |f(y) - m(y)| &\leq \kappa_{ef} \Delta^2 \qquad \forall y \in B(x; \Delta). \end{aligned}$

Given a point x and a trust-region radius $\Delta,$ a model m(y) around x is called fully linear if

- It is \mathcal{C}^1 with Lipschitz continuous gradient.
- The following error bounds hold:

 $\begin{aligned} \|\nabla f(y) - \nabla m(y)\| &\leq \kappa_{eg} \Delta \qquad \forall y \in B(x; \Delta) \\ |f(y) - m(y)| &\leq \kappa_{ef} \Delta^2 \qquad \forall y \in B(x; \Delta). \end{aligned}$

For a class of fully linear models, the (unknown) constants κ_{ef} , $\kappa_{eg} > 0$ must be independent of x and Δ .

Given a point x and a trust-region radius $\Delta,$ a model m(y) around x is called fully linear if

- It is \mathcal{C}^1 with Lipschitz continuous gradient.
- The following error bounds hold:

 $\begin{aligned} \|\nabla f(y) - \nabla m(y)\| &\leq \kappa_{eg} \Delta \qquad \forall y \in B(x; \Delta) \\ |f(y) - m(y)| &\leq \kappa_{ef} \Delta^2 \qquad \forall y \in B(x; \Delta). \end{aligned}$

For a class of fully linear models, the (unknown) constants κ_{ef} , $\kappa_{eg} > 0$ must be independent of x and Δ .

Fully linear models can be quadratic (or even nonlinear).

Given a point x and a trust-region radius Δ , a model m(y) around x is called fully quadratic if

Given a point x and a trust-region radius $\Delta,$ a model m(y) around x is called fully quadratic if

• It is \mathcal{C}^2 with Lipschitz continuous Hessian.

Given a point x and a trust-region radius $\Delta,$ a model m(y) around x is called fully quadratic if

- It is \mathcal{C}^2 with Lipschitz continuous Hessian.
- The following error bounds hold:

 $\begin{aligned} \|\nabla^2 f(y) - \nabla^2 m(y)\| &\leq \kappa_{eh} \Delta \qquad \forall y \in B(x; \Delta) \\ \|\nabla f(y) - \nabla m(y)\| &\leq \kappa_{eg} \Delta^2 \qquad \forall y \in B(x; \Delta) \\ |f(y) - m(y)| &\leq \kappa_{ef} \Delta^3 \qquad \forall y \in B(x; \Delta). \end{aligned}$

Given a point x and a trust-region radius $\Delta,$ a model m(y) around x is called fully quadratic if

- It is \mathcal{C}^2 with Lipschitz continuous Hessian.
- The following error bounds hold:

 $\begin{aligned} \|\nabla^2 f(y) - \nabla^2 m(y)\| &\leq \kappa_{eh} \Delta \qquad \forall y \in B(x; \Delta) \\ \|\nabla f(y) - \nabla m(y)\| &\leq \kappa_{eg} \Delta^2 \qquad \forall y \in B(x; \Delta) \\ |f(y) - m(y)| &\leq \kappa_{ef} \Delta^3 \qquad \forall y \in B(x; \Delta). \end{aligned}$

For a class of fully quadratic models, the (unknown) constants $\kappa_{ef}, \kappa_{eg}, \kappa_{eh} > 0$ must be independent of x and Δ .

Given a point x and a trust-region radius $\Delta,$ a model m(y) around x is called fully quadratic if

- It is \mathcal{C}^2 with Lipschitz continuous Hessian.
- The following error bounds hold:

 $\begin{aligned} \|\nabla^2 f(y) - \nabla^2 m(y)\| &\leq \kappa_{eh} \Delta \qquad \forall y \in B(x; \Delta) \\ \|\nabla f(y) - \nabla m(y)\| &\leq \kappa_{eg} \Delta^2 \qquad \forall y \in B(x; \Delta) \\ |f(y) - m(y)| &\leq \kappa_{ef} \Delta^3 \qquad \forall y \in B(x; \Delta). \end{aligned}$

For a class of fully quadratic models, the (unknown) constants $\kappa_{ef}, \kappa_{eg}, \kappa_{eh} > 0$ must be independent of x and Δ .

Fully quadratic models are only necessary for global convergence to 2nd order stationary points.

Polynomial interpolation models

Given a sample set $Y = \{y^0, y^1, \dots, y^p\}$, a polynomial basis ϕ , and a polynomial model $m(y) = \alpha^{\top} \phi(y)$, the interpolating conditions form the linear system:

$$M(\phi, Y)\alpha = f(Y),$$

Polynomial interpolation models

Given a sample set $Y = \{y^0, y^1, \dots, y^p\}$, a polynomial basis ϕ , and a polynomial model $m(y) = \alpha^{\top} \phi(y)$, the interpolating conditions form the linear system:

$$M(\phi, Y)\alpha = f(Y),$$

where

$$M(\phi, Y) = \begin{bmatrix} \phi_0(y^0) & \phi_1(y^0) & \cdots & \phi_p(y^0) \\ \phi_0(y^1) & \phi_1(y^1) & \cdots & \phi_p(y^1) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_0(y^p) & \phi_1(y^p) & \cdots & \phi_p(y^p) \end{bmatrix} \quad f(Y) = \begin{bmatrix} f(y^0) \\ f(y^1) \\ \vdots \\ f(y^p) \end{bmatrix}$$

The natural/canonical basis appears in a Taylor expansion and is given by:

$$\bar{\phi} = \left\{1, y_1, \dots, y_n, \frac{1}{2}y_1^2, \dots, \frac{1}{2}y_n^2, y_1y_2, \dots, y_{n-1}y_n\right\}.$$

The natural/canonical basis appears in a Taylor expansion and is given by:

$$\bar{\phi} = \left\{1, y_1, \dots, y_n, \frac{1}{2}y_1^2, \dots, \frac{1}{2}y_n^2, y_1y_2, \dots, y_{n-1}y_n\right\}.$$

Under appropriate smoothness, the second order Taylor model, centered at $\mathbf{0},$ is:

$$f(0) [1] + \frac{\partial f}{\partial x_1}(0)[y_1] + \frac{\partial f}{\partial x_2}(0)[y_2] + \frac{\partial^2 f}{\partial x_1^2}(0)[y_1^2/2] + \frac{\partial^2 f}{\partial x_1 x_2}(0)[y_1y_2] + \frac{\partial^2 f}{\partial x_2^2}(0)[y_2^2/2].$$

Well poisedness (Λ -poisedness)

• Λ is a Λ -poisedness constant related to the geometry of Y.

