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Problem Features

Multiobjective Derivative-Free Optimization

min f(z) = (A@) foe),- -, fm@))T

fi :R*" 2 RU{+o00}, j=1,.... m2>1

@ several objectives, often conflicting

@ functions with unknown derivatives

@ expensive function evaluations, possibly
subject to noise

@ source code not available for use
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@ unpractical to compute approximations to
\ ' derivatives
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Multiobjective Optimization

Pareto Dominance
z <y (v dominates y) <= f(z) <5 f(y) <=

f(z) < f(y), with f(x) # f(y)

@ B dominates A A
o C dominates D ¢
@ B and C are nondominated B
°
.C oD

Pareto Front: {B,C}
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Direct MultiSearch (DMS) Main Lines

@ keeps a list of feasible nondominated points
@ poll centers are chosen from the list

@ successful iterations correspond to list changes,

an iteration is successful only if it produces a feasible nondominated
point



Poll Step Example — Biojective
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Poll Step Example — Biojective
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Poll Step Example — Biojective
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Direct MultiSearch (DMS) Main Lines

@ makes use of search/poll paradigm
@ incorporates an optional search step (only to disseminate the search)

@ but, again, tries to capture the whole Pareto front from the polling
procedure



Direct MultiSearch — MultiObjective Optimization

INITIALIZATION

Choose zy € Q with f(xzg) < +o0,

ag > 0. Set Lo = {(l’o;ao)}
¥

SELECTION OF ITERATE POINT

Order Ly, and select (zy;ax) € Ly
Y

SEARCH STEP (OPTIONAL)

Evaluate a finite set of points Lqgq = {(2s; k) ses | Suc _

(Lk;Ladd) — Lfiltered — Ltrial
¥ Unsuc

PoLL STEP

Evaluate L,qq = {(zx + ard; i), d € Dy} Suc _

(LiiLadd) = Lfitterea = Ltrial
¥ Unsuc

‘ Decrease the step size ‘

26/73



Numerical Example — Problem SP1 (Huband et al. [2005])

Iteration 0
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Numerical Example — Problem SP1 (Huband et al. [2005])

Iteration 100

¢ Evaluated poll points
¢ Evaluated points since beginning
Current iterate list
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Plenty of Algorithmic Flexibility in DMS

@ In the list initialization

@ In applying a search step

@ In the polling strategies: complete or opportunistic

@ In the selection of the trial list, as long as previous feasible

nondominated points are not removed from the iterate list
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Globalization

As in DS, convergence to stationarity from arbitrary starting points (global
convergence) is ensured from polling

Constraints are handled using the extreme barrier function

fo(z) = { f(z) ifxeq,

+o00 otherwise



Globalization Strategies

Using Integer/Rational Lattices (Torczon [1997], Audet and Dennis
[2003])

@ requires only simple decrease
@ poll directions and step size must satisfy integer/rational requirements

@ search step is restricted to an implicit mesh
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Globalization Strategies

Using Integer/Rational Lattices (Torczon [1997], Audet and Dennis
[2003])

@ requires only simple decrease
@ poll directions and step size must satisfy integer/rational requirements

@ search step is restricted to an implicit mesh

Imposing Sufficient Decrease (Kolda, Lewis, and Torczon [2003])

@ use of a forcing function

p:(0,+00) — (0,400), continuous and nondecreasing, satisfying

p(t)/t -0 when ¢]0

YA B



Polling Directions

If f is nonsmooth, a finite # of polling directions may not suffice
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Polling Directions

If f is nonsmooth, a finite # of polling directions may not suffice

Kolda, Lewis, and Torczon [2003]
Nonsmooth Optimization

In addition to globalization requirements, the union of all normalized poll
directions should be asymptotically dense in the unit sphere




Polling Directions

Cone of descent
directions

\

S0=(-5, )
-V 0=y,

The cone of descent directions for all objective functions can be made
narrower.
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Polling Directions

A Cone of descent
directions

-V £, (0=(6, -5

109=(-5, &)

Hence, one does need also here the polling directions to be asymptotically
dense in the unit sphere



