
Optimization ... in 45 minutes

L. Nunes Vicente

Department of Mathematics

University of Coimbra

Slides written with the help of Rohollah Garmanjani (Nima)

1/34



Presentation outline
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2 Application of Optimization (illustration by Classification)
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4 Type of Mathematics used in Optimization (illustration by Integrality,
Convexity, Non-smooth Calculus)



Importance of Optimization

Optimization has many applications in different fields such as

Pure and Applied Mathematics: auxiliary problems, bounds ...

Transportation and Management: assignment, scheduling, routing,
supply chain ...

Finance and Economics: portfolio selection, game theory ...

Engineering and Computer science: information processing,
telecommunication networks, robotics, process engineering ...

Medicine and Biology: medical imaging, diagnosing, radiation
treatment ...

And many other applications in Physics, Chemistry, Geology ...
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Importance of Optimization

Roughly 5-10% of Math. journals are in Optimization and related fields.
Here are some of Optimization journals:

Mathematical Programming Mathematical Programming Computation SIAM Journal on Optimization SIAM Journal on Control and Optimization

Mathematics of Operations Research EURO Journal on Computational Optimization Operations Research INFORMS J. Computing

Computational Optimization and Applications IIE Transactions Journal of Combinatorial Optimization Journal of Global Optimization

Optimization and Engineering Optimization Methods and Software Journal of Optimization Theory and Applications Optimization

Optimization Letters Journal of Combinatorial Optimization Discrete Optimization Annals of Operations Research

There are hundreds of software packages for solving different optimization
problems. See, for instance:

http://plato.asu.edu/guide.html

Optimization is broadly classified by AMS (under 90XX, 49XX, 65XX).
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Linear Programming (LP)

Optimizing a linear objective function subject to a number of linear
equality or inequality constraints.

maximize x1 + 2x2

subject to − x1 + x2 ≤ 2

2x1 + x2 ≤ 4

x1, x2 ≥ 0

x1

x2
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Simplex algorithm

The simplex algorithm was developed by George Dantzig in 1947.

maximize x1 + 2x2

subject to − x1 + x2 + s1 = 2

2x1 + x2 + s2 = 4

x1, x2, s1, s2 ≥ 0
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maximize x1 + 2x2

subject to − x1 + x2 + s1 = 2

2x1 + x2 + s2 = 4

x1, x2, s1, s2 ≥ 0

BV x1 x2 s1 s2 RHS

s1 −1 1 1 0 2←
s2 2 1 0 1 4
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Simplex algorithm

The simplex algorithm was developed by George Dantzig in 1947.

maximize x1 + 2x2

subject to − x1 + x2 + s1 = 2

2x1 + x2 + s2 = 4

x1, x2, s1, s2 ≥ 0

BV x1 x2 s1 s2 RHS

x2 0 1 2/3 1/3 8/3
x1 1 0 −1/3 1/3 2/3

z 0 0 1 3 6

x1

x2
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Worst case complexity of simplex algorithm

In 1973, Klee and Minty showed that the simplex algorithm performs badly
when applied to a perturbed cube.

Assume we want to minimize x3 in the following region.

The simplex algorithm meets 23 − 1 corner points before reaching the
optimal one:

x1

x3

x2
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Worst case complexity of simplex algorithm

In 1973, Klee and Minty showed that the simplex algorithm performs badly
when applied to a perturbed cube.

Assume we want to minimize x3 in the following region.

The simplex algorithm meets 23 − 1 corner points before reaching the
optimal one:

x1

x3

x2

In n dimensions, the cost is 2n − 1, which shows an exponential-time
complexity.
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The breakthrough

In 1984, Narendra Karmarkar introduced a polynomial-time algorithm for
solving LP problems.

His discovery received a huge media coverage. The news appeared in the
front page of the New York Times:
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Interior point method (central path)

The iterates, instead, follow a path inside the feasible region.

maximize x1 + 2x2

subject to − x1 + x2 ≤ 2

2x1 + x2 ≤ 4

x1, x2 ≥ 0

x1

x2
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LP polynomial-time complexity

Let n be the number of variables.

The complexity bound for Karmarkar’s algorithms is O(n) iterations
and a total of O(n3.5) bit operations.

Later, the above bound on the # iterations was improved to O(n0.5).