• Λ is a Λ -poisedness constant related to the geometry of Y.

The original definition of Λ -poisedness says that the maximum absolute value of the Lagrange polynomials in $B(x; \Delta)$ is bounded by Λ .

• Λ is a Λ -poisedness constant related to the geometry of Y.

The original definition of Λ -poisedness says that the maximum absolute value of the Lagrange polynomials in $B(x; \Delta)$ is bounded by Λ .

An equivalent definition of Λ -poisedness is $(|Y| = |\alpha|)$

 $\|M(\bar{\phi}, Y_{scaled})^{-1}\| \le \Lambda,$

with Y_{scaled} obtained from Y such that $Y_{scaled} \subset B(0; 1)$.

• Λ is a Λ -poisedness constant related to the geometry of Y.

The original definition of Λ -poisedness says that the maximum absolute value of the Lagrange polynomials in $B(x; \Delta)$ is bounded by Λ .

An equivalent definition of Λ -poisedness is $(|Y| = |\alpha|)$

 $\|M(\bar{\phi}, Y_{scaled})^{-1}\| \le \Lambda,$

with Y_{scaled} obtained from Y such that $Y_{scaled} \subset B(0;1)$.

Non-squared cases are defined analogously (IDFO).

A badly poised set

 $\Lambda = 21296.$

A not so badly poised set

 $\Lambda = 440.$
Another badly poised set

 $\Lambda = 524982.$

 $\Lambda = 1.$

The system $M(\phi,Y)\alpha = f(Y)$ can be

• Overdetermined when $|Y| > |\alpha|$. See talk on Direct Search!

The system $M(\phi, Y)\alpha = f(Y)$ can be

• Determined when $|Y| = |\alpha|$.

 \longrightarrow For $M(\phi, Y)$ to be squared one needs N = (n+2)(n+1)/2 evaluations of f (often too expensive).

The system $M(\phi, Y)\alpha = f(Y)$ can be

• Determined when $|Y| = |\alpha|$.

 \longrightarrow For $M(\phi, Y)$ to be squared one needs N = (n+2)(n+1)/2 evaluations of f (often too expensive).

 \longrightarrow Leads to fully quadratic models when Y is well poised (the constants κ in the error bounds will depend on Λ).

The system $M(\phi, Y)\alpha = f(Y)$ can be

• Determined when $|Y| = |\alpha|$.

 \longrightarrow For $M(\phi, Y)$ to be squared one needs N = (n+2)(n+1)/2 evaluations of f (often too expensive).

 \longrightarrow Leads to fully quadratic models when Y is well poised (the constants κ in the error bounds will depend on Λ).

• Underdetermined when $|Y| < |\alpha|$.

 \longrightarrow Minimum Frobenius norm models (Powell, IDFO book).

The system $M(\phi, Y)\alpha = f(Y)$ can be

• Determined when $|Y| = |\alpha|$.

 \longrightarrow For $M(\phi, Y)$ to be squared one needs N = (n+2)(n+1)/2 evaluations of f (often too expensive).

 \longrightarrow Leads to fully quadratic models when Y is well poised (the constants κ in the error bounds will depend on Λ).

• Underdetermined when $|Y| < |\alpha|$.

 \longrightarrow Minimum Frobenius norm models (Powell, IDFO book).

 \longrightarrow Other approaches?...

Underdetermined quadratic models

Let m be an underdetermined quadratic model (with Hessian H) built with less than $N = O(n^2)$ points.

Underdetermined quadratic models

Let m be an underdetermined quadratic model (with Hessian H) built with less than $N = O(n^2)$ points.

Theorem (IDFO book)

If Y is $\Lambda_L\text{-}\textsc{poised}$ for linear interpolation or regression then

$$\|\nabla f(y) - \nabla m(y)\| \leq \Lambda_L \left[C_f + \|H\|\right] \Delta \qquad \forall y \in B(x; \Delta).$$

Underdetermined quadratic models

Let m be an underdetermined quadratic model (with Hessian H) built with less than $N = O(n^2)$ points.

Theorem (IDFO book)

If Y is $\Lambda_L\text{-}\textsc{poised}$ for linear interpolation or regression then

$$\|\nabla f(y) - \nabla m(y)\| \leq \Lambda_L \left[C_f + \|H\|\right] \Delta \qquad \forall y \in B(x; \Delta).$$

 \longrightarrow One should build models by minimizing the norm of H.

Minimum Frobenius norm models

Using $ar{\phi}$ and separating the quadratic terms, write

$$m(y) = \alpha_L^{\top} \bar{\phi}_L(y) + \alpha_Q^{\top} \bar{\phi}_Q(y).$$

Minimum Frobenius norm models

Using $ar{\phi}$ and separating the quadratic terms, write

$$m(y) = \alpha_L^{\top} \bar{\phi}_L(y) + \alpha_Q^{\top} \bar{\phi}_Q(y).$$

Then, build models by minimizing the entries of the Hessian ('Frobenius norm'):

$$\begin{array}{ll} \min & \frac{1}{2} \| \boldsymbol{\alpha}_{\boldsymbol{Q}} \|_2^2 \\ \text{s.t.} & M(\bar{\phi}, Y) \boldsymbol{\alpha} \; = \; f(Y). \end{array}$$

Minimum Frobenius norm models

Using $ar{\phi}$ and separating the quadratic terms, write

$$m(y) = \alpha_L^{\top} \bar{\phi}_L(y) + \alpha_Q^{\top} \bar{\phi}_Q(y).$$

Then, build models by minimizing the entries of the Hessian ('Frobenius norm'):

$$\min \quad \frac{1}{2} \| \alpha_Q \|_2^2$$

s.t. $M(\bar{\phi}, Y) \alpha = f(Y).$

The solution of this convex QP problem requires a linear solve with:

$$\left[\begin{array}{cc} M_Q M_Q^\top & M_L \\ M_L^\top & 0 \end{array}\right] \quad \text{where} \quad M(\bar{\phi}, Y) \; = \; \left[\begin{array}{cc} M_L & M_Q \end{array}\right].$$

Theorem (IDFO book)

If Y is $\Lambda_F\text{--poised}$ in the minimum Frobenius norm sense then

 $\|H\| \leq C_f \Lambda_F,$

where H is, again, the Hessian of the model.

