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Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Nowadays computer hardware and mathematical algorithms allows
increasingly large simulations.

Functions are noisy (one cannot trust derivatives or approximate them
by finite differences).

Binary codes (source code not available) and random simulations —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).
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Limitations of Derivative-Free Optimization

In DFO convergence/stopping is typically slow (per function evaluation):
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Recent advances in direct-search methods

For a recent talk on Direct Search (8th EUROPT, 2010) see:

http://www.mat.uc.pt/~lnv/talks

Ana Luisa Custodio — Talk WA04 10:30.

Ismael Vaz — Talk WB04 13:30.
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The book!

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
Derivative-Free Optimization, MPS-SIAM Series on Optimization,
SIAM, Philadelphia, 2009.
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Model-based trust-region methods

One typically minimizes a model m in a trust region Bp(x; ∆):

Trust-region subproblem

min
y∈Bp(x;∆)

m(y)

In derivative-based optimization, one could use:

6/54



Model-based trust-region methods

One typically minimizes a model m in a trust region Bp(x; ∆):

Trust-region subproblem

min
y∈Bp(x;∆)

m(y)

In derivative-based optimization, one could use:

6/54



Model-based trust-region methods

One typically minimizes a model m in a trust region Bp(x; ∆):

Trust-region subproblem

min
y∈Bp(x;∆)

m(y)

In derivative-based optimization, one could use:

1st order Taylor:

m(y) = f(x) +∇f(x)>(y − x)

6/54



Model-based trust-region methods

One typically minimizes a model m in a trust region Bp(x; ∆):

Trust-region subproblem

min
y∈Bp(x;∆)

m(y)

In derivative-based optimization, one could use:

1st order Taylor:

m(y) = f(x) +∇f(x)>(y − x) +
1
2

(y − x)>H(y − x)

6/54



Model-based trust-region methods

One typically minimizes a model m in a trust region Bp(x; ∆):

Trust-region subproblem

min
y∈Bp(x;∆)

m(y)

In derivative-based optimization, one could use:

2nd order Taylor:

m(y) = f(x) +∇f(x)>(y − x) +
1
2

(y − x)>∇2f(x)(y − x)
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Fully linear models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully linear if

It is C1 with Lipschitz continuous gradient.

The following error bounds hold:

‖∇f(y)−∇m(y)‖ ≤ κeg ∆ ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x; ∆).

For a class of fully linear models, the (unknown) constants κef , κeg > 0
must be independent of x and ∆.

Fully linear models can be quadratic (or even nonlinear).
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Fully quadratic models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is C2 with Lipschitz continuous Hessian.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully quadratic models, the (unknown) constants
κef , κeg, κeh > 0 must be independent of x and ∆.

Fully quadratic models are only necessary for global convergence to 2nd
order stationary points.

8/54



Fully quadratic models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is C2 with Lipschitz continuous Hessian.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully quadratic models, the (unknown) constants
κef , κeg, κeh > 0 must be independent of x and ∆.

Fully quadratic models are only necessary for global convergence to 2nd
order stationary points.

8/54



Fully quadratic models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is C2 with Lipschitz continuous Hessian.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully quadratic models, the (unknown) constants
κef , κeg, κeh > 0 must be independent of x and ∆.

Fully quadratic models are only necessary for global convergence to 2nd
order stationary points.

8/54



Fully quadratic models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is C2 with Lipschitz continuous Hessian.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully quadratic models, the (unknown) constants
κef , κeg, κeh > 0 must be independent of x and ∆.

Fully quadratic models are only necessary for global convergence to 2nd
order stationary points.

8/54



Fully quadratic models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is C2 with Lipschitz continuous Hessian.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully quadratic models, the (unknown) constants
κef , κeg, κeh > 0 must be independent of x and ∆.

Fully quadratic models are only necessary for global convergence to 2nd
order stationary points.

8/54



Polynomial interpolation models

Given a sample set Y = {y0, y1, . . . , yp}, a polynomial basis φ, and a
polynomial model m(y) = α>φ(y), the interpolating conditions form the
linear system:

M(φ, Y )α = f(Y ),

where

M(φ, Y ) =


φ0(y0) φ1(y0) · · · φp(y0)
φ0(y1) φ1(y1) · · · φp(y1)

...
...

...
...