Refining Subsequences — Integer Lattices

All potential iterates lie on an integer lattice when the step size oy is
bounded away from zero

C A4]73



Refining Subsequences — Integer Lattices

Intuitively, if o does not — 0, points in this integer lattice would be
separated by a finite and positive distance
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Refining Subsequences — Integer Lattices

It would therefore be impossible to fit an infinity of iterates inside a
bounded level set
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Refining Subsequences — Integer Lattices

Theorem (Refining Subsequences)

There is at least a convergent subsequence of iterates {zy }rek,
corresponding to unsuccessful poll steps, such that limpc i o, = 0

DMS:  Custédio, Madeira, Vaz, and Vicente [2010]
DS:  Torczon [1997], Audet and Dennis [2003]
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the list
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Refining Subsequences — Sufficient Decrease

An iteration is successful only if it produces a nondominated point that
has sufficiently decreased one of the f;'s relatively to at least a point in
the list

Also, p(ay) is a monotonically increasing function of the step size ay,

Thus, ay cannot be bounded away from zero since otherwise one of the
fj's would tend to —oo

Intuitively, insisting on a sufficient decrease will make it harder to have a
successful step and therefore will generate more unsuccessful poll steps

O A8T73



Refining Subsequences — Sufficient Decrease

Theorem (Refining Subsequences)

There is at least a convergent subsequence of iterates {zy }rek,
corresponding to unsuccessful poll steps, such that limpc i o, = 0

DMS:  Custédio, Madeira, Vaz, and Vicente [2010]
DS:  Lewis, Tolds, and Torczon [2003]
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Refining Directions

Stationarity results for DS or DMS consist of nonnegativity of generalized
directional derivatives along certain limit directions
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Refining Directions

Stationarity results for DS or DMS consist of nonnegativity of generalized
directional derivatives along certain limit directions

Definition (Refining Directions)

Refining directions for x, are limit points of {dy/||dk| }kex, where
di € Dy and xy, + aydy, € Q

Audet and Dennis [2006]

e /0/73
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Clarke Stationarity

First, let us focus on the unconstrained case, 2 = R"
Clarke Generalized Directional Derivative

For f Lipschitz continuous near x, and d € R"

fo(zs;d) = limsup f(a' +td) — f(2)

' =z t]0 t
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Definition

x4 Is a Clarke critical point if

Vd € R", f°(z4;d) > 0
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Clarke Stationarity — Constrained Case

Also assuming that f is Lipschitz continuous near .,

Definition

x4 Is a Clarke critical point if

Vd € Ta(z4), f°(z+d) 2 0

To(xy) is the tangent cone to () at x, (redefined in the nonsmooth, Clarke
way)

Moreover, the Clarke derivative must be appropriately redefined...



Clarke Stationarity — Constrained Case

Clarke-Jahn Generalized Directional Derivative

For f Lipschitz continuous near x,
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f@ +tv) — f(2)
t
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Clarke Stationarity — Constrained Case

Clarke-Jahn Generalized Directional Derivative

For f Lipschitz continuous near x,

f@ +tv) — f(2)
t

fo(xe;v) = lim sup
=z, €0
t 0,2 +tve

for v € int(Tq(z4))
and then (Audet and Dennis [2006]), for d € Tq(x.)

fo(xe;d) = lim [z 0)

veint(To(z«)),v—d

e BAJT73



Pareto-Clarke Stationarity

Assume that f is Lipschitz continuous near z,

Definition

x4 is a Pareto-Clarke critical point if

Vd € To(z.), 37 = j(d) € {1,... ,m},f;-’(x*;d) >0

e BRT73



Convergence Results

Consider a refining subsequence converging to z, (and assume that f is
Lipschitz continuous near z,)

e K673



Convergence Results

Consider a refining subsequence converging to z, (and assume that f is
Lipschitz continuous near z,)

If d € int(Tq(xy)) is a refining direction for x, then

Y= j(d) € {1,...,m} : f(@aid) >0

DMS:  Custédio, Madeira, Vaz, and Vicente [2010]
DS:  Audet and Dennis [2006], Vicente and Custédio [2010]

e K673
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Proof Sketch

fi(@' +td) — f(2")
t

fi (e d) = lim sup
=z, 2 €0
t10,2 +tdeQ

fi(@r + aglldil|(di/|ldill)) — fi(ar)

