#### Optimization ... in 45 minutes

#### L. Nunes Vicente

Department of Mathematics University of Coimbra

Slides written with the help of Rohollah Garmanjani (Nima)



2 Application of Optimization (illustration by Classification)

3 Classes of Optimization Problems

Type of Mathematics used in Optimization (illustration by Integrality, Convexity, Non-smooth Calculus)

• Pure and Applied Mathematics: auxiliary problems, bounds ...

#### Importance of Optimization

- Pure and Applied Mathematics: auxiliary problems, bounds ...
- Transportation and Management: assignment, scheduling, routing, supply chain ...

- Pure and Applied Mathematics: auxiliary problems, bounds ...
- Transportation and Management: assignment, scheduling, routing, supply chain ...
- Finance and Economics: portfolio selection, game theory ...

- Pure and Applied Mathematics: auxiliary problems, bounds ...
- Transportation and Management: assignment, scheduling, routing, supply chain ...
- Finance and Economics: portfolio selection, game theory ...
- Engineering and Computer science: information processing, telecommunication networks, robotics, process engineering ...

- Pure and Applied Mathematics: auxiliary problems, bounds ...
- Transportation and Management: assignment, scheduling, routing, supply chain ...
- Finance and Economics: portfolio selection, game theory ...
- Engineering and Computer science: information processing, telecommunication networks, robotics, process engineering ...
- Medicine and Biology: medical imaging, diagnosing, radiation treatment ...

- Pure and Applied Mathematics: auxiliary problems, bounds ...
- Transportation and Management: assignment, scheduling, routing, supply chain ...
- Finance and Economics: portfolio selection, game theory ...
- Engineering and Computer science: information processing, telecommunication networks, robotics, process engineering ...
- Medicine and Biology: medical imaging, diagnosing, radiation treatment ...

And many other applications in Physics, Chemistry, Geology ...

# Roughly 5-10% of Math. journals are in Optimization and related fields. Here are some of Optimization journals:

| Mathematical Programming                    | Mathematical Programming Computation                                | SIAM Journal on Optimization                    | SIAM Journal on Control and Optimization |  |
|---------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|--|
| Mathematics of Operations Research          | s of Operations Research EURO Journal on Computational Optimization |                                                 | INFORMS J. Computing                     |  |
| Computational Optimization and Applications | IIE Transactions                                                    | Journal of Combinatorial Optimization           | Journal of Global Optimization           |  |
| Optimization and Engineering                | Optimization Methods and Software                                   | Journal of Optimization Theory and Applications | Optimization                             |  |
| Optimization Letters                        | Journal of Combinatorial Optimization                               | Discrete Optimization                           | Annals of Operations Research            |  |

# Roughly 5-10% of Math. journals are in Optimization and related fields. Here are some of Optimization journals:

| Mathematical Programming                    | Mathematical Programming Computation                        | SIAM Journal on Optimization | SIAM Journal on Control and Optimization |  |
|---------------------------------------------|-------------------------------------------------------------|------------------------------|------------------------------------------|--|
| Mathematics of Operations Research          | omputational Optimization and Applications IIE Transactions |                              | INFORMS J. Computing                     |  |
| Computational Optimization and Applications |                                                             |                              | Journal of Global Optimization           |  |
| Optimization and Engineering                |                                                             |                              | Optimization                             |  |
| Optimization Letters                        | Journal of Combinatorial Optimization                       | Discrete Optimization        | Annals of Operations Research            |  |

There are hundreds of software packages for solving different optimization problems. See, for instance:

#### http://plato.asu.edu/guide.html

# Roughly 5-10% of Math. journals are in Optimization and related fields. Here are some of Optimization journals:

| Mathematical Programming                    | Mathematical Programming Computation                        | SIAM Journal on Optimization                    | SIAM Journal on Control and Optimization |  |
|---------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|------------------------------------------|--|
| Mathematics of Operations Research          | EURO Journal on Computational Optimization                  | Operations Research                             | INFORMS J. Computing                     |  |
| Computational Optimization and Applications | omputational Optimization and Applications IIE Transactions |                                                 | Journal of Global Optimization           |  |
| Optimization and Engineering                | Optimization Methods and Software                           | Journal of Optimization Theory and Applications | Optimization                             |  |
| Optimization Letters                        | Journal of Combinatorial Optimization                       | Discrete Optimization                           | Annals of Operations Research            |  |

There are hundreds of software packages for solving different optimization problems. See, for instance:

#### http://plato.asu.edu/guide.html

Optimization is broadly classified by AMS (under 90XX, 49XX, 65XX).

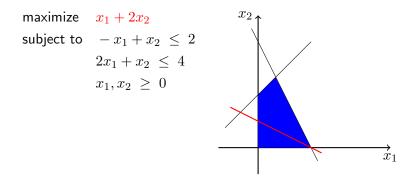
Optimizing a linear objective function subject to a number of linear equality or inequality constraints.