φ0(yp) φ1(yp) · · · φp(yp)

 f(Y ) =


f(y0)
f(y1)

...
f(yp)

 .
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Natural/canonical basis

The natural/canonical basis appears in a Taylor expansion and is given by:

φ̄ =
{

1, y1, ..., yn,
1
2
y2

1, ...,
1
2
y2
n, y1y2, ..., yn−1yn

}
.

Under appropriate smoothness, the second order Taylor model, centered
at 0, is:

f(0) [1] + ∂f
∂x1

(0)[y1] + ∂f
∂x2

(0)[y2]

+ ∂2f
∂x2

1
(0)[y2

1/2] + ∂2f
∂x1x2

(0)[y1y2] + ∂2f
∂x2

2
(0)[y2

2/2].
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Well poisedness (Λ–poisedness)

Λ is a Λ–poisedness constant related to the geometry of Y .
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value of the Lagrange polynomials in B(x; ∆) is bounded by Λ.

An equivalent definition of Λ–poisedness is (|Y | = |α|)

‖M(φ̄, Yscaled)−1‖ ≤ Λ,

with Yscaled obtained from Y such that Yscaled ⊂ B(0; 1).

Non-squared cases are defined analogously (IDFO).
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A badly poised set

Λ = 21296.
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A not so badly poised set

Λ = 440.
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Another badly poised set

Λ = 524982.

14/54



An ideal set

Λ = 1.
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Quadratic interpolation models

The system M(φ, Y )α = f(Y ) can be

Overdetermined when |Y | > |α|. See talk on Direct Search!

Determined when |Y | = |α|.

−→ For M(φ, Y ) to be squared one needs N = (n+ 2)(n+ 1)/2
evaluations of f (often too expensive).

−→ Leads to fully quadratic models when Y is well poised (the
constants κ in the error bounds will depend on Λ).

Underdetermined when |Y | < |α|.
−→ Minimum Frobenius norm models (Powell, IDFO book).

−→ Other approaches?...
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Underdetermined quadratic models

Let m be an underdetermined quadratic model (with Hessian H) built
with less than N = O(n2) points.

Theorem (IDFO book)

If Y is ΛL–poised for linear interpolation or regression then

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + ‖H‖] ∆ ∀y ∈ B(x; ∆).

−→ One should build models by minimizing the norm of H.

17/54



Underdetermined quadratic models

Let m be an underdetermined quadratic model (with Hessian H) built
with less than N = O(n2) points.

Theorem (IDFO book)

If Y is ΛL–poised for linear interpolation or regression then

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + ‖H‖] ∆ ∀y ∈ B(x; ∆).

−→ One should build models by minimizing the norm of H.

17/54



Underdetermined quadratic models

Let m be an underdetermined quadratic model (with Hessian H) built
with less than N = O(n2) points.

Theorem (IDFO book)

If Y is ΛL–poised for linear interpolation or regression then

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + ‖H‖] ∆ ∀y ∈ B(x; ∆).

−→ One should build models by minimizing the norm of H.

17/54



Minimum Frobenius norm models

Using φ̄ and separating the quadratic terms, write

m(y) = α>L φ̄L(y) + α>Qφ̄Q(y).

Then, build models by minimizing the entries of the Hessian (‘Frobenius
norm’):

min 1
2‖αQ‖

2
2

s.t. M(φ̄, Y )α = f(Y ).

The solution of this convex QP problem requires a linear solve with:[
MQM

>
Q ML

M>L 0

]
where M(φ̄, Y ) =

[
ML MQ

]
.
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Minimum Frobenius norm models

Theorem (IDFO book)

If Y is ΛF –poised in the minimum Frobenius norm sense then

‖H‖ ≤ CfΛF ,

where H is, again, the Hessian of the model.

Putting the two theorems together yield:

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + CfΛF ] ∆ ∀y ∈ B(x; ∆).

−→ MFN models are fully linear.
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Sparsity on the Hessian

In many problems, pairs of variables have no ‘correlation’, leading to
zero second order partial derivatives in f :

Thus, the Hessian ∇2m(x = 0) of the model (i.e., the vector αQ in
the basis φ̄) should be sparse.
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Our question

Is it possible to build fully quadratic models by quadratic
underdetermined interpolation (i.e., using less than N = O(n2)
points) in the SPARSE case?
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Compressed sensing — sparse recovery

Objective: Find sparse α subject to a highly underdetermined linear
system Mα = f .