Theorem (IDFO book)

If Y is Λ_F -poised in the minimum Frobenius norm sense then

 $\|H\| \leq C_f \Lambda_F,$

where H is, again, the Hessian of the model.

Putting the two theorems together yield:

$$\|\nabla f(y) - \nabla m(y)\| \leq \Lambda_L \left[C_f + C_f \Lambda_F\right] \Delta \qquad \forall y \in B(x; \Delta).$$

Theorem (IDFO book)

If Y is $\Lambda_F\text{--poised}$ in the minimum Frobenius norm sense then

 $\|H\| \leq C_f \Lambda_F,$

where H is, again, the Hessian of the model.

Putting the two theorems together yield:

$$\|\nabla f(y) - \nabla m(y)\| \leq \Lambda_L \left[C_f + C_f \Lambda_F\right] \Delta \qquad \forall y \in B(x; \Delta).$$

 \longrightarrow MFN models are fully linear.

• In many problems, pairs of variables have no 'correlation', leading to zero second order partial derivatives in *f*:

• In many problems, pairs of variables have no 'correlation', leading to zero second order partial derivatives in *f*:

• In many problems, pairs of variables have no 'correlation', leading to zero second order partial derivatives in *f*:

• Thus, the Hessian $\nabla^2 m(x=0)$ of the model (i.e., the vector α_Q in the basis $\bar{\phi}$) should be sparse.

• Is it possible to build fully quadratic models by quadratic underdetermined interpolation (i.e., using less than $N = O(n^2)$ points) in the SPARSE case?

• Objective: Find sparse α subject to a highly underdetermined linear system $M\alpha=f.$

• Objective: Find sparse α subject to a highly underdetermined linear system $M\alpha = f$.

•
$$\begin{cases} \min & \|\alpha\|_0 = |\operatorname{supp}(\alpha)| \\ \text{s.t.} & M\alpha = f \end{cases}$$
 is NP-Hard.

• Objective: Find sparse α subject to a highly underdetermined linear system $M\alpha = f$.

•
$$\begin{cases} \min & \|\alpha\|_0 = |\operatorname{supp}(\alpha)| \\ \text{s.t.} & M\alpha = f \end{cases}$$
 is NP-Hard.

•
$$\begin{cases} \min & \|\alpha\|_1 \\ \text{s.t.} & M\alpha = f \end{cases}$$
 often recovers sparse solutions.

• Objective: Find sparse α subject to a highly underdetermined linear system $M\alpha = f$.

•
$$\begin{cases} \min & \|\alpha\|_0 = |\operatorname{supp}(\alpha)| \\ \text{s.t.} & M\alpha = f \end{cases}$$
 is NP-Hard.

•
$$\begin{cases} \min & \|\alpha\|_1 \\ \text{s.t.} & M\alpha = f \end{cases}$$
 often recovers sparse solutions.

Definition (RIP)

The RIP Constant of order s of M $(p\times N)$ is the smallest δ_s such that

$$(1 - \delta_s) \|\alpha\|_2^2 \le \|M\alpha\|_2^2 \le (1 + \delta_s) \|\alpha\|_2^2$$

for all *s*-sparse α ($\|\alpha\|_0 \leq s$).

Definition (RIP)

The RIP Constant of order s of M $(p \times N)$ is the smallest δ_s such that

$$(1 - \delta_s) \|\alpha\|_2^2 \le \|M\alpha\|_2^2 \le (1 + \delta_s) \|\alpha\|_2^2$$

for all *s*-sparse α ($\|\alpha\|_0 \leq s$).

Theorem (Candès, Tao, 2005, 2006)

If $\bar{\alpha}$ is s-sparse and $2\delta_{2s} + \delta_s < 1$ then it can be recovered by ℓ_1 -minimization:

 $\begin{array}{ll} \min & \|\alpha\|_1 \\ s.t. & M\alpha = M\bar{\alpha}. \end{array}$

Definition (RIP)

The RIP Constant of order s of M $(p\times N)$ is the smallest δ_s such that

$$(1 - \delta_s) \|\alpha\|_2^2 \le \|M\alpha\|_2^2 \le (1 + \delta_s) \|\alpha\|_2^2$$

for all s-sparse α ($\|\alpha\|_0 \leq s$).

Theorem (Candès, Tao, 2005, 2006)

If $\bar{\alpha}$ is s-sparse and $2\delta_{2s} + \delta_s < 1$ then it can be recovered by ℓ_1 -minimization:

 $\begin{array}{ll} \min & \|\alpha\|_1 \\ s.t. & M\alpha = M\bar{\alpha}. \end{array}$

i.e., the optimal solution α^* of this problem is unique and given by $\alpha^* = \bar{\alpha}$.

• It is hard to find deterministic matrices that satisfy the RIP for large *s*.

• It is hard to find deterministic matrices that satisfy the RIP for large *s*.

• Using Random Matrix Theory it is possible to prove RIP for

$$p = \mathcal{O}(s \log N).$$

- Matrices with Gaussian entries.
- Matrices with Bernoulli entries.
- Uniformly chosen subsets of discrete Fourier transform.
- • •

How to find a basis ϕ and a sample set Y such that $M(\phi,Y)$ satisfies the RIP?

How to find a basis ϕ and a sample set Y such that $M(\phi,Y)$ satisfies the RIP?

• Choose orthonormal bases.