> limsup
keK ovg || di |

— limsup 2207+ okdr) = fi(@r) + plakldel) _ plaelidel)
keK ovk || dic | ovg || di |

Since {zk }kex is a refining subsequence, for each k € K, x, + «ydy, does
not dominate x;,

Thus, for each k € K it is possible to find j(k) € {1,...,m} such that

Fity (@r + awdr) — fig (zr) + plakl|dgl]) = 0



Convergence Results

Consider a refining subsequence converging to z, (and assume that f is
Lipschitz continuous near z,)
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Convergence Results

Consider a refining subsequence converging to z, (and assume that f is
Lipschitz continuous near z,)

By passing from the interior to the closure of the tangent cone, as in DS
(m =1)
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Convergence Results

Consider a refining subsequence converging to z, (and assume that f is
Lipschitz continuous near z,)

By passing from the interior to the closure of the tangent cone, as in DS
(m =1)

If the set of refining directions for x, is dense in Tqo(xy) then x, is a
Pareto-Clarke critical point

Vd € To(z.), 3 = j(d) € {1,..-.,m}, f7(zs3d) > 0

e K873



Numerical Testing Framework

Problems

@ 100 bound constrained MOO problems (AMPL models available
at http://www.mat.uc.pt/dms)

@ number of variables between 1 and 30

@ number of objectives between 2 and 4

e /K973
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Numerical Testing Framework

Problems

@ 100 bound constrained MOO problems (AMPL models available
at http://www.mat.uc.pt/dms)

@ number of variables between 1 and 30
@ number of objectives between 2 and 4
Solvers

@ DMS version 0.1 tested against 8 different MOO solvers (complete
results available at http://www.mat.uc.pt/dms)

@ results reported only for
AMOSA - simulated annealing code
BIMADS - based on Mesh Adaptive Direct Search
NSGA-II (C version) — genetic algorithm code

All solvers tested with default values

e /9 JT73
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DMS Numerical Options

@ No search step
o List initialization: line sampling
o List selection: all current nondominated points

@ List ordering: new points added at the end of the list, poll center
moved to the end of the list

O 6e0/73



DMS Numerical Options

@ No search step

List initialization: line sampling

List selection: all current nondominated points

o List ordering: new points added at the end of the list, poll center
moved to the end of the list

e Polling directions: [I — I]
@ Step size parameter: ag = 1, halved at unsuccessful iterations
e Stopping criteria: minimum step size of 1073 or a maximum of 20000

function evaluations

O 6e0/73



Performance Metrics — Purity

Consider
F, s (approximated Pareto front computed by solver s for problem p)

F,, (approximated Pareto front computed for problem p, using results for
all solvers)



Performance Metrics — Purity

Consider
F, s (approximated Pareto front computed by solver s for problem p)

F,, (approximated Pareto front computed for problem p, using results for
all solvers)

The Purity value for solver s on problem p is

[Fp.s N Fpl
IF,sl
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Let ¢, s be a metric for which lower values indicate better performance
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Let ¢, s be a metric for which lower values indicate better performance

Given 1) s = tp s/ min{t, s : s € S}, consider

HpeP:rys <7}
Ps\T) = /




Performance Profiles (Dolan and Moré [2002])

Let t, s be a metric for which lower values indicate better performance

Given 7, s = tp o/ min{t, s : s € S}, consider

fpeP:rps <7}
Ps\T) = /

incorporates results for all problems and all solvers
allows to access ‘efficiency’ and robustness

ps(1) represents ‘efficiency’ of solver s

ps(7), with 7 large, gives robustness of solver s



Comparing DMS to Other Solvers (Purity)

Purity performance profile

1 T T T T T
o9 1 . .
| Purity Metric
] (percentage of points generated

in the reference Pareto front)
] |[Fp,s N Fp|
\F sl
o01f —6—DMS(n,line)
) ) ) ) ) ) —+— BIMADS
Purity performance profile with the best of 10 runs Purity performance profile with the best of 10 runs