{
min ‖α‖0 = | supp(α)|
s.t. Mα = f

is NP-Hard.

{
min ‖α‖1
s.t. Mα = f

often recovers sparse solutions.
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Restricted isometry property

Definition (RIP)

The RIP Constant of order s of M (p×N) is the smallest δs such that

(1− δs)‖α‖22 ≤ ‖Mα‖22 ≤ (1 + δs)‖α‖22

for all s−sparse α (‖α‖0 ≤ s).

Theorem (Candès, Tao, 2005, 2006)

If ᾱ is s−sparse and 2δ2s + δs < 1 then it can be recovered by
`1-minimization:

min ‖α‖1
s.t. Mα = Mᾱ.

i.e., the optimal solution α∗ of this problem is unique and given by α∗ = ᾱ.
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If ᾱ is s−sparse and 2δ2s + δs < 1 then it can be recovered by
`1-minimization:

min ‖α‖1
s.t. Mα = Mᾱ.
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Random matrices

It is hard to find deterministic matrices that satisfy the RIP for
large s.

Using Random Matrix Theory it is possible to prove RIP for

p = O(s logN).

Matrices with Gaussian entries.
Matrices with Bernoulli entries.
Uniformly chosen subsets of discrete Fourier transform.
· · ·
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Bounded orthonormal expansions (Rauhut)

Question

How to find a basis φ and a sample set Y such that M(φ, Y ) satisfies the
RIP?

Choose orthonormal bases.

Avoid localized functions (‖φi‖L∞ should be uniformly bounded).

Select Y randomly.
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Sparse orthonormal bounded expansion recovery

Theorem (Rauhut, 2010)

If φ is orthonormal in a probability measure µ and ‖φi‖L∞ ≤ K.

each point of Y is drawn independently according to µ.
p

log p ≥ c1K
2s(log s)2logN .

Then, with high probability, for every s−sparse vector ᾱ:

Given noisy samples f = M(φ, Y )ᾱ+ ε with ‖ε‖2 ≤ η, let α∗ be the
solution of

min ‖α‖1 s. t. ‖M(φ, Y )α− f‖2 ≤ η.

Then,

‖ᾱ− α∗‖2 ≤
C
√
p
η.
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‖ᾱ− α∗‖2 ≤
C
√
p
η.

26/54



Sparse orthonormal bounded expansion recovery

Theorem (Rauhut, 2010)

If φ is orthonormal in a probability measure µ and ‖φi‖L∞ ≤ K.

each point of Y is drawn independently according to µ.
p

log p ≥ c1K
2s(log s)2logN .

Then, with high probability, for every s−sparse vector ᾱ:
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What basis do we need for sparse Hessian recovery?

Remember the second order Taylor model

f(0) [1] + ∂f
∂x1

(0)[y1] + ∂f
∂x2

(0)[y2]

+ ∂2f
∂x2

1
(0)[y2

1/2] + ∂2f
∂x1x2

(0)[y1y2] + ∂2f
∂x2

2
(0)[y2

2/2].

So, we want something like the natural/canonical basis:

φ̄ =
{

1, y1, ..., yn,
1
2
y2

1, ...,
1
2
y2
n, y1y2, ..., yn−1yn

}
.
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An orthonormal basis for quadratics (appropriate for sparse
Hessian recovery)

Proposition (Bandeira, Scheinberg, and Vicente, 2010)

The following basis ψ for quadratics is orthonormal (w.r.t. the uniform
measure on B∞(0; ∆)) and satisfies ‖ψι‖L∞ ≤ 3.


ψ0(u) = 1
ψ1,i(u) =

√
3

∆ ui

ψ2,ij(u) = 3
∆2uiuj

ψ2,i(u) = 3
√

5
2

1
∆2u

2
i −

√
5

2 .

−→ ψ is very similar to the canonical basis, and preserves the sparsity of
the Hessian (at 0).
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Hessian sparse recovery

Let us look again at

min ‖α‖1 s. t. ‖M(φ, Y )α− f‖2 ≤ η,

where
f = M(ψ, Y )ᾱ+ ε.

So, the ‘noisy’ data is f = f(Y ).

What we are trying to recover is the 2nd order Taylor model ᾱ>ψ(y).

Thus, in ‖ε‖ ≤ η, one has η = O(∆3).
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Hessian sparse recovery

Theorem (Bandeira, Scheinberg, and Vicente, 2010)

If the Hessian of f at 0 is s−sparse.