How to find a basis ϕ and a sample set Y such that $M(\phi,Y)$ satisfies the RIP?

- Choose orthonormal bases.
- Avoid localized functions ($\|\phi_i\|_{L^{\infty}}$ should be uniformly bounded).

How to find a basis ϕ and a sample set Y such that $M(\phi,Y)$ satisfies the RIP?

- Choose orthonormal bases.
- Avoid localized functions ($\|\phi_i\|_{L^{\infty}}$ should be uniformly bounded).

• Select Y randomly.

Theorem (Rauhut, 2010)

If • ϕ is orthonormal in a probability measure μ and $\|\phi_i\|_{L^{\infty}} \leq K$.

Theorem (Rauhut, 2010)

If $\bullet \phi$ is orthonormal in a probability measure μ and $\|\phi_i\|_{L^{\infty}} \leq K$.

• each point of Y is drawn independently according to μ .

Theorem (Rauhut, 2010)

If • ϕ is orthonormal in a probability measure μ and $\|\phi_i\|_{L^{\infty}} \leq K$.

- each point of Y is drawn independently according to μ .
- $\frac{p}{\log p} \geq c_1 K^2 s(\log s)^2 \log N.$
If • ϕ is orthonormal in a probability measure μ and $\|\phi_i\|_{L^{\infty}} \leq K$.

- each point of Y is drawn independently according to μ .
- $\frac{p}{\log p} \geq c_1 K^2 s (\log s)^2 \log N.$

Then, with high probability, for every s-sparse vector $\bar{\alpha}$:

If $\bullet \phi$ is orthonormal in a probability measure μ and $\|\phi_i\|_{L^{\infty}} \leq K$.

- each point of Y is drawn independently according to μ .
- $\frac{p}{\log p} \geq c_1 K^2 s(\log s)^2 \log N.$

Then, with high probability, for every s-sparse vector $\bar{\alpha}$:

Given noisy samples $f = M(\phi, Y)\overline{\alpha} + \epsilon$ with $\|\epsilon\|_2 \leq \eta$, let α^* be the solution of

If • ϕ is orthonormal in a probability measure μ and $\|\phi_i\|_{L^{\infty}} \leq K$.

- each point of Y is drawn independently according to μ.
- $\frac{p}{\log p} \geq c_1 K^2 s(\log s)^2 \log N.$

Then, with high probability, for every s-sparse vector $\bar{\alpha}$:

Given noisy samples $f = M(\phi, Y)\overline{\alpha} + \epsilon$ with $\|\epsilon\|_2 \leq \eta$, let α^* be the solution of

 $\min \|\alpha\|_1 \quad \text{s.t.} \quad \|M(\phi, Y)\alpha - f\|_2 \leq \eta.$

If • ϕ is orthonormal in a probability measure μ and $\|\phi_i\|_{L^{\infty}} \leq K$.

each point of Y is drawn independently according to μ.

•
$$\frac{p}{\log p} \geq c_1 K^2 s (\log s)^2 \log N.$$

Then, with high probability, for every s-sparse vector $\bar{\alpha}$:

Given noisy samples $f = M(\phi, Y)\overline{\alpha} + \epsilon$ with $\|\epsilon\|_2 \leq \eta$, let α^* be the solution of

 $\min \|\alpha\|_1 \quad \text{s.t.} \quad \|M(\phi,Y)\alpha - f\|_2 \leq \eta.$

Then,

$$\|\bar{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*\|_2 \le \frac{C}{\sqrt{p}}\,\boldsymbol{\eta}.$$

Remember the second order Taylor model

$$f(0) [1] + \frac{\partial f}{\partial x_1}(0)[y_1] + \frac{\partial f}{\partial x_2}(0)[y_2] + \frac{\partial^2 f}{\partial x_1^2}(0)[y_1^2/2] + \frac{\partial^2 f}{\partial x_1 x_2}(0)[y_1y_2] + \frac{\partial^2 f}{\partial x_2^2}(0)[y_2^2/2].$$

Remember the second order Taylor model

$$f(0) [1] + \frac{\partial f}{\partial x_1}(0)[y_1] + \frac{\partial f}{\partial x_2}(0)[y_2] + \frac{\partial^2 f}{\partial x_1^2}(0)[y_1^2/2] + \frac{\partial^2 f}{\partial x_1 x_2}(0)[y_1y_2] + \frac{\partial^2 f}{\partial x_2^2}(0)[y_2^2/2].$$

So, we want something like the natural/canonical basis:

$$\bar{\phi} = \left\{1, y_1, \dots, y_n, \frac{1}{2}y_1^2, \dots, \frac{1}{2}y_n^2, y_1y_2, \dots, y_{n-1}y_n\right\}.$$

An orthonormal basis for quadratics (appropriate for sparse Hessian recovery)

Proposition (Bandeira, Scheinberg, and Vicente, 2010)

The following basis ψ for quadratics is orthonormal (w.r.t. the uniform measure on $B_{\infty}(0; \Delta)$) and satisfies $\|\psi_{\iota}\|_{L^{\infty}} \leq 3$.

An orthonormal basis for quadratics (appropriate for sparse Hessian recovery)

Proposition (Bandeira, Scheinberg, and Vicente, 2010)

The following basis ψ for quadratics is orthonormal (w.r.t. the uniform measure on $B_{\infty}(0; \Delta)$) and satisfies $\|\psi_{\iota}\|_{L^{\infty}} \leq 3$.

$$\begin{pmatrix}
\psi_0(u) &= 1 \\
\psi_{1,i}(u) &= \frac{\sqrt{3}}{\Delta}u_i \\
\psi_{2,ij}(u) &= \frac{3}{\Delta^2}u_iu_j \\
\psi_{2,i}(u) &= \frac{3\sqrt{5}}{2}\frac{1}{\Delta^2}u_i^2 - \frac{\sqrt{5}}{2}
\end{cases}$$

An orthonormal basis for quadratics (appropriate for sparse Hessian recovery)

Proposition (Bandeira, Scheinberg, and Vicente, 2010)

