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Problem Features

Multiobjective Derivative-Free Optimization

min
x∈Ω⊆Rn

f(x) ≡ (f1(x), f2(x), . . . , fm(x))>

fj : Rn → R ∪ {+∞}, j = 1, . . . ,m ≥ 1

several objectives, often conflicting

functions with unknown derivatives

expensive function evaluations, possibly
subject to noise

source code not available for use

unpractical to compute approximations to
derivatives
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Poll Step Example — Single Objective

xk
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Poll Step Example — Single Objective

xk xk+1
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Poll Step Example — Single Objective

Complete Polling

xk
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Multiobjective Optimization

Pareto Dominance

x ≺ y (x dominates y) ⇐⇒ f(x) ≺f f(y)⇐⇒

f(x) ≤ f(y), with f(x) 6= f(y)

B dominates A

C dominates D

B and C are nondominated

6

-

tA
tB tC tDt t

Pareto Front: {B,C}
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Direct MultiSearch (DMS) Main Lines

does not aggregate any of the objective functions

generalizes ALL direct search (DS) methods of directional type to
multiobjective optimization (MOO)

tries to capture the whole Pareto front from the polling procedure
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Direct MultiSearch (DMS) Main Lines

keeps a list of feasible nondominated points

poll centers are chosen from the list

successful iterations correspond to list changes,

an iteration is successful only if it produces a feasible nondominated
point
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Poll Step Example — Biojective

xk-1

xk

f1

f2

Lk

15/73



Poll Step Example — Biojective

xk-1

xk

f1

f2

16/73



Poll Step Example — Biojective

xk-1

xk

f1

f2

17/73



Poll Step Example — Biojective

xk-1

xk

f1

f2

18/73



Poll Step Example — Biojective

xk-1

xk

f1

f2

19/73



Poll Step Example — Biojective

xk-1

xk

f1

f2

20/73



Poll Step Example — Biojective

xk-1

xk

f1

f2

Ladd

21/73



Poll Step Example — Biojective

xk-1

xk

f1

f2

Lfiltered

22/73



Poll Step Example — Biojective
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Poll Step Example — Biojective
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Direct MultiSearch (DMS) Main Lines

makes use of search/poll paradigm

incorporates an optional search step (only to disseminate the search)

but, again, tries to capture the whole Pareto front from the polling
procedure
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Direct MultiSearch – MultiObjective Optimization

Initialization
Choose x0 ∈ Ω with f(x0) < +∞,
α0 > 0. Set L0 = {(x0;α0)}

?
Selection of iterate point

Order Lk and select (xk;αk) ∈ Lk

Search Step (Optional)

Evaluate a finite set of points Ladd = {(zs;αk)}s∈S
(Lk;Ladd) ↪→ Lfiltered ↪→ Ltrial

?

-Suc Lk+1 = Ltrial

?Unsuc

Poll Step
Evaluate Ladd = {(xk + αkd;αk), d ∈ Dk}
(Lk;Ladd) ↪→ Lfiltered ↪→ Ltrial

?Unsuc

-Suc Lk+1 = Ltrial

Decrease the step size

�

26/73



Numerical Example – Problem SP1 (Huband et al. [2005])

� Evaluated points since beginning
� Current iterate list
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Plenty of Algorithmic Flexibility in DMS

In the list initialization

In applying a search step

In the polling strategies: complete or opportunistic

In the selection of the trial list, as long as previous feasible
nondominated points are not removed from the iterate list
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Globalization

As in DS, convergence to stationarity from arbitrary starting points (global
convergence) is ensured from polling

Constraints are handled using the extreme barrier function

fΩ(x) =

{
f(x) if x ∈ Ω,
+∞ otherwise
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Globalization Strategies

Using Integer/Rational Lattices (Torczon [1997], Audet and Dennis
[2003])

requires only simple decrease

poll directions and step size must satisfy integer/rational requirements

search step is restricted to an implicit mesh

Imposing Sufficient Decrease (Kolda, Lewis, and Torczon [2003])

use of a forcing function

ρ : (0,+∞)→ (0,+∞), continuous and nondecreasing, satisfying

ρ(t)/t→ 0 when t ↓ 0
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Polling Directions