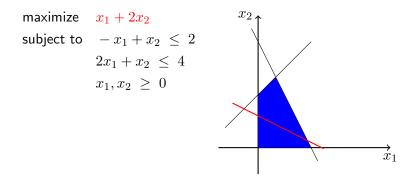
Optimizing a linear objective function subject to a number of linear equality or inequality constraints.

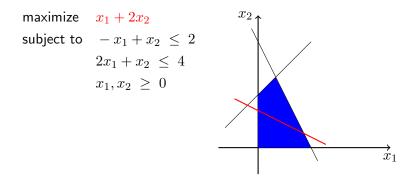
Optimizing a linear objective function subject to a number of linear equality or inequality constraints.

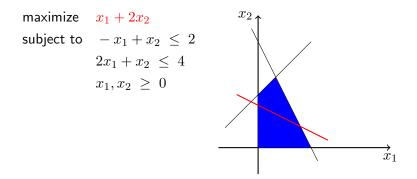
Optimizing a linear objective function subject to a number of linear equality or inequality constraints.

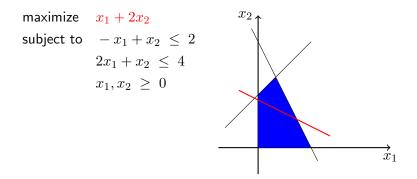
Optimizing a linear objective function subject to a number of linear equality or inequality constraints.

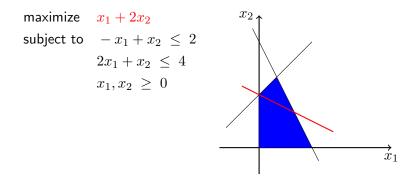


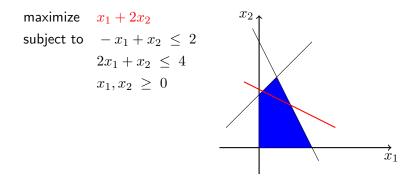


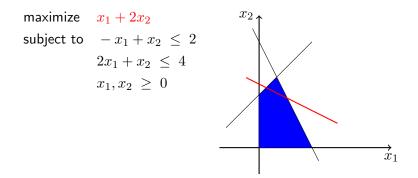


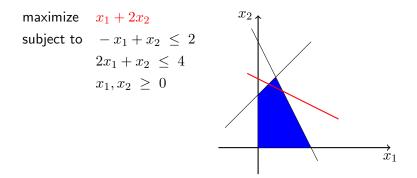


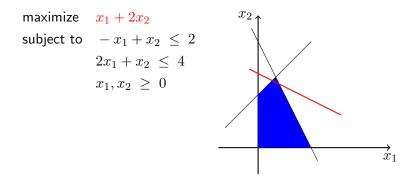


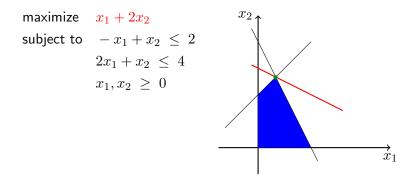








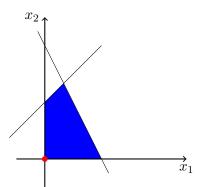




maximize 
$$x_1 + 2x_2$$
  
subject to  $-x_1 + x_2 + s_1 = 2$   
 $2x_1 + x_2 + s_2 = 4$   
 $x_1, x_2, s_1, s_2 \ge 0$ 

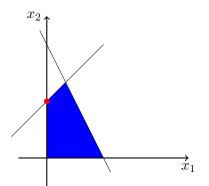
maximize 
$$x_1 + 2x_2$$
  
subject to  $-x_1 + x_2 + s_1 = 2$   
 $2x_1 + x_2 + s_2 = 4$   
 $x_1, x_2, s_1, s_2 \ge 0$ 

| BV    | $x_1$ | $x_2$        | $s_1$ | $s_2$ | RHS |
|-------|-------|--------------|-------|-------|-----|
| $s_1$ | -1    | 1            | 1     | 0     | 2←  |
| $s_2$ | 2     | 1            | 0     | 1     | 4   |
| z     | -1    | $-2\uparrow$ | 0     | 0     | 0   |



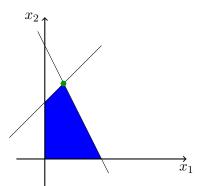
maximize 
$$x_1 + 2x_2$$
  
subject to  $-x_1 + x_2 + s_1 = 2$   
 $2x_1 + x_2 + s_2 = 4$   
 $x_1, x_2, s_1, s_2 \ge 0$ 

| BV    | $x_1$        | $x_2$ | $s_1$ | $s_2$ | RHS |
|-------|--------------|-------|-------|-------|-----|
| $x_2$ | -1           | 1     | 1     | 0     | 2   |
| $s_2$ | 3            | 0     | -1    | 1     | 2←  |
| z     | $-3\uparrow$ | 0     | 2     | 0     | 4   |



maximize 
$$x_1 + 2x_2$$
  
subject to  $-x_1 + x_2 + s_1 = 2$   
 $2x_1 + x_2 + s_2 = 4$   
 $x_1, x_2, s_1, s_2 \ge 0$ 

