
Sparse Hessian Recovery
and

Trust-Region Methods based on Probabilistic Models

Luis Nunes Vicente
University of Coimbra

joint work with A. S. Bandeira (Princeton) and K. Scheinberg (Lehigh)

March 16, 2012 — 3rd Conference on OMS

http//www.mat.uc.pt/~lnv

http//www.mat.uc.pt/~lnv


Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Nowadays computer hardware and mathematical algorithms allows
increasingly large simulations.

Functions are noisy (one cannot trust derivatives or approximate them
by finite differences).

Binary codes (source code not available) and random simulations —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).

2/46



Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Nowadays computer hardware and mathematical algorithms allows
increasingly large simulations.

Functions are noisy (one cannot trust derivatives or approximate them
by finite differences).

Binary codes (source code not available) and random simulations —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).

2/46



Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Nowadays computer hardware and mathematical algorithms allows
increasingly large simulations.

Functions are noisy (one cannot trust derivatives or approximate them
by finite differences).

Binary codes (source code not available) and random simulations —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).

2/46



Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Nowadays computer hardware and mathematical algorithms allows
increasingly large simulations.

Functions are noisy (one cannot trust derivatives or approximate them
by finite differences).

Binary codes (source code not available) and random simulations —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).

2/46



Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Nowadays computer hardware and mathematical algorithms allows
increasingly large simulations.

Functions are noisy (one cannot trust derivatives or approximate them
by finite differences).

Binary codes (source code not available) and random simulations —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).

2/46



Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Nowadays computer hardware and mathematical algorithms allows
increasingly large simulations.

Functions are noisy (one cannot trust derivatives or approximate them
by finite differences).

Binary codes (source code not available) and random simulations —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).

2/46



Limitations of Derivative-Free Optimization

In DFO convergence/stopping is typically slow (per function evaluation):
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The book!

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
Derivative-Free Optimization, MPS-SIAM Series on Optimization,
SIAM, Philadelphia, 2009.

4/46



There are two main classes of rigorous methods in DFO

Direct search methods, of directional type.

Achieve descent by using positive spanning sets and moving in the
directions of the best points.

Model-based methods, of local nature.

Examples of models are polynomials or radial basis functions (RBFs).
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Model-based trust-region methods

One typically minimizes a model m in a trust region Bp(x; ∆):

Trust-region subproblem

min
y∈Bp(x;∆)

m(y)

In derivative-based optimization, one could use:
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Model-based trust-region methods

One typically minimizes a model m in a trust region Bp(x; ∆):

Trust-region subproblem

min
y∈Bp(x;∆)

m(y)

In derivative-based optimization, one could use:

2nd order Taylor:

m(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>∇2f(x)(y − x)
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Fully linear models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully linear if

It is C1 with Lipschitz continuous gradient.

The following error bounds hold:

‖∇f(y)−∇m(y)‖ ≤ κeg ∆ ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x; ∆).

For a class of fully linear models, the (unknown) constants κef , κeg > 0
must be independent of x and ∆.

Fully linear models can be quadratic (or even nonlinear).
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Fully quadratic models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is C2 with Lipschitz continuous Hessian.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully quadratic models, the (unknown) constants
κef , κeg, κeh > 0 must be independent of x and ∆.

Fully quadratic models are only necessary for global convergence to 2nd
order stationary points.
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Polynomial interpolation models

Given a sample set Y = {y0, y1, . . . , yp}, a polynomial basis φ, and a
polynomial model m(y) = α>φ(y), the interpolating conditions form the
linear system:

M(φ, Y )α = f(Y ),

where

M(φ, Y ) =


φ0(y0) φ1(y0) · · · φp(y

0)
φ0(y1) φ1(y1) · · · φp(y

1)
...

...
...