The following basis ψ for quadratics is orthonormal (w.r.t. the uniform measure on $B_{\infty}(0; \Delta)$) and satisfies $\|\psi_{\iota}\|_{L^{\infty}} \leq 3$.

$$\begin{array}{rcl}
\psi_{0}(u) &=& 1 \\
\psi_{1,i}(u) &=& \frac{\sqrt{3}}{\Delta}u_{i} \\
\psi_{2,ij}(u) &=& \frac{3}{\Delta^{2}}u_{i}u_{j} \\
\psi_{2,i}(u) &=& \frac{3\sqrt{5}}{2}\frac{1}{\Delta^{2}}u_{i}^{2} - \frac{\sqrt{5}}{2}
\end{array}$$

 $\rightarrow \psi$ is very similar to the canonical basis, and preserves the sparsity of the Hessian (at 0).

$$\min \|\alpha\|_1 \quad \text{s.t.} \quad \|M(\phi, Y)\alpha - f\|_2 \leq \eta,$$

where

$$f = M(\psi, Y)\bar{\alpha} + \epsilon.$$

$$\min \|\alpha\|_1 \quad \text{s.t.} \quad \|M(\phi, Y)\alpha - f\|_2 \leq \eta,$$

where

$$f = M(\psi, Y)\bar{\alpha} + \epsilon.$$

So, the 'noisy' data is f = f(Y).

$$\min \|\alpha\|_1 \quad \text{s.t.} \quad \|M(\phi, Y)\alpha - f\|_2 \leq \eta,$$

where

$$f = M(\psi, Y)\bar{\alpha} + \epsilon.$$

So, the 'noisy' data is f = f(Y).

What we are trying to recover is the 2nd order Taylor model $\bar{\alpha}^{\top}\psi(y)$.

$$\min \|\alpha\|_1 \quad \text{s.t.} \quad \|M(\phi, Y)\alpha - f\|_2 \leq \eta,$$

where

$$f = M(\psi, Y)\overline{\alpha} + \epsilon.$$

So, the 'noisy' data is f = f(Y).

What we are trying to recover is the 2nd order Taylor model $\bar{\alpha}^{\top}\psi(y)$.

Thus, in $\|\epsilon\| \leq \eta$, one has $\eta = \mathcal{O}(\Delta^3)$.

If • the Hessian of f at 0 is s-sparse.

- If the Hessian of f at 0 is s-sparse.
 - Y is a random sample set chosen w.r.t. the uniform measure on $B_{\infty}(0; \Delta)$.

- If the Hessian of f at 0 is s-sparse.
 - Y is a random sample set chosen w.r.t. the uniform measure on $B_{\infty}(0; \Delta)$.
 - $\frac{p}{\log p} \ge 9c_1(s+n+1)\log^2(s+n+1)\log \mathcal{O}(n^2).$

- If the Hessian of f at 0 is s-sparse.
 - Y is a random sample set chosen w.r.t. the uniform measure on $B_{\infty}(0; \Delta)$.
 - $\frac{p}{\log p} \ge 9c_1(s+n+1)\log^2(s+n+1)\log \mathcal{O}(n^2).$

Then, with high probability, the quadratic

If • the Hessian of f at 0 is s-sparse.

- Y is a random sample set chosen w.r.t. the uniform measure on $B_{\infty}(0; \Delta)$.
- $\frac{p}{\log p} \ge 9c_1(s+n+1)\log^2(s+n+1)\log \mathcal{O}(n^2).$

Then, with high probability, the quadratic

$$q^* = \sum \alpha_\iota^* \psi_\iota$$

obtained by solving the noisy ℓ_1 -minimization problem is a fully quadratic model for f (with error constants not depending on Δ).

• For instance, when the number of non-zeros of the Hessian is s = O(n), we are able to construct fully quadratic models with

 $\mathcal{O}(n\log^4 n)$ points.

• For instance, when the number of non-zeros of the Hessian is s = O(n), we are able to construct fully quadratic models with

 $\mathcal{O}(n\log^4 n)$ points.

• Also, we recover both the function and its sparsity structure.

Generalize the result above when minimizing only the *l*₁-norm of the Hessian (*α_Q*) rather than of the whole *α*.

 \longrightarrow Numerical simulations have shown that such approach is (slightly) advantageous.

Solve

 $\begin{array}{ll} \min & \|\boldsymbol{\alpha}_{\boldsymbol{Q}}\|_{1} \\ \text{s.t.} & M(\bar{\phi}_{L},Y)\alpha_{L} + M(\bar{\phi}_{Q},Y)\alpha_{Q} = f(Y). \end{array}$

Solve

min
$$\|\boldsymbol{\alpha}_{Q}\|_{1}$$

s.t. $M(\bar{\phi}_{L}, Y)\alpha_{L} + M(\bar{\phi}_{Q}, Y)\alpha_{Q} = f(Y).$

• Deal with small n (from the DFO setting) and the bound we obtain is asymptotical.

Solve

min
$$\|\boldsymbol{\alpha}_{Q}\|_{1}$$

s.t. $M(\bar{\phi}_{L}, Y)\alpha_{L} + M(\bar{\phi}_{Q}, Y)\alpha_{Q} = f(Y).$

- Deal with small n (from the DFO setting) and the bound we obtain is asymptotical.
- Use deterministic sampling.

Trust-region methods for DFO typically:

• attempt to form quadratic models (by interpolation/regression and using polynomials or radial basis functions)

$$m_k(x_k + s) = f(x_k) + g_k^{\top} s + \frac{1}{2} s^{\top} H_k s$$

based on (well poised) sample sets.

Trust-region methods for DFO typically:

• attempt to form quadratic models (by interpolation/regression and using polynomials or radial basis functions)

$$m_k(x_k+s) = f(x_k) + g_k^{\top}s + \frac{1}{2}s^{\top}H_ks$$

based on (well poised) sample sets.

 \longrightarrow Well poisedness ensures fully linear or fully quadratic models.

Trust-region methods for DFO typically:

• attempt to form quadratic models (by interpolation/regression and using polynomials or radial basis functions)

$$m_k(x_k + s) = f(x_k) + g_k^{\top} s + \frac{1}{2} s^{\top} H_k s$$

based on (well poised) sample sets.