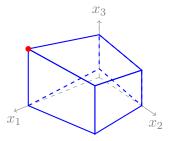
|   | ΒV    | $x_1$ | $x_2$ | $s_1$ | $s_2$ | RHS               |
|---|-------|-------|-------|-------|-------|-------------------|
| ľ | $x_2$ | 0     | 1     | 2/3   | 1/3   | $\frac{8/3}{2/3}$ |
|   | $x_1$ | 1     | 0     | -1/3  | 1/3   | 2/3               |
|   | z     | 0     | 0     | 1     | 3     | 6                 |



In 1973, Klee and Minty showed that the simplex algorithm performs badly when applied to a perturbed cube.

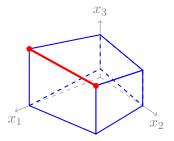
In 1973, Klee and Minty showed that the simplex algorithm performs badly when applied to a perturbed cube.

Assume we want to minimize  $x_3$  in the following region.



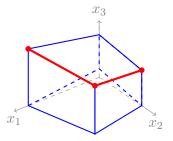
In 1973, Klee and Minty showed that the simplex algorithm performs badly when applied to a perturbed cube.

Assume we want to minimize  $x_3$  in the following region.



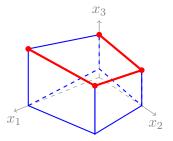
In 1973, Klee and Minty showed that the simplex algorithm performs badly when applied to a perturbed cube.

Assume we want to minimize  $x_3$  in the following region.



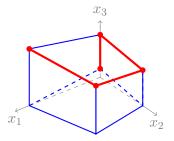
In 1973, Klee and Minty showed that the simplex algorithm performs badly when applied to a perturbed cube.

Assume we want to minimize  $x_3$  in the following region.



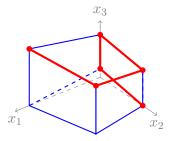
In 1973, Klee and Minty showed that the simplex algorithm performs badly when applied to a perturbed cube.

Assume we want to minimize  $x_3$  in the following region.



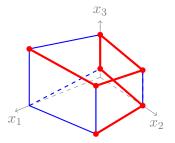
In 1973, Klee and Minty showed that the simplex algorithm performs badly when applied to a perturbed cube.

Assume we want to minimize  $x_3$  in the following region.



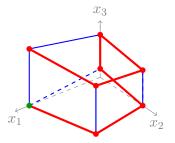
In 1973, Klee and Minty showed that the simplex algorithm performs badly when applied to a perturbed cube.

Assume we want to minimize  $x_3$  in the following region.



In 1973, Klee and Minty showed that the simplex algorithm performs badly when applied to a perturbed cube.

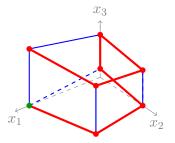
Assume we want to minimize  $x_3$  in the following region.



In 1973, Klee and Minty showed that the simplex algorithm performs badly when applied to a perturbed cube.

Assume we want to minimize  $x_3$  in the following region.

The simplex algorithm meets  $2^3 - 1$  corner points before reaching the optimal one:



In *n* dimensions, the cost is  $2^n - 1$ , which shows an exponential-time complexity.

## The breakthrough

In 1984, Narendra Karmarkar introduced a polynomial-time algorithm for solving LP problems.

### The breakthrough

In 1984, Narendra Karmarkar introduced a polynomial-time algorithm for solving LP problems.

His discovery received a huge media coverage. The news appeared in the front page of the New York Times:

| By JANE | (2, 2, 2, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | V = C<br>V |



Karmerkar at Ball Labe: an equation to find a new way through the mate

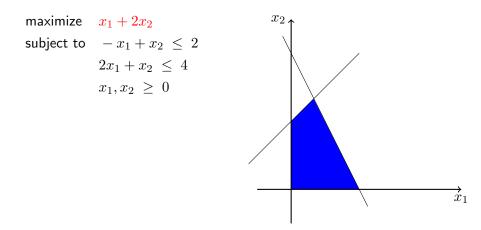
| Folding | the | Perfect | Corner |
|---------|-----|---------|--------|
|---------|-----|---------|--------|

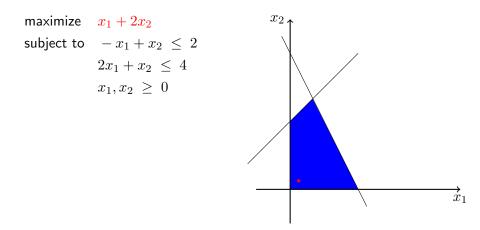
| A young | Bell | scientist | makes a | main | stath | breakthrough |  |
|---------|------|-----------|---------|------|-------|--------------|--|