1 1 1 T T T T T T T T T 1
0 e o o | AR
0.8 0. 038 M A 0.
01 —e—DMS(n,line) 0. o1 —e— DMS(n line) o

—&— AMOSA —w— NSGA-II (C version)|
- 10 20 30 40 50 60 70 80 90 100 110 200 400 600 800 1000 05 1 15 2 25 3 35 4 a5 5 20 40 60

63/73



Performance Metrics — Spread

Gamma Metric

(largest gap in the Pareto T omissoxtomopoins
front) %
btained points
Ips = max;eqo,.. np{di} ‘%/Q
AN
\O
O“O(L‘
Delta Metric

(uniformity of gaps in the
Pareto front)

A = dotdn+3 0" di—d]
D,S do+dn+(N—-1)d

6473



Comparing DMS to Other Solvers (Spread)

G amma M et ri C Average I" performance profile for 10 runs
(largest gap in the Pareto ol g8 = - Lo
front) wolff ¥ os
074 B 07
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o 03
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Delta M etric Average A performance profile for 10 runs
(uniformity of gaps in the -— s
Pareto front) e
071 o7
A _ dotdn+ XN Idi;ril osf- os
s = do+dn-+(N—1)d
0aF 04
oaf 03
o2 —e—DMS(n line) 02
—*—BIMADS
o —v—NSGA-I (G version) 01
) ) ) ) ) —4— AMOSA



Data Profiles (Moré and Wild [2009])

Indicate how likely is an algorithm to ‘solve’ a problem, given some
computational budget

Let /1, s be the number of function evaluations required for solver s to
solve problem p

O 66/73
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Indicate how likely is an algorithm to ‘solve’ a problem, given some
computational budget

Let /1, s be the number of function evaluations required for solver s to
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Consider T Poh. <ol
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Data Profiles (Moré and Wild [2009])

Indicate how likely is an algorithm to ‘solve’ a problem, given some
computational budget

Let /1, s be the number of function evaluations required for solver s to
solve problem p

Consider T Poh . <ol
S hps SO
ds(o) =

A problem is solved to e—accuracy if

[Fpys 0 Fp|
|[Fpl/1S]

> 1—c¢

O 66/73



Comparing to Other Solvers

— N5
€ = 0 .0 Data profile with the best of 10 runs (¢=0.5)

—e—DMIS(n fine)
os|f —s—BIMADS 1
—v—NSGA-Il (C version)
—4— AMOSA

afo)

L L
1000 1500 2000 2500

€ = O . 1 Data profile with the best of 10 runs (e=0.1)
T T T

—o—DMS(n,line)
09{f —+—BIMADS 1
—v—NSGA-II (G version)
08| —4— AMOSA 1

a0

# maximum function
evaluations = 5000

L ok L L L
o 500 1000 1500 2000 2500



Improving DMS Performance

@ Cache implementation: objective function values only computed for
points that dist at least 10™3 from any previously evaluated point

e 68/73



Improving DMS Performance

@ Cache implementation: objective function values only computed for
points that dist at least 10~3 from any previously evaluated point

@ Ordering strategy for Lj based on the I' metric: poll centers
correspond to the highest I metric value (ties broken by the largest
step size)

e 68/73



Improving DMS Performance (Purity)

Purity performance profile

—=&— DMS(n,line,cache,spread)|
—+— BIMADS

Purity performance profile with the best of 10 runs

—&— DMS(nline,cache,spread))
—v—NSGA-ll (Cversion) |

1 15 2 25 3 35 10 20 a0

Purity Metric
(percentage of points generated
in the reference Pareto front)

[Fp.s N Fpl
\F,sl



Improving DMS Performance (Spread)

Gamma Metric
(largest gap in the Pareto
front)

Average I" performance profile for 10 runs

Ips = max;eqo,.. np{di}

—o— DMS(n,line)
od —&—DMS(n,line,cache,spread) o2
—+—BIMADS
o —v—NSGA-II (C version) 0.1
—4— AMOSA
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Improving DMS

rformance (Data Profiles)

€ = 0 . 5 Data profile with the best of 10 runs (¢=0.5)
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