Y is a random sample set chosen w.r.t. the uniform measure on
B∞(0; ∆).
p

log p ≥ 9c1(s+ n+ 1) log2(s+ n+ 1)logO(n2).

Then, with high probability, the quadratic

q∗ =
∑

α∗ιψι

obtained by solving the noisy `1-minimization problem is a fully quadratic
model for f (with error constants not depending on ∆).
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An answer to our question

For instance, when the number of non-zeros of the Hessian is
s = O(n), we are able to construct fully quadratic models with

O(n log4n) points.

Also, we recover both the function and its sparsity structure.
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Open question

Generalize the result above when minimizing only the `1-norm of the
Hessian (αQ) rather than of the whole α.

−→ Numerical simulations have shown that such approach is
(slightly) advantageous.
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Remarks

However, the Theorem only provides motivation because, in a practical
approach we:

Solve
min ‖αQ‖1
s. t. M(φ̄L, Y )αL +M(φ̄Q, Y )αQ = f(Y ).

Deal with small n (from the DFO setting) and the bound we obtain is
asymptotical.

Use deterministic sampling.
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Interpolation-based trust-region methods

Trust-region methods for DFO typically:

attempt to form quadratic models (by interpolation/regression and
using polynomials or radial basis functions)

mk(xk + s) = f(xk) + g>k s+
1
2
s>Hks

based on (well poised) sample sets.

−→ Well poisedness ensures fully linear or fully quadratic models.

Calculate a step sk by approximately solving the trust-region
subproblem

min
s∈B2(xk;∆k)

mk(xk + s).
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Interpolation-based trust-region methods

Set xk+1 to xk + sk (success) or to xk (unsuccess) and update ∆k

depending on the value of

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

Attempt to accept steps based on simple decrease, i.e., if

ρk > 0 ⇐⇒ f(xk + sk) < f(xk).
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Interpolation-based trust-region methods (IDFO)

Reduce ∆k only if ρk is small and the model is FL/FQ —
unsuccessful iterations.

Accept new iterates based on simple decrease (ρk > 0) as long as the
model is FL/FQ — acceptable iterations.

Allow for model-improving iterations (when ρk is not large enough
and the model is not certifiably FL/FQ).

−→ Do not reduce ∆k.
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Interpolation-based trust-region methods (IDFO)

Incorporate a criticality step (1st or 2nd order) when the ‘stationarity’
of the model is small.

−→ Internal cycle of reductions of ∆k — until model is well poised in
B(xk; ‖gk‖).
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Behavior of the trust-region radius

Due to the criticality step, one has for successful iterations:

f(xk)− f(xk+1) ≥ O(‖gk‖min{‖gk‖,∆k}) ≥ O(∆2
k).

Thus:

Theorem (Conn, Scheinberg, and Vicente, 2009)

The trust-region radius converges to zero:

lim
k→+∞

∆k = 0.

−→ Similar to direct-search methods where lim infk→+∞ αk = 0.
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Analysis of TR methods (1st order)

Using fully linear models:

Theorem (Conn, Scheinberg, and Vicente, 2009)

If ∇f is Lips. continuous and f is bounded below on L(x0) then

lim
k→+∞

‖∇f(xk)‖ = 0.

−→ Valid also for simple decrease (acceptable iterations).
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Analysis of TR methods (2nd order)

Using fully quadratic models:

Theorem (Conn, Scheinberg, and Vicente, 2009)

If ∇2f is Lips. continuous and f is bounded below on L(x0) then

lim
k→+∞

max
{
‖∇f(xk)‖,−λmin[∇2f(xk)]

}
= 0.

−→ Valid also for simple decrease (acceptable iterations).

−→ Going from lim inf to lim requires changing the update of ∆k.
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Sample set management

Recently, Fasano, Morales, and Nocedal (2009) suggested an one-point
exchange:

In successful iterations:

Yk+1 = Yk ∪ {xk + sk} \ {yout}.

where yout = argmax ‖y − xk‖2.

In the unsuccessful case:

Yk+1 = Yk ∪ {xk + sk} \ {yout} if ‖yout − xk‖ ≥ ‖sk‖.

Do not perform model-improving iterations.

They observed sample sets not badly poised!

41/54



Sample set management

Recently, Fasano, Morales, and Nocedal (2009) suggested an one-point
exchange:

In successful iterations:

Yk+1 = Yk ∪ {xk + sk} \ {yout}.

where yout = argmax ‖y − xk‖2.