...
φ0(yp) φ1(yp) · · · φp(y

p)

 f(Y ) =


f(y0)
f(y1)

...
f(yp)

 .
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Natural/canonical basis

The natural/canonical basis appears in a Taylor expansion and is given by:

φ̄ =

{
1

2
y2

1, ...,
1

2
y2
n, y1y2, ..., yn−1yn, y1, ..., yn, 1

}
.

Under appropriate smoothness, the second order Taylor model, centered
at 0, is:

f(0) [1] + ∂f
∂x1

(0)[y1] + ∂f
∂x2

(0)[y2]

+ ∂2f
∂x21

(0)[y2
1/2] + ∂2f

∂x1x2
(0)[y1y2] + ∂2f

∂x22
(0)[y2

2/2].
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Well poisedness (Λ–poisedness)

Λ is a Λ–poisedness constant related to the geometry of Y .
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An equivalent definition of Λ–poisedness is (|Y | = |α|)

‖M(φ̄, Yscaled)
−1‖ ≤ Λ,

with Yscaled obtained from Y such that Yscaled ⊂ B(0; 1).

Non-squared cases are defined analogously (IDFO).
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A badly poised set

Λ = 5324.
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A not so badly poised set

Λ = 295.
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Another badly poised set

Λ = 492625.
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An ideal set

Λ = 1.
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Quadratic interpolation models

The system M(φ, Y )α = f(Y ) can be

Overdetermined when |Y | > |α|.

Determined when |Y | = |α|.

−→ For M(φ, Y ) to be squared one needs N = (n+ 2)(n+ 1)/2
evaluations of f (often too expensive).

−→ Leads to fully quadratic models when Y is well poised (the
constants κ in the error bounds will depend on Λ).

Underdetermined when |Y | < |α|.
−→ Minimum Frobenius norm models (Powell, IDFO book).

−→ Other approaches?...
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Underdetermined quadratic models

Let m be an underdetermined quadratic model (with Hessian H) built
with less than N = O(n2) points.

Theorem (IDFO book)

If Y is ΛL–poised for linear interpolation or regression i.e. (M̄L well
conditioned in M(φ̄, Yscaled) = [M̄Q M̄L]) then

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + ‖H‖] ∆ ∀y ∈ B(x; ∆).

−→ One should build models by minimizing the norm of H.
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Minimum Frobenius norm models

Using φ̄ and separating the quadratic terms, write

m(y) = α>Qφ̄Q(y) + α>L φ̄L(y).

Then, build models by minimizing the entries of the Hessian (‘Frobenius
norm’):

min 1
2‖αQ‖

2
2

s.t. M(φ̄, Y )α = f(Y ).

The solution of this convex QP problem requires a linear solve with:[
MQM

>
Q ML

M>L 0

]
where M(φ̄, Y ) =

[
MQ ML

]
.
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Minimum Frobenius norm models

Theorem (IDFO book)

If Y is ΛF –poised in the minimum Frobenius norm sense then

‖H‖ ≤ CfΛF ,

where H is, again, the Hessian of the model.

Putting the two theorems together yield:

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + CfΛF ] ∆ ∀y ∈ B(x; ∆).

−→ MFN models are fully linear.
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Sparsity on the Hessian

In many problems, pairs of variables have no ‘correlation’, leading to
zero second order partial derivatives in f :

Thus, the Hessian H = ∇2m of the model should be sparse,

i.e., the vector αQ in the basis φ̄ should be sparse (assuming x = 0
w.l.o.g.).
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Our main question

Question

Is it possible to build fully quadratic models by quadratic underdetermined
interpolation (i.e., using less than N = O(n2) points) in the SPARSE
case?

An answer will be given by building the models using instead the `1-norm
and relaxing the interpolating conditions for noisy recovery

min ‖αQ‖1
s.t. ‖M(φ̄, Y )α− f(Y )‖2 ≤ η.
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Compressed sensing — sparse recovery

Objective: Find sparse α subject to a highly underdetermined linear
system Mα = f .