If f is nonsmooth, a finite # of polling directions may not suffice

Kolda, Lewis, and Torczon [2003]

Nonsmooth Optimization

In addition to globalization requirements, the union of all normalized poll
directions should be asymptotically dense in the unit sphere

(possible strategies: randomly generated directions, LTMADS, ORTHOMADS)
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Polling Directions

−∇ f
1
(x)=(−ξ

1
,ξ

2
)

−∇ f
2
(x)=(ξ

3
,−ξ

4
)

x
1

x
2

Cone of descent
directions

The cone of descent directions for all objective functions can be made
narrower.
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Polling Directions

−∇ f
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(x)=(−ξ

1
,ξ

2
)

−∇ f
2
(x)=(ξ

3
,−ξ

4
)

x
1

x
2

Cone of descent
directions

Hence, one does need also here the polling directions to be asymptotically
dense in the unit sphere
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Refining Subsequences — Integer Lattices

All potential iterates lie on an integer lattice when the step size αk is
bounded away from zero
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Refining Subsequences — Integer Lattices

Intuitively, if αk does not −→ 0, points in this integer lattice would be
separated by a finite and positive distance
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Refining Subsequences — Integer Lattices

It would therefore be impossible to fit an infinity of iterates inside a
bounded level set
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Refining Subsequences — Integer Lattices

Theorem (Refining Subsequences)

There is at least a convergent subsequence of iterates {xk}k∈K ,
corresponding to unsuccessful poll steps, such that limk∈K αk = 0

DMS: Custódio, Madeira, Vaz, and Vicente [2010]

DS: Torczon [1997], Audet and Dennis [2003]
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Refining Subsequences — Sufficient Decrease

An iteration is successful only if it produces a nondominated point that
has sufficiently decreased one of the fj ’s relatively to at least a point in
the list

Also, ρ(αk) is a monotonically increasing function of the step size αk

Thus, αk cannot be bounded away from zero since otherwise one of the
fj ’s would tend to −∞

Intuitively, insisting on a sufficient decrease will make it harder to have a
successful step and therefore will generate more unsuccessful poll steps
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Refining Subsequences — Sufficient Decrease

Theorem (Refining Subsequences)

There is at least a convergent subsequence of iterates {xk}k∈K ,
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Refining Directions

Stationarity results for DS or DMS consist of nonnegativity of generalized
directional derivatives along certain limit directions

Definition (Refining Directions)

Refining directions for x∗ are limit points of {dk/‖dk‖}k∈K , where
dk ∈ Dk and xk + αkdk ∈ Ω

Audet and Dennis [2006]
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Clarke Stationarity

First, let us focus on the unconstrained case, Ω = Rn

Clarke Generalized Directional Derivative

For f Lipschitz continuous near x∗ and d ∈ Rn

f◦(x∗; d) = lim sup
x′→x∗ t↓0

f(x′ + td)− f(x′)

t
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Clarke Stationarity

Assume that f is Lipschitz continuous near x∗

Definition

x∗ is a Clarke critical point if

∀d ∈ Rn, f◦(x∗; d) ≥ 0
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Clarke Stationarity — Constrained Case

Also assuming that f is Lipschitz continuous near x∗

Definition

x∗ is a Clarke critical point if

∀d ∈ TΩ(x∗), f
◦(x∗; d) ≥ 0

TΩ(x∗) is the tangent cone to Ω at x∗ (redefined in the nonsmooth, Clarke
way)

Moreover, the Clarke derivative must be appropriately redefined...
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Clarke Stationarity — Constrained Case

Clarke-Jahn Generalized Directional Derivative

For f Lipschitz continuous near x∗

f◦(x∗; v) = lim sup
x′ → x∗, x

′ ∈ Ω
t ↓ 0, x′ + tv ∈ Ω

f(x′ + tv)− f(x′)

t

for v ∈ int(TΩ(x∗))

and then (Audet and Dennis [2006]), for d ∈ TΩ(x∗)

f◦(x∗; d) = lim
v∈int(TΩ(x∗)),v→d

f◦(x∗; v)
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Pareto-Clarke Stationarity

Assume that f is Lipschitz continuous near x∗

Definition

x∗ is a Pareto-Clarke critical point if