In the unsuccessful case:

Yk+1 = Yk ∪ {xk + sk} \ {yout} if ‖yout − xk‖ ≥ ‖sk‖.

Do not perform model-improving iterations.

They observed sample sets not badly poised!

41/54



Sample set management

Recently, Fasano, Morales, and Nocedal (2009) suggested an one-point
exchange:

In successful iterations:

Yk+1 = Yk ∪ {xk + sk} \ {yout}.

where yout = argmax ‖y − xk‖2.

In the unsuccessful case:

Yk+1 = Yk ∪ {xk + sk} \ {yout} if ‖yout − xk‖ ≥ ‖sk‖.

Do not perform model-improving iterations.

They observed sample sets not badly poised!

41/54



Sample set management

Recently, Fasano, Morales, and Nocedal (2009) suggested an one-point
exchange:

In successful iterations:

Yk+1 = Yk ∪ {xk + sk} \ {yout}.

where yout = argmax ‖y − xk‖2.

In the unsuccessful case:

Yk+1 = Yk ∪ {xk + sk} \ {yout} if ‖yout − xk‖ ≥ ‖sk‖.

Do not perform model-improving iterations.

They observed sample sets not badly poised!

41/54



Sample set management

Recently, Fasano, Morales, and Nocedal (2009) suggested an one-point
exchange:

In successful iterations:

Yk+1 = Yk ∪ {xk + sk} \ {yout}.

where yout = argmax ‖y − xk‖2.

In the unsuccessful case:

Yk+1 = Yk ∪ {xk + sk} \ {yout} if ‖yout − xk‖ ≥ ‖sk‖.

Do not perform model-improving iterations.

They observed sample sets not badly poised!

41/54



Self-correcting geometry

Later, Scheinberg and Toint (2009) proposed:

A self-correcting geometry approach based on one-point exchanges,
globally convergent to first-order stationary points (lim inf).

In the unsuccessful case, yout is not only based on ‖y− xk‖2, but also
on the values of the Lagrange polynomials at xk + sk.

They showed that, if ∆k is small compared to ‖gk‖, then the step
either improves the function or the geometry/poisedness of the model.

In their approach, model-improving iterations are not needed.

They showed, however, that the criticality step is indeed necessary.
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Without criticality step... (Scheinberg and Toint)
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A practical interpolation-based trust-region method

Model building:

If |Yk| = N = O(n2), use determined quadratic interpolation.

Otherwise use `1 (p = 1) or Frobenius (p = 2) minimum norm
quadratic interpolation:

min 1
p‖αQ‖

p
p

s. t. M(φ̄L, Yscaled)αL +M(φ̄Q, Yscaled)αQ = f(Yscaled).

Sample set update — one starts with |Y0| = O(n):

If |Yk| < N = O(n2), set Yk+1 = Yk ∪ {xk + sk}.
Otherwise as in Fasano et al., but with yout = argmax ‖y − xk+1‖2.

‘Criticality step’: If ∆k is very small, discard points far away from the trust
region.
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Performance profiles (accuracy of 10−4 in function values)

Figure: Performance profiles comparing DFO-TR (`1 and Frobenius) and NEWUOA
(Powell) in a test set from CUTEr (Fasano et al.).
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Performance profiles (accuracy of 10−6 in function values)

Figure: Performance profiles comparing DFO-TR (`1 and Frobenius) and NEWUOA
(Powell) in a test set from CUTEr (Fasano et al.).
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Concluding remarks

Optimization is a fundamental tool in Compressed Sensing. However,
this work shows that CS can also be ‘applied to’ Optimization.

In a sparse scenario, we were able to construct fully quadratic models
with samples of size O(n log4n) instead of the classical O(n2).

We proposed a practical DFO method (using `1-minimization) that
was able to outperform state-of-the-art methods in several numerical
tests (in the already ‘tough’ DFO scenario where n is small).
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Open questions

Improve the efficiency of the model `1-minimization, by properly
warmstarting it (currently we solve it as an LP using lipsol by
Y. Zhang).

Study the convergence properties of possibly stochastic
interpolation-based trust-region methods.

Investigate `1-minimization techniques in statistical models (like
Kriging for interpolating ‘sparse’ data sets), but applied to
Optimization.

Develop a globally convergent model-based trust-region method for
non-smooth functions.
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