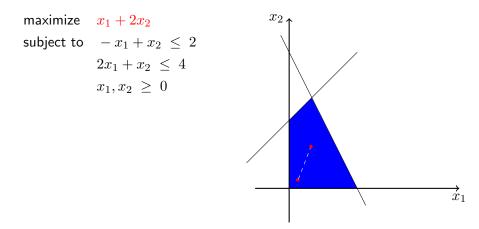
| For an 1200 Anapticas Archive iso<br>investores that 100, Meson, Chandras and<br>an Coffberg, comparing in 100, Hear and Book<br>production of the second second second second<br>second second second second second second second second<br>second second second second second second second<br>second s | Induce term candidation and the first of the first operation operation of the first operation |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| problems mapires the use of an abstrace<br>branch of mathematics known as linear pro-<br>gramming. It is the kind of math that has<br>frustrated theoreticals for years, and even the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Before the Karmarkar method, licear equo-<br>tions could be solved only in a cumberscore<br>fachion, invasially known as the simplers<br>method, deviaed by Mathematician George                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

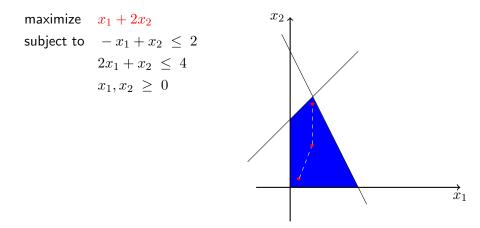
TIME MAGAZINE, December 3, 1984

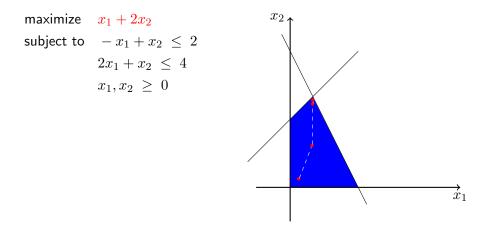
THE NEW YORK TIMES, November 19, 1984

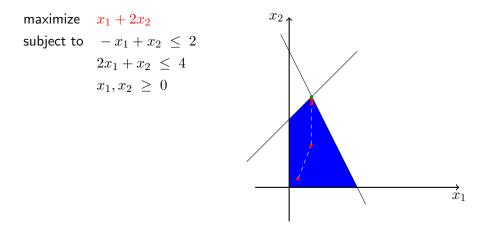












Let n be the number of variables.

Let n be the number of variables.

• The complexity bound for Karmarkar's algorithms is  $\mathcal{O}(n)$  iterations and a total of  $\mathcal{O}(n^{3.5})$  bit operations.

Let n be the number of variables.

- The complexity bound for Karmarkar's algorithms is  $\mathcal{O}(n)$  iterations and a total of  $\mathcal{O}(n^{3.5})$  bit operations.
- Later, the above bound on the # iterations was improved to  $\mathcal{O}(n^{0.5})$ .

Let n be the number of variables.

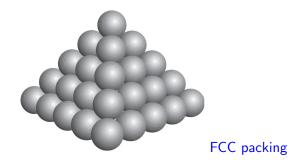
- The complexity bound for Karmarkar's algorithms is  $\mathcal{O}(n)$  iterations and a total of  $\mathcal{O}(n^{3.5})$  bit operations.
- Later, the above bound on the # iterations was improved to  $\mathcal{O}(n^{0.5})$ .
- The complexity of LP is thus  $\mathcal{O}(n^3)$ .

### Conjecture (Kepler)

No packing of congruent balls in  $\mathbb{R}^3$  has density greater than face-centered cubic (FCC) or hexagonal-close packing (HCP).

### Conjecture (Kepler)

No packing of congruent balls in  $\mathbb{R}^3$  has density greater than face-centered cubic (FCC) or hexagonal-close packing (HCP).



The optimal density is  $\frac{\pi}{\sqrt{18}} \approx 0.74$ .

### A bit of history on Kepler's conjecture

• It was proposed by J. Kepler in 1611.

## A bit of history on Kepler's conjecture

- It was proposed by J. Kepler in 1611.
- In 1861, Gauss proved it for regular/periodic packing.

### A bit of history on Kepler's conjecture

- It was proposed by J. Kepler in 1611.
- In 1861, Gauss proved it for regular/periodic packing.
- In 1998, Thomas Hales, following L. F. Tóth in 1953, and assisted by his graduate student Samuel Ferguson, announced the proof!



• It assigns a graph to each possible packing.

- It assigns a graph to each possible packing.
- There are infinitely many such graphs, but up to isomorphism only a few thousands (L. F. Tóth).

- It assigns a graph to each possible packing.
- There are infinitely many such graphs, but up to isomorphism only a few thousands (L. F. Tóth).
- Then, using Linear Programming, none of the remaining possibilities has a packing denser than FCC/HPC.