- \rightarrow Well poisedness ensures fully linear or fully quadratic models.
 - Calculate a step s_k by approximately solving the trust-region subproblem

$$\min_{s \in B_2(x_k; \Delta_k)} \quad m_k(x_k + s).$$

• Set x_{k+1} to $x_k + s_k$ (success) or to x_k (unsuccess) and update Δ_k depending on the value of

$$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{m_k(x_k) - m_k(x_k + s_k)}.$$

• Set x_{k+1} to $x_k + s_k$ (success) or to x_k (unsuccess) and update Δ_k depending on the value of

$$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{m_k(x_k) - m_k(x_k + s_k)}.$$

• Attempt to accept steps based on simple decrease, i.e., if

$$\rho_k > 0 \iff f(x_k + s_k) < f(x_k).$$

• Reduce Δ_k only if ρ_k is small and the model is FL/FQ — unsuccessful iterations.

- Reduce Δ_k only if ρ_k is small and the model is FL/FQ unsuccessful iterations.
- Accept new iterates based on simple decrease (ρ_k > 0) as long as the model is FL/FQ — acceptable iterations.

- Reduce Δ_k only if ρ_k is small and the model is FL/FQ unsuccessful iterations.
- Accept new iterates based on simple decrease (ρ_k > 0) as long as the model is FL/FQ — acceptable iterations.
- Allow for model-improving iterations (when ρ_k is not large enough and the model is not certifiably FL/FQ).

- Reduce Δ_k only if ρ_k is small and the model is FL/FQ unsuccessful iterations.
- Accept new iterates based on simple decrease (ρ_k > 0) as long as the model is FL/FQ — acceptable iterations.
- Allow for model-improving iterations (when ρ_k is not large enough and the model is not certifiably FL/FQ).
 - \longrightarrow Do not reduce Δ_k .

• Incorporate a criticality step (1st or 2nd order) when the 'stationarity' of the model is small.
Interpolation-based trust-region methods (IDFO)

 Incorporate a criticality step (1st or 2nd order) when the 'stationarity' of the model is small.

 \longrightarrow Internal cycle of reductions of Δ_k — until model is well poised in $B(x_k;\|g_k\|).$

Due to the criticality step, one has for successful iterations:

$$f(x_k) - f(x_{k+1}) \ge \mathcal{O}(||g_k|| \min\{||g_k||, \Delta_k\}) \ge \mathcal{O}(\Delta_k^2).$$

Due to the criticality step, one has for successful iterations:

$$f(x_k) - f(x_{k+1}) \ge \mathcal{O}(||g_k|| \min\{||g_k||, \Delta_k\}) \ge \mathcal{O}(\Delta_k^2).$$

Thus:

Theorem (Conn, Scheinberg, and Vicente, 2009)

The trust-region radius converges to zero:

$$\lim_{k \to +\infty} \Delta_k = 0.$$

Due to the criticality step, one has for successful iterations:

$$f(x_k) - f(x_{k+1}) \ge \mathcal{O}(||g_k|| \min\{||g_k||, \Delta_k\}) \ge \mathcal{O}(\Delta_k^2).$$

Thus:

Theorem (Conn, Scheinberg, and Vicente, 2009)

The trust-region radius converges to zero:

$$\lim_{k \to +\infty} \Delta_k = 0.$$

 \longrightarrow Similar to direct-search methods where $\liminf_{k\to+\infty} \alpha_k = 0$.

Analysis of TR methods (1st order)

Using fully linear models:

Theorem (Conn, Scheinberg, and Vicente, 2009)

If ∇f is Lips. continuous and f is bounded below on $L(x_0)$ then

$$\lim_{k \to +\infty} \|\nabla f(x_k)\| = 0.$$

Using fully linear models:

Theorem (Conn, Scheinberg, and Vicente, 2009)

If ∇f is Lips. continuous and f is bounded below on $L(x_0)$ then

$$\lim_{k \to +\infty} \|\nabla f(x_k)\| = 0.$$

 \longrightarrow Valid also for simple decrease (acceptable iterations).

Analysis of TR methods (2nd order)

Using fully quadratic models:

Theorem (Conn, Scheinberg, and Vicente, 2009)

If $\nabla^2 f$ is Lips. continuous and f is bounded below on $L(x_0)$ then

 $\lim_{k \to +\infty} \max\left\{ \|\nabla f(x_k)\|, -\lambda_{\min}[\nabla^2 f(x_k)] \right\} = 0.$

Analysis of TR methods (2nd order)

Using fully quadratic models:

Theorem (Conn, Scheinberg, and Vicente, 2009)

If $abla^2 f$ is Lips. continuous and f is bounded below on $L(x_0)$ then

$$\lim_{k \to +\infty} \max\left\{ \|\nabla f(x_k)\|, -\lambda_{\min}[\nabla^2 f(x_k)] \right\} = 0.$$

 \rightarrow Valid also for simple decrease (acceptable iterations).

Analysis of TR methods (2nd order)

Using fully quadratic models:

Theorem (Conn, Scheinberg, and Vicente, 2009)

If $\nabla^2 f$ is Lips. continuous and f is bounded below on $L(x_0)$ then

$$\lim_{k \to +\infty} \max\left\{ \|\nabla f(x_k)\|, -\lambda_{\min}[\nabla^2 f(x_k)] \right\} = 0.$$

- \longrightarrow Valid also for simple decrease (acceptable iterations).
- \longrightarrow Going from \liminf to \lim requires changing the update of Δ_k .

Recently, Fasano, Morales, and Nocedal (2009) suggested an one-point exchange:

Recently, Fasano, Morales, and Nocedal (2009) suggested an one-point exchange:

• In successful iterations:

$$Y_{k+1} = Y_k \cup \{x_k + s_k\} \setminus \{y_{out}\}.$$

where $y_{out} = \operatorname{argmax} \|y - x_k\|_2$.