The complexity of LP is thus O(n3).
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The Kepler conjecture

Conjecture (Kepler)

No packing of congruent balls in R3 has density greater than face-centered
cubic (FCC) or hexagonal-close packing (HCP).

FCC packing

The optimal density is π√
18
≈ 0.74.
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A bit of history on Kepler’s conjecture

It was proposed by J. Kepler in 1611.

In 1861, Gauss proved it for regular/periodic packing.

In 1998, Thomas Hales, following L. F. Tóth in 1953, and assisted by
his graduate student Samuel Ferguson, announced the proof!
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his graduate student Samuel Ferguson, announced the proof!

Importance of Optimization (illustration by Linear Programming) 12/34



Outline of Hale’s proof (1998)

It assigns a graph to each possible packing.

There are infinitely many such graphs, but up to isomorphism only a
few thousands (L. F. Tóth).

Then, using Linear Programming, none of the remaining possibilities
has a packing denser than FCC/HPC.

In 2003, after a four-year review of twelve referees, Hale’s proof was
accepted for publication in Annals of Mathematics with 99% certainty.

The reviewers were not able to completely verify the computer
programming part...
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Support vector machine (SVM)

Suppose data points belonging to different classes are given. The goal is
to determine to which class a new point belongs to.

SVM or Classification has many applications in engineering, computer
science, bioinformatics, computational biology, etc..

Example

(Medicine) n patients with malignant tumors and m patients with
benign tumors. Based on the observed data, classify a new patient.

(Pattern Recognition) n photos of cats and m photos of dogs. Have
a device telling us whether a new photo is a cat or a dog.

Application of Optimization (illustration by Classification) 15/34
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SVM (linear classifier)

Consider the following two classes of data. If we can separate the data,
then we can decide about a new case.

x1

x2
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SVM (linear classifier)

Consider the following two classes of data. If we can separate the data,
then we can decide about a new case.

x1

x2
H1 H2 H3

H1 does not separate the data.

H2 separates data with a small margin.

H3 separates data with a maximum margin.
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SVM (linear classifier)

Assume that the following linearly separable data points have been given:

D = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}, i = 1, · · · , n},

where yi = 1 and yi = −1 represents the two classes that each xi belongs
to.

Below we have been given a set of n = 18 linearly separable data points in
R2 for classification.

x1

x2
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SVM (linear classifier)

We need to maximize the distance between the hyperplanes w>x− b = 1
and w>x− b = −1 in a way that no data point falls between them:

x1

x2
2‖w‖

w
> x

−
b
=

1
w

> x
−

b
=

−
1

w>x− b ≥ 1 when xi belongs to the class yi = 1

or
w>x′ − b ≤ −1 when xi belongs to the class yi = −1.
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SVM (linear classifier)

So, to maximize the distance we need to minimize ‖w‖. Therefore, we
have the following problem:

minimize
w,b

1

2
‖w‖2

subject to yi(w>x− b) ≥ 1, for any i = 1, . . . , n,

which is a quadratic optimization/programming problem.
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Presentation outline

1 Importance of Optimization (illustration by Linear Programming)

2 Application of Optimization (illustration by Classification)

3 Classes of Optimization Problems

4 Type of Mathematics used in Optimization (illustration by Integrality,
Convexity, Non-smooth Calculus)



Classes of Optimization problems

min f(x)

subject to x ∈ Ω
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Classes of Optimization problems

min f(x)

subject to x ∈ Ω

Linear Programming (LP)

Quadratic Programming (QP)

Conic Optimization (f linear, Ω = Polyhedron LP ∩ Cone)

Convex Optimization (f and Ω convex)
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Classes of Optimization problems

min f(x)

subject to x ∈ Ω

non-linear f

−→ Nonlinear Programming.
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non-convex f
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Classes of Optimization problems

min f(x)

subject to x ∈ Ω

f can be a vectorial function

F (x) = (f1(x), . . . , fm(x))

−→ MultiObjective Optimization.
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Classes of Optimization problems

min f(x)

subject to x ∈ Ω

The variables can take only discrete values

x ∈ Zn

−→ Combinatorial/Discrete Optimization.
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Algorithms for Optimization

Algorithm

A complicated formula to generate a sequence of points {xk}.

When rigorous, one is able to prove convergence, e.g.,

xk = x∗ for some k or lim
k→+∞

∇f(xk) = 0.