{
min ‖α‖0 = | supp(α)|
s.t. Mα = f

is NP-Hard.

{
min ‖α‖1
s.t. Mα = f

often recovers sparse solutions.

22/46



Compressed sensing — sparse recovery

Objective: Find sparse α subject to a highly underdetermined linear
system Mα = f .{

min ‖α‖0 = | supp(α)|
s.t. Mα = f

is NP-Hard.

{
min ‖α‖1
s.t. Mα = f

often recovers sparse solutions.

22/46



Compressed sensing — sparse recovery

Objective: Find sparse α subject to a highly underdetermined linear
system Mα = f .{

min ‖α‖0 = | supp(α)|
s.t. Mα = f

is NP-Hard.

{
min ‖α‖1
s.t. Mα = f

often recovers sparse solutions.

22/46



Compressed sensing — sparse recovery

Objective: Find sparse α subject to a highly underdetermined linear
system Mα = f .{

min ‖α‖0 = | supp(α)|
s.t. Mα = f

is NP-Hard.

{
min ‖α‖1
s.t. Mα = f

often recovers sparse solutions.

22/46



Restricted isometry property

Definition (RIP)

The RIP Constant of order s of M (p×N) is the smallest δs such that

(1− δs)‖α‖22 ≤ ‖Mα‖22 ≤ (1 + δs)‖α‖22

for all s−sparse α (‖α‖0 ≤ s).

Theorem (Candès, Tao, 2005, 2006)

If ᾱ is s−sparse and M satisfies RIP of order 2s with δ2s <
1
3 , then ᾱ can

be recovered by `1-minimization:

min ‖α‖1
s. t. Mα = Mᾱ.

i.e., the optimal solution α∗ of this problem is unique and given by α∗ = ᾱ.
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Compressed sensing — noisy sparse recovery

Theorem (Candès 2009)

Let M ∈ Rp×N satisfy RIP of order 2s with

δ2s <
√

2− 1.

For every s−sparse vector ᾱ ∈ RN , let noisy measurements f = Mᾱ+ ε
be given satisfying ‖ε‖2 ≤ η.

Let α∗ be a solution of

min
α∈RN

‖α‖1 s. t. ‖Mα− f‖2 ≤ η.

Then
‖α∗ − ᾱ‖2 ≤ ctotal η,

for a constant ctotal only depending on the RIP constant.
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Compressed sensing — noisy PARTIALLY sparse recovery

Theorem (Jacques 2010, Bandeira, Scheinberg, and Vicente 2011)

Let M = (M1,M2) ∈ Rp×(N−r) × Rp×r satisfy RIP of order 2(s− r) with

δ2(s−r) <
√

2− 1.

For every (s− r)−sparse vector ᾱ1, with ᾱ = (ᾱ1, ᾱ2), let noisy
measurements f = Mᾱ+ ε be given satisfying ‖ε‖2 ≤ η.

Let α∗ = (α∗1, α
∗
2) be a solution of

min
α∈RN

‖α1‖1 s. t. ‖Mα− f‖2 ≤ η.

Then
‖α∗ − ᾱ‖2 ≤ cpartial η,

for a constant cpartial only depending on the RIP constant.
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Random matrices

It is hard to find deterministic matrices that satisfy the RIP for
large s.

Using Random Matrix Theory it is possible to prove RIP for

p = O(s logN).

Matrices with Gaussian entries.
Matrices with Bernoulli entries.
Uniformly chosen subsets of discrete Fourier transform.
· · ·
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Bounded orthonormal expansions (Rauhut)

Question

How to find a basis φ and a sample set Y such that M(φ, Y ) satisfies the
RIP?

Choose orthonormal bases (leads to uncorrelated matrix entries).

Avoid localized functions (‖φi‖L∞ should be uniformly bounded) —
to avoid zeros in matrix entries.