Recently, Fasano, Morales, and Nocedal (2009) suggested an one-point exchange:

• In successful iterations:

$$Y_{k+1} = Y_k \cup \{x_k + s_k\} \setminus \{y_{out}\}.$$

where $y_{out} = \operatorname{argmax} \|y - x_k\|_2$.

• In the unsuccessful case:

$$Y_{k+1} = Y_k \cup \{x_k + s_k\} \setminus \{y_{out}\} \text{ if } \|y_{out} - x_k\| \ge \|s_k\|.$$

Recently, Fasano, Morales, and Nocedal (2009) suggested an one-point exchange:

• In successful iterations:

$$Y_{k+1} = Y_k \cup \{x_k + s_k\} \setminus \{y_{out}\}.$$

where $y_{out} = \operatorname{argmax} \|y - x_k\|_2$.

• In the unsuccessful case:

$$Y_{k+1} = Y_k \cup \{x_k + s_k\} \setminus \{y_{out}\} \text{ if } \|y_{out} - x_k\| \ge \|s_k\|.$$

• Do not perform model-improving iterations.

Recently, Fasano, Morales, and Nocedal (2009) suggested an one-point exchange:

• In successful iterations:

$$Y_{k+1} = Y_k \cup \{x_k + s_k\} \setminus \{y_{out}\}.$$

where $y_{out} = \operatorname{argmax} \|y - x_k\|_2$.

• In the unsuccessful case:

 $Y_{k+1} = Y_k \cup \{x_k + s_k\} \setminus \{y_{out}\} \text{ if } \|y_{out} - x_k\| \ge \|s_k\|.$

• Do not perform model-improving iterations.

They observed sample sets not badly poised!

Self-correcting geometry

• A self-correcting geometry approach based on one-point exchanges, globally convergent to first-order stationary points (lim inf).

- A self-correcting geometry approach based on one-point exchanges, globally convergent to first-order stationary points (lim inf).
- In the unsuccessful case, y_{out} is not only based on $||y x_k||_2$, but also on the values of the Lagrange polynomials at $x_k + s_k$.

- A self-correcting geometry approach based on one-point exchanges, globally convergent to first-order stationary points (lim inf).
- In the unsuccessful case, y_{out} is not only based on $||y x_k||_2$, but also on the values of the Lagrange polynomials at $x_k + s_k$.
- They showed that, if Δ_k is small compared to $||g_k||$, then the step either improves the function or the geometry/poisedness of the model.

- A self-correcting geometry approach based on one-point exchanges, globally convergent to first-order stationary points (lim inf).
- In the unsuccessful case, y_{out} is not only based on $||y x_k||_2$, but also on the values of the Lagrange polynomials at $x_k + s_k$.
- They showed that, if Δ_k is small compared to $||g_k||$, then the step either improves the function or the geometry/poisedness of the model.
- In their approach, model-improving iterations are not needed.

- A self-correcting geometry approach based on one-point exchanges, globally convergent to first-order stationary points (lim inf).
- In the unsuccessful case, y_{out} is not only based on $||y x_k||_2$, but also on the values of the Lagrange polynomials at $x_k + s_k$.
- They showed that, if Δ_k is small compared to $||g_k||$, then the step either improves the function or the geometry/poisedness of the model.
- In their approach, model-improving iterations are not needed.

They showed, however, that the criticality step is indeed necessary.

Model building:

• If $|Y_k| = N = O(n^2)$, use determined quadratic interpolation.

Model building:

- If $|Y_k| = N = \mathcal{O}(n^2)$, use determined quadratic interpolation.
- Otherwise use ℓ_1 (p = 1) or Frobenius (p = 2) minimum norm quadratic interpolation:

$$\begin{array}{l} \min \quad \frac{1}{p} \|\alpha_Q\|_p^p \\ \text{s.t.} \quad M(\bar{\phi}_L, Y_{scaled}) \alpha_L + M(\bar{\phi}_Q, Y_{scaled}) \alpha_Q = f(Y_{scaled}). \end{array}$$

Model building:

- If $|Y_k| = N = \mathcal{O}(n^2)$, use determined quadratic interpolation.
- Otherwise use ℓ_1 (p = 1) or Frobenius (p = 2) minimum norm quadratic interpolation:

$$\begin{array}{ll} \min & \frac{1}{p} \|\alpha_Q\|_p^p \\ \text{s.t.} & M(\bar{\phi}_L, Y_{scaled}) \alpha_L + M(\bar{\phi}_Q, Y_{scaled}) \alpha_Q = f(Y_{scaled}). \end{array}$$

Sample set update — one starts with $|Y_0| = \mathcal{O}(n)$:

Model building:

- If $|Y_k| = N = \mathcal{O}(n^2)$, use determined quadratic interpolation.
- Otherwise use ℓ_1 (p = 1) or Frobenius (p = 2) minimum norm quadratic interpolation:

$$\begin{array}{ll} \min & \frac{1}{p} \|\alpha_Q\|_p^p \\ \text{s.t.} & M(\bar{\phi}_L, Y_{scaled}) \alpha_L + M(\bar{\phi}_Q, Y_{scaled}) \alpha_Q = f(Y_{scaled}). \end{array}$$

Sample set update — one starts with $|Y_0| = \mathcal{O}(n)$:

• If
$$|Y_k| < N = \mathcal{O}(n^2)$$
, set $Y_{k+1} = Y_k \cup \{x_k + s_k\}$.

Model building:

- If $|Y_k| = N = O(n^2)$, use determined quadratic interpolation.
- Otherwise use ℓ_1 (p = 1) or Frobenius (p = 2) minimum norm quadratic interpolation:

$$\begin{array}{ll} \min & \frac{1}{p} \|\alpha_Q\|_p^p \\ \text{s.t.} & M(\bar{\phi}_L, Y_{scaled}) \alpha_L + M(\bar{\phi}_Q, Y_{scaled}) \alpha_Q = f(Y_{scaled}). \end{array}$$

Sample set update — one starts with $|Y_0| = \mathcal{O}(n)$:

- If $|Y_k| < N = \mathcal{O}(n^2)$, set $Y_{k+1} = Y_k \cup \{x_k + s_k\}$.
- Otherwise as in Fasano et al., but with $y_{out} = \operatorname{argmax} \|y x_{k+1}\|_2$.