- It assigns a graph to each possible packing.
- There are infinitely many such graphs, but up to isomorphism only a few thousands (L. F. Tóth).
- Then, using Linear Programming, none of the remaining possibilities has a packing denser than FCC/HPC.

In 2003, after a four-year review of twelve referees, Hale's proof was accepted for publication in Annals of Mathematics with 99% certainty.

- It assigns a graph to each possible packing.
- There are infinitely many such graphs, but up to isomorphism only a few thousands (L. F. Tóth).
- Then, using Linear Programming, none of the remaining possibilities has a packing denser than FCC/HPC.

In 2003, after a four-year review of twelve referees, Hale's proof was accepted for publication in Annals of Mathematics with 99% certainty.

The reviewers were not able to completely verify the computer programming part...

Importance of Optimization (illustration by Linear Programming)

### 2 Application of Optimization (illustration by Classification)

3 Classes of Optimization Problems

 Type of Mathematics used in Optimization (illustration by Integrality, Convexity, Non-smooth Calculus)

SVM or Classification has many applications in engineering, computer science, bioinformatics, computational biology, etc..

SVM or Classification has many applications in engineering, computer science, bioinformatics, computational biology, etc..

#### Example

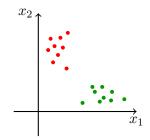
• (Medicine) *n* patients with malignant tumors and *m* patients with benign tumors. Based on the observed data, classify a new patient.

SVM or Classification has many applications in engineering, computer science, bioinformatics, computational biology, etc..

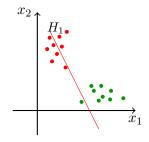
#### Example

- (Medicine) *n* patients with malignant tumors and *m* patients with benign tumors. Based on the observed data, classify a new patient.
- (Pattern Recognition) *n* photos of cats and *m* photos of dogs. Have a device telling us whether a new photo is a cat or a dog.

Consider the following two classes of data. If we can separate the data, then we can decide about a new case.

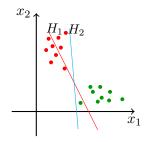


Consider the following two classes of data. If we can separate the data, then we can decide about a new case.



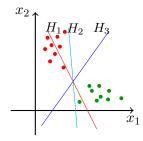
•  $H_1$  does not separate the data.

Consider the following two classes of data. If we can separate the data, then we can decide about a new case.



- $H_1$  does not separate the data.
- $H_2$  separates data with a small margin.

Consider the following two classes of data. If we can separate the data, then we can decide about a new case.



- $H_1$  does not separate the data.
- $H_2$  separates data with a small margin.
- $H_3$  separates data with a maximum margin.

Assume that the following linearly separable data points have been given:

$$\mathcal{D} = \{ (x^i, y^i) \mid x^i \in \mathbb{R}^p, y^i \in \{-1, 1\}, i = 1, \cdots, n \},\$$

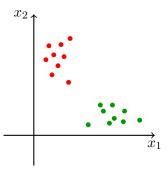
where  $y^i = 1$  and  $y^i = -1$  represents the two classes that each  $x^i$  belongs to.

Assume that the following linearly separable data points have been given:

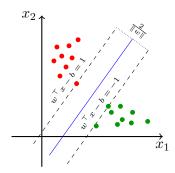
$$\mathcal{D} = \{ (x^i, y^i) \mid x^i \in \mathbb{R}^p, y^i \in \{-1, 1\}, i = 1, \cdots, n \},\$$

where  $y^i = 1$  and  $y^i = -1$  represents the two classes that each  $x^i$  belongs to.

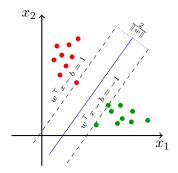
Below we have been given a set of n=18 linearly separable data points in  $\mathbb{R}^2$  for classification.



We need to maximize the distance between the hyperplanes  $w^{\top}x - b = 1$ and  $w^{\top}x - b = -1$  in a way that no data point falls between them:



We need to maximize the distance between the hyperplanes  $w^{\top}x - b = 1$ and  $w^{\top}x - b = -1$  in a way that no data point falls between them:



 $w^{ op}x - b \geq 1$  when  $x^i$  belongs to the class  $y^i = 1$ 

or

$$w^{ op}x' - b \leq -1$$
 when  $x^i$  belongs to the class  $y^i = -1$ 

So, to maximize the distance we need to minimize ||w||. Therefore, we have the following problem:

which is a quadratic optimization/programming problem.