Select Y randomly.
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Sparse orthonormal bounded expansion recovery

Theorem (Rauhut, 2010)

If φ is orthonormal in a probability measure µ and ‖φi‖L∞ ≤ K.

each point of Y is drawn independently according to µ.
p

log p ≥ cK2s(log s)2logN .

Then, with high probability, for every s−sparse vector ᾱ:

Given noisy samples f = M(φ, Y )ᾱ+ ε with ‖ε‖2 ≤ η, let α∗ be the
solution of

min ‖α‖1 s. t. ‖M(φ, Y )α− f‖2 ≤ η.

Then,
‖α∗ − ᾱ‖2 ≤ ctotal η.
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Given noisy samples f = M(φ, Y )ᾱ+ ε with ‖ε‖2 ≤ η, let α∗ be the
solution of

min ‖α‖1 s. t. ‖M(φ, Y )α− f‖2 ≤ η.

Then,
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Given noisy samples f = M(φ, Y )ᾱ+ ε with ‖ε‖2 ≤ η, let α∗ be the
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What basis do we need for sparse Hessian recovery?

Remember the second order Taylor model

f(0) [1] + ∂f
∂x1

(0)[y1] + ∂f
∂x2

(0)[y2]

+ ∂2f
∂x21

(0)[y2
1/2] + ∂2f

∂x1x2
(0)[y1y2] + ∂2f

∂x22
(0)[y2

2/2].

So, we want something like the natural/canonical basis:

φ̄ =

{
1

2
y2

1, ...,
1

2
y2
n, y1y2, ..., yn−1yn, y1, ..., yn, 1

}
.
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An orthonormal basis for quadratics (appropriate for sparse
Hessian recovery)

Proposition (Bandeira, Scheinberg, and Vicente, 2011)

The following basis ψ for quadratics is orthonormal (w.r.t. the uniform
measure on B∞(0; ∆)) and satisfies ‖ψι‖L∞ ≤ 3.


ψ0(u) = 1

ψ1,i(u) =
√

3
∆ ui

ψ2,ij(u) = 3
∆2uiuj

ψ2,i(u) = 3
√

5
2

1
∆2u

2
i −

√
5

2 .

−→ ψ is very similar to the canonical basis, and thus “preserves” the
sparsity of the Hessian.
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Sparse Hessian recovery

Let us look again at

min ‖αQ‖1 s. t. ‖M(φ, Y )α− f‖2 ≤ η,

where
f = M(ψ, Y )ᾱ+ ε.

So, the ‘noisy’ data is f = f(Y ).

What we are trying to recover is the 2nd order Taylor model ᾱ>ψ(y).

Thus, in ‖ε‖ ≤ η, one has η = O(∆3).
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Sparse Hessian recovery

Theorem (Bandeira, Scheinberg, and Vicente, 2011)

If the Hessian of f at 0 is h−sparse.

Y is a random sample set chosen w.r.t. the uniform measure on
B∞(0; ∆).
p

log p ≥ 9c (h+ n+ 1) log2(h+ n+ 1)logO(n2).

Then, with high probability, the quadratic

q∗ =
∑

α∗ιψι

obtained by solving the noisy and partial `1-minimization problem is a fully
quadratic model for f (with error constants not depending on ∆).
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An answer to our main question

For instance, when the number of non-zeros of the Hessian is
h = O(n), we are able to construct fully quadratic models with

O(n log4n) points.

Also, we recover both the function and its sparsity structure.
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Remarks

However, the Theorem only provides motivation because, in a practical
Optimization approach we:

Solve
min ‖αQ‖1
s. t. M(φ̄Q, Y )αQ +M(φ̄L, Y )αL = f(Y ).

Deal with small n (from the DFO setting) and the bound we obtain is
asymptotical.

Use deterministic sampling.
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A practical interpolation-based trust-region solver

We have tested the effect of minimum `1-norm Hessian models in a
practical trust-region DFO algorithm:

New sample points are only defined by the trust-region step x+ ∆x
(no model management iterations).