Model building:

- If $|Y_k| = N = \mathcal{O}(n^2)$, use determined quadratic interpolation.
- Otherwise use ℓ_1 (p = 1) or Frobenius (p = 2) minimum norm quadratic interpolation:

$$\begin{array}{ll} \min & \frac{1}{p} \|\alpha_Q\|_p^p \\ \text{s.t.} & M(\bar{\phi}_L, Y_{scaled}) \alpha_L + M(\bar{\phi}_Q, Y_{scaled}) \alpha_Q = f(Y_{scaled}). \end{array}$$

Sample set update — one starts with $|Y_0| = \mathcal{O}(n)$:

- If $|Y_k| < N = \mathcal{O}(n^2)$, set $Y_{k+1} = Y_k \cup \{x_k + s_k\}$.
- Otherwise as in Fasano et al., but with $y_{out} = \operatorname{argmax} \|y x_{k+1}\|_2$.

'Criticality step': If Δ_k is very small, discard points far away from the trust region.

Performance profiles (accuracy of 10^{-4} in function values)

Figure: Performance profiles comparing DFO-TR (ℓ_1 and Frobenius) and NEWUOA (Powell) in a test set from CUTEr (Fasano et al.).

Performance profiles (accuracy of 10^{-6} in function values)

Figure: Performance profiles comparing DFO-TR (ℓ_1 and Frobenius) and NEWUOA (Powell) in a test set from CUTEr (Fasano et al.).

Concluding remarks

• Optimization is a fundamental tool in Compressed Sensing. However, this work shows that CS can also be 'applied to' Optimization.

Concluding remarks

- Optimization is a fundamental tool in Compressed Sensing. However, this work shows that CS can also be 'applied to' Optimization.
- In a sparse scenario, we were able to construct fully quadratic models with samples of size $\mathcal{O}(n \log^4 n)$ instead of the classical $\mathcal{O}(n^2)$.

Concluding remarks

- Optimization is a fundamental tool in Compressed Sensing. However, this work shows that CS can also be 'applied to' Optimization.
- In a sparse scenario, we were able to construct fully quadratic models with samples of size $\mathcal{O}(n \log^4 n)$ instead of the classical $\mathcal{O}(n^2)$.
- We proposed a practical DFO method (using ℓ_1 -minimization) that was able to outperform state-of-the-art methods in several numerical tests (in the already 'tough' DFO scenario where n is small).

 Improve the efficiency of the model l₁-minimization, by properly warmstarting it (currently we solve it as an LP using lipsol by Y. Zhang).

- Improve the efficiency of the model l₁-minimization, by properly warmstarting it (currently we solve it as an LP using lipsol by Y. Zhang).
- Study the convergence properties of possibly stochastic interpolation-based trust-region methods.

- Improve the efficiency of the model l₁-minimization, by properly warmstarting it (currently we solve it as an LP using lipsol by Y. Zhang).
- Study the convergence properties of possibly stochastic interpolation-based trust-region methods.
- Investigate ℓ_1 -minimization techniques in statistical models (like Kriging for interpolating 'sparse' data sets), but applied to Optimization.

- Improve the efficiency of the model l₁-minimization, by properly warmstarting it (currently we solve it as an LP using lipsol by Y. Zhang).
- Study the convergence properties of possibly stochastic interpolation-based trust-region methods.
- Investigate ℓ_1 -minimization techniques in statistical models (like Kriging for interpolating 'sparse' data sets), but applied to Optimization.

• Develop a globally convergent model-based trust-region method for non-smooth functions.

- A. Bandeira, K. Scheinberg, and L. N. Vicente, Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization, in preparation, 2010.
- A. R. Conn, K. Scheinberg, and L. N. Vicente, Global convergence of general derivative-free trust-region algorithms to first and second order critical points, SIAM J. Optim., 20 (2009) 387–415.
- G. Fasano, J. L. Morales, and J. Nocedal, On the geometry phase in model-based algorithms for derivative-free optimization, Optim. Methods Softw., 24 (2009) 145–154.
- K. Scheinberg and Ph. L. Toint, Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization, 2009.

 S. Gratton, Ph. L. Toint, and A. Tröltzsch, An active-set trust-region method for derivative-free nonlinear bound-constrained optimization, 2010. Talk WA02 11:30

- S. Gratton, Ph. L. Toint, and A. Tröltzsch, An active-set trust-region method for derivative-free nonlinear bound-constrained optimization, 2010. Talk WA02 11:30
- S. Gratton and L. N. Vicente, A surrogate management framework using rigorous trust-regions steps, 2010.

- S. Gratton, Ph. L. Toint, and A. Tröltzsch, An active-set trust-region method for derivative-free nonlinear bound-constrained optimization, 2010. Talk WA02 11:30
- S. Gratton and L. N. Vicente, A surrogate management framework using rigorous trust-regions steps, 2010.
- M. J. D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, 2009.

- S. Gratton, Ph. L. Toint, and A. Tröltzsch, An active-set trust-region method for derivative-free nonlinear bound-constrained optimization, 2010. Talk WA02 11:30
- S. Gratton and L. N. Vicente, A surrogate management framework using rigorous trust-regions steps, 2010.
- M. J. D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, 2009.
- S. M. Wild and C. Shoemaker, Global convergence of radial basis function trust region derivative-free algorithms, 2009.

Optimization 2011 (July 24-27, Portugal)

plenary speakers

Gilbert Laporte | HEC Montréal New trends in vehicle routing

Jean Bernard Lasserre | LAAS-CNRS, Toulouse Moments and semidefinite relaxations for parametric optimization

José Mario Martínez | State University of Campinas Unifying inexact restoration, SQP, and augmented Lagrangian methods

Mauricio G.C. Resende | AT&T Labs - Research Using metaheuristics to solve real optimization problems in telecommunications

Nick Sahinidis | Carnegie Mellon University Recent advances in nonconvex optimization

Stephen J. Wright | University of Wisconsin Algorithms and applications in sparse optimization