When not rigorous, it is a HEURISTIC.
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Integer LP

maximize x1 + 2x2

subject to − x1 + x2 ≤ 2

x1 + x2 ≤ 3

x1, x2 ∈ Z+

x1

x2
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The solution of the LP relaxation is not integer.
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Integer LP

maximize x1 + 2x2

subject to − x1 + x2 ≤ 2

x1 + x2 ≤ 3

x1, x2 ≥ 0
x1

x2

The solution of the LP relaxation is not integer.

maximize x1 + 2x2

subject to x1 + x2 ≤ 2

x1, x2 ≥ 0

x1

x2

The solution of the LP relaxation is integer.
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Total unimodularity

A matrix is totally unimodular (TU) if the determinant of every square
submatrix has value -1, 0, or 1.

The matrix

[
1 0 1
1 −1 0

]
is TU.

The matrix

[
1 0 1
1 −1 −1

]
is not TU.

When A is TU and b is an integer vector, then every vertex of

{x ∈ Rn : Ax ≤ b, x ≥ 0}

is integer (i.e., the polyhedron is integral).
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A TU example

The incidence matrix of

1

2

3

4

e1

e2

e3

e4

e5

e6

is

A =


−1 −1 0 0 0 +1
+1 0 −1 −1 0 0

0 +1 +1 0 −1 0
0 0 0 +1 +1 −1

 .
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A TU example

The incidence matrix of a (directed) graph is TU.

Thus, the shortest path problem between nodes s and t

minimize
∑
u→v

cu→vxu→v

subject to
∑
u

xu→v −
∑
w

xv→w =


0 if v 6= s, t
−1 if v = s
1 if v = t

xu→v ≥ 0

xu→v ∈ {0, 1}

can be solved polynomially (since the solution of the LP relaxation is
integer).
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Convexity (local/global and uniqueness)

Local/Global:

If f is convex in S convex, then every local minimizer of f is global.

Uniqueness:

If f is strictly convex in S convex and ∃ a global minimizer, it is unique.

(a) f not convex (b) f not strictly convex
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Convexity (existence)

Existence (general):

If f is continuous in Ω bounded and closed (i.e., compact in finite
dimensions), then ∃ minimizer (and maximizer) — Weirstrass Theorem.

Existence (using convexity):

If f is continuous and strongly/uniformly convex in S convex and closed,
then ∃ a unique minimizer.

(a) no minimizer (b) ∃1 minimizer
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Non-smooth calculus (directional derivative)

Definition

For f : Rn −→ R Lipschitz continuous near x, the Clarke generalized
directional derivative is:

f◦(x; d) = lim sup
y→x t↓0

f(y + td)− f(y)

t
.

What does this lim sup exactly mean?

lim sup
y→x t↓0

f(y + td)− f(y)

t
= lim

ε↓0
sup

‖y−x‖≤ε,0<t≤ε

{
f(y + td)− f(y)

t

}
.
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Non-smooth calculus (subdifferential)

Definition

Let f be Lipschitz cont. near x. The Clarke subdifferential is given by:

∂f(x) = {s ∈ Rn : f◦(x; v) ≥ 〈v, s〉, ∀v ∈ Rn}.

x1

x2
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Non-smooth calculus (subdifferential)

Definition

Let f be Lipschitz cont. near x. The Clarke subdifferential is given by:

∂f(x) = {s ∈ Rn : f◦(x; v) ≥ 〈v, s〉, ∀v ∈ Rn}.

x1

x2

At the origin, ∂f(0) = [−1, 1].
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First order stationarity

If f is increasing from x, along d, then

f◦(x; d) ≥ 0.

First order stationarity (Clarke)

If x∗ is a local minimizer, f◦(x∗; v) ≥ 0, ∀v ∈ Rn or, equivalently,
0 ∈ ∂f(x∗).
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Example of use of non-smooth calculus in Optimization

Suppose xk → x∗, αk → 0 ∈ R, and dk → d for some infinite sequence K.
Then:

f◦(x∗; d) = lim sup
y→x∗,t↓0

f(y + td)− f(y)

t

= lim sup
k∈K

{
f(xk + αkdk)− f(xk)

αk

}
≥ 0

... if an Optimization algorithm can generate a subsequence of K such
that

f(xk + αkdk) ≥ f(xk).
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