Importance of Optimization (illustration by Linear Programming)

Application of Optimization (illustration by Classification)

#### 3 Classes of Optimization Problems

 Type of Mathematics used in Optimization (illustration by Integrality, Convexity, Non-smooth Calculus)

 $\begin{array}{ll} \min & f(x) \\ \text{subject to} & x \in \Omega \end{array}$ 

 $\begin{array}{ll} \min & f(x) \\ \text{subject to} & x \in \Omega \end{array}$ 

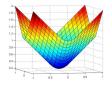
Linear Programming (LP)

Quadratic Programming (QP)

Conic Optimization (f linear,  $\Omega = Polyhedron LP \cap Cone$ )

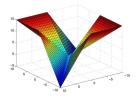
Convex Optimization (f and  $\Omega$  convex)

 $\begin{array}{ll} \min & f(x) \\ \text{subject to} & x \in \Omega \end{array}$ 



#### non-linear f $\longrightarrow$ Nonlinear Programming.

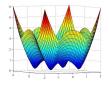
 $\begin{array}{ll} \min & f(x) \\ \text{subject to} & x \in \Omega \end{array}$ 



#### non-differentiable f

 $\longrightarrow$  Non-differentiable Optimization.

 $\begin{array}{ll} \min & f(x) \\ \text{subject to} & x \in \Omega \end{array}$ 



# $\begin{array}{l} \mbox{non-convex} \ f \\ \longrightarrow \mbox{Global Optimization}. \end{array}$

 $\begin{array}{ll} \min & f(x) \\ \text{subject to} & x \in \Omega \end{array}$ 

f can be a vectorial function  $F(x) = (f_1(x), \dots, f_m(x))$  $\longrightarrow$  MultiObjective Optimization.

 $\begin{array}{ll} \min & f(x) \\ \text{subject to} & x \in \Omega \end{array}$ 

#### The variables can take only discrete values

 $x \in \mathbb{Z}^n$ 

 $\rightarrow$  Combinatorial/Discrete Optimization.

#### Algorithm

A complicated formula to generate a sequence of points  $\{x_k\}$ .

#### Algorithm

A complicated formula to generate a sequence of points  $\{x_k\}$ .

When rigorous, one is able to prove convergence, e.g.,

$$x_k = x_*$$
 for some  $k$  or  $\lim_{k \to +\infty} \nabla f(x_k) = 0.$ 

#### Algorithm

A complicated formula to generate a sequence of points  $\{x_k\}$ .

When rigorous, one is able to prove convergence, e.g.,

$$x_k = x_*$$
 for some  $k$  or  $\lim_{k \to +\infty} \nabla f(x_k) = 0$ .

When not rigorous, it is a HEURISTIC.

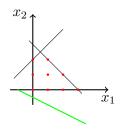
Importance of Optimization (illustration by Linear Programming)

2 Application of Optimization (illustration by Classification)

3 Classes of Optimization Problems

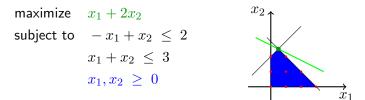
Type of Mathematics used in Optimization (illustration by Integrality, Convexity, Non-smooth Calculus)

maximize  $x_1 + 2x_2$ subject to  $-x_1 + x_2 \leq 2$  $x_1 + x_2 \leq 3$  $x_1, x_2 \in \mathbb{Z}^+$ 



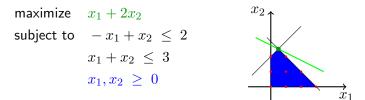


The solution of the LP relaxation is not integer.



The solution of the LP relaxation is not integer.

maximize  $x_1 + 2x_2$ subject to  $x_1 + x_2 \le 2$  $x_1, x_2 \in \mathbb{Z}^+$ 



The solution of the LP relaxation is not integer.

maximize  $x_1 + 2x_2$ subject to  $x_1 + x_2 \le 2$  $x_1, x_2 \ge 0$ 

The solution of the LP relaxation is integer.

A matrix is totally unimodular (TU) if the determinant of every square submatrix has value -1, 0, or 1.

A matrix is totally unimodular (TU) if the determinant of every square submatrix has value -1, 0, or 1.

• The matrix 
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$
 is TU.

A matrix is totally unimodular (TU) if the determinant of every square submatrix has value -1, 0, or 1.

• The matrix 
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$
 is TU.  
• The matrix  $\begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}$  is not TU.

A matrix is totally unimodular (TU) if the determinant of every square submatrix has value -1, 0, or 1.

• The matrix 
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$
 is TU.  
• The matrix  $\begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}$  is not TU.

When A is TU and b is an integer vector, then every vertex of

$$\{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$$

A matrix is totally unimodular (TU) if the determinant of every square submatrix has value -1, 0, or 1.

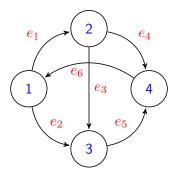
• The matrix 
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$
 is TU.  
• The matrix  $\begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}$  is not TU.

When A is TU and b is an integer vector, then every vertex of

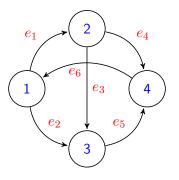
$$\{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$$

is integer (i.e., the polyhedron is integral).

#### The incidence matrix of



#### The incidence matrix of



is

$$A = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 & +1 \\ +1 & 0 & -1 & -1 & 0 & 0 \\ 0 & +1 & +1 & 0 & -1 & 0 \\ 0 & 0 & 0 & +1 & +1 & -1 \end{bmatrix}$$

.