Quadratic underdetermined models are built by minimum `1 or
Frobenius norm minimization.

Points too far from the current iterate are thrown away (sort of a
criticality step).

Trust-region radius is not reduced when the sample set has less than
n+ 1 points.
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Performance profiles (accuracy of 10−4 in function values)

Figure: Performance profiles comparing DFO-TR (`1 and Frobenius) and NEWUOA

(Powell) in a test set from CUTEr (Fasano et al.).
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Performance profiles (accuracy of 10−6 in function values)

Figure: Performance profiles comparing DFO-TR (`1 and Frobenius) and NEWUOA

(Powell) in a test set from CUTEr (Fasano et al.).
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Concluding remarks (sparse Hessian recovery)

Optimization is a fundamental tool in Compressed Sensing. However,
this work shows that CS can also be ‘applied to’ Optimization.

In a sparse scenario, we were able to construct fully quadratic models
with samples of size O(n log4n) instead of the classical O(n2).

We proposed a practical DFO method (using `1-minimization) that
was able to outperform state-of-the-art methods in several numerical
tests (in the already ‘tough’ DFO scenario where n is small).
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Open questions

Improve the efficiency of the model `1-minimization, by properly
warmstarting it (currently we solve it as an LP using lipsol by
Y. Zhang).

Study trust-region methods based on probabilistic models.
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TRM based on probabilistic models

Let models be built iteratively in some random fashion.

We will consider random models Mk, and then use the notation
mk = Mk(ωk) for their realizations.

The key assumption for convergence will be then that these models exhibit
good accuracy with sufficiently high probability.
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TRM based on probabilistic models

Assumption

We say that a sequence of random models {Mk} is (p)-probabilistically
(κeg, κef )-fully linear for a corresponding sequence {B(Xk,∆k)} if the
events

Sk = {Mk is a (κeg, κef )-fully linear model of f on B(Xk,∆k)}

satisfy the following submartingale-like condition

P (Sk|σ(M0, . . . ,Mk−1)) ≥ p. (implied by P (Sk) ≥ p)

Furthermore, if p ≥ 1
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TRM based on probabilistic models

Fix three positive parameters η1, η2, γ, with γ > 1.

Algorithm (Iteration k)

Approximate the function f in B(xk, δk) with mk.

Compute a step sk by solving min
s∈B(0,δk)

m(xk + s).

Let

ρk =
f(xk)− f(xk + sk)

m(xk)−m(xk + sk)
.

If ρk ≥ η1 and ‖gk‖ ≥ η2δk, set xk+1 = xk + sk and δk+1 = γδk.

Otherwise, set xk+1 = xk and δk+1 = γ−1δk.
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TRM based on probabilistic models

Lemma

For every realization of the algorithm,

lim
k→∞

δk = 0.
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TRM based on probabilistic models

Theorem

Suppose that the model sequence {Mk} is probabilistically (κeg, κef )-fully
linear for some κeg, κef > 0.

Let {Xk} be a sequence of random iterates generated by the algorithm.

Then, almost surely,
lim
k→∞

‖∇f(Xk)‖ = 0.

44/46



TRM based on probabilistic models

Theorem

Suppose that the model sequence {Mk} is probabilistically (κeg, κef )-fully
linear for some κeg, κef > 0.

Let {Xk} be a sequence of random iterates generated by the algorithm.

Then, almost surely,
lim
k→∞

‖∇f(Xk)‖ = 0.

44/46



TRM based on probabilistic models

Theorem

Suppose that the model sequence {Mk} is probabilistically (κeg, κef )-fully
linear for some κeg, κef > 0.

Let {Xk} be a sequence of random iterates generated by the algorithm.

Then, almost surely,
lim
k→∞

‖∇f(Xk)‖ = 0.

44/46



TRM based on probabilistic models

It is also possible to prove a.s. convergence to second-order critical points.
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