The incidence matrix of a (directed) graph is TU.

The incidence matrix of a (directed) graph is TU.

Thus, the shortest path problem between nodes s and t

The incidence matrix of a (directed) graph is TU.

Thus, the shortest path problem between nodes s and t

$$\begin{array}{ll} \text{minimize} & \sum_{u \to v} c_{u \to v} x_{u \to v} \\ \text{subject to} & \sum_{u} x_{u \to v} - \sum_{w} x_{v \to w} \ = \ \begin{cases} 0 & \text{if } v \neq s, t \\ -1 & \text{if } v = s \\ 1 & \text{if } v = t \end{cases} \\ x_{u \to v} \geq 0 \\ x_{u \to v} \in \{0, 1\} \end{array}$$

The incidence matrix of a (directed) graph is TU.

Thus, the shortest path problem between nodes s and t

$$\begin{array}{ll} \text{minimize} & \sum_{u \to v} c_{u \to v} x_{u \to v} \\ \text{subject to} & \sum_{u} x_{u \to v} - \sum_{w} x_{v \to w} \ = \ \begin{cases} 0 & \text{if } v \neq s, t \\ -1 & \text{if } v = s \\ 1 & \text{if } v = t \end{cases} \\ x_{u \to v} \geq 0 \\ x_{u \to v} \in \{0, 1\} \end{cases}$$

can be solved polynomially (since the solution of the LP relaxation is integer).

Local/Global:

Local/Global:

If f is convex, then every local minimizer of f is global.

Local/Global:

If f is convex, then every local minimizer of f is global.

Uniqueness:

Local/Global:

If f is convex in S convex, then every local minimizer of f is global.

Uniqueness:

If f is strictly convex in S convex and  $\exists$  a global minimizer, it is unique.

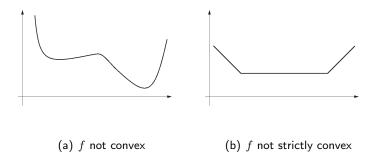
# Convexity (local/global and uniqueness)

Local/Global:

If f is convex in S convex, then every local minimizer of f is global.

Uniqueness:

If f is strictly convex in S convex and  $\exists$  a global minimizer, it is unique.



# Convexity (existence)

Existence (general):

If f is continuous in  $\Omega$  bounded and closed (i.e., compact in finite dimensions), then  $\exists$  minimizer (and maximizer) — Weirstrass Theorem.

If f is continuous in  $\Omega$  bounded and closed (i.e., compact in finite dimensions), then  $\exists$  minimizer (and maximizer) — Weirstrass Theorem.

Existence (using convexity):

If f is continuous in  $\Omega$  bounded and closed (i.e., compact in finite dimensions), then  $\exists$  minimizer (and maximizer) — Weirstrass Theorem.

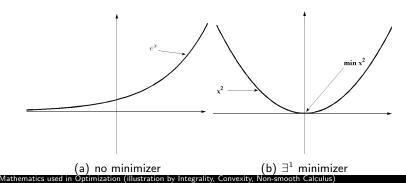
Existence (using convexity):

If f is continuous and strongly/uniformly convex in S convex and closed, then  $\exists$  a unique minimizer.

If f is continuous in  $\Omega$  bounded and closed (i.e., compact in finite dimensions), then  $\exists$  minimizer (and maximizer) — Weirstrass Theorem.

Existence (using convexity):

If f is continuous and strongly/uniformly convex in S convex and closed, then  $\exists$  a unique minimizer.



# Non-smooth calculus (directional derivative)

#### Definition

For  $f : \mathbb{R}^n \longrightarrow \mathbb{R}$  Lipschitz continuous near x, the Clarke generalized directional derivative is:

$$f^{\circ}(x;d) = \limsup_{y \to x} \sup_{t \downarrow 0} \frac{f(y+td) - f(y)}{t}.$$

# Non-smooth calculus (directional derivative)

#### Definition

For  $f : \mathbb{R}^n \longrightarrow \mathbb{R}$  Lipschitz continuous near x, the Clarke generalized directional derivative is:

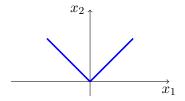
$$f^{\circ}(x;d) = \limsup_{y \to x} \sup_{t \downarrow 0} \frac{f(y+td) - f(y)}{t}.$$

What does this  $\limsup$ exactly mean?

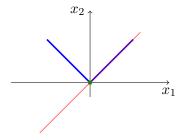
$$\limsup_{y \to x} \frac{f(y+td) - f(y)}{t} = \lim_{\epsilon \downarrow 0} \sup_{\|y-x\| \le \epsilon, 0 < t \le \epsilon} \left\{ \frac{f(y+td) - f(y)}{t} \right\}.$$

$$\partial f(x) = \{ s \in \mathbb{R}^n : f^{\circ}(x; v) \ge \langle v, s \rangle, \ \forall v \in \mathbb{R}^n \}$$

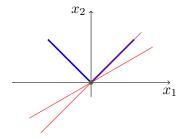
$$\partial f(x) = \{ s \in \mathbb{R}^n : f^{\circ}(x; v) \ge \langle v, s \rangle, \ \forall v \in \mathbb{R}^n \}$$



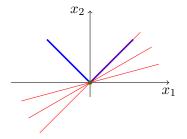
$$\partial f(x) = \{ s \in \mathbb{R}^n : f^{\circ}(x; v) \ge \langle v, s \rangle, \ \forall v \in \mathbb{R}^n \}$$



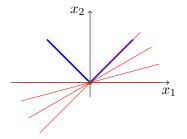
$$\partial f(x) = \{ s \in \mathbb{R}^n : f^{\circ}(x; v) \ge \langle v, s \rangle, \ \forall v \in \mathbb{R}^n \}.$$



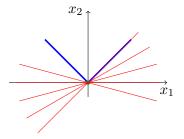
$$\partial f(x) = \{ s \in \mathbb{R}^n : f^{\circ}(x; v) \ge \langle v, s \rangle, \ \forall v \in \mathbb{R}^n \}.$$



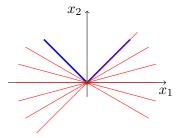
$$\partial f(x) = \{ s \in \mathbb{R}^n : f^{\circ}(x; v) \ge \langle v, s \rangle, \ \forall v \in \mathbb{R}^n \}.$$



$$\partial f(x) = \{ s \in \mathbb{R}^n : f^{\circ}(x; v) \ge \langle v, s \rangle, \ \forall v \in \mathbb{R}^n \}.$$

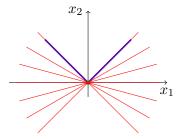


$$\partial f(x) = \{ s \in \mathbb{R}^n : f^{\circ}(x; v) \ge \langle v, s \rangle, \ \forall v \in \mathbb{R}^n \}.$$



Let f be Lipschitz cont. near x. The Clarke subdifferential is given by:

$$\partial f(x) = \{ s \in \mathbb{R}^n : f^{\circ}(x; v) \ge \langle v, s \rangle, \ \forall v \in \mathbb{R}^n \}.$$



At the origin,  $\partial f(0) = [-1, 1]$ .

# First order stationarity

If f is increasing from x, along d, then

$$f^{\circ}(x;d) \geq 0.$$

# First order stationarity

If f is increasing from x, along d, then

 $f^{\circ}(x;d) \ge 0.$ 

#### First order stationarity (Clarke)

If  $x_*$  is a local minimizer,  $f^{\circ}(x_*; v) \ge 0$ ,  $\forall v \in \mathbb{R}^n$  or, equivalently,  $0 \in \partial f(x_*)$ .

Suppose  $x_k \to x_*$ ,  $\alpha_k \to 0 \in \mathbb{R}$ , and  $d_k \to d$  for some infinite sequence K. Then:

Suppose  $x_k \to x_*$ ,  $\alpha_k \to 0 \in \mathbb{R}$ , and  $d_k \to d$  for some infinite sequence K. Then:

$$f^{\circ}(x_*;d) = \limsup_{y \to x_*, t \downarrow 0} \frac{f(y+td) - f(y)}{t}$$

Suppose  $x_k \to x_*$ ,  $\alpha_k \to 0 \in \mathbb{R}$ , and  $d_k \to d$  for some infinite sequence K. Then:

$$f^{\circ}(x_*;d) = \limsup_{y \to x_*, t \downarrow 0} \frac{f(y+td) - f(y)}{t}$$
$$= \limsup_{k \in K} \left\{ \frac{f(x_k + \alpha_k d_k) - f(x_k)}{\alpha_k} \right\}$$

Suppose  $x_k \to x_*$ ,  $\alpha_k \to 0 \in \mathbb{R}$ , and  $d_k \to d$  for some infinite sequence K. Then:

$$f^{\circ}(x_{*};d) = \limsup_{y \to x_{*}, t \downarrow 0} \frac{f(y+td) - f(y)}{t}$$
$$= \limsup_{k \in K} \left\{ \frac{f(x_{k} + \alpha_{k}d_{k}) - f(x_{k})}{\alpha_{k}} \right\}$$
$$\geq 0$$

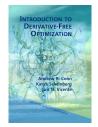
 $\ldots$  if an Optimization algorithm can generate a subsequence of K such that

$$f(x_k + \alpha_k d_k) \ge f(x_k).$$

### Luis Nunes Vicente



http://www.mat.uc.pt/~lnv



Introduction to Derivative-Free Optimization

My research interests include the development and analysis of numerical methods for large-scale nonlinear programming, sparse optimization, PDE constrained optimization problems, and derivative-free optimization problems, and applications in computational sciences, engineering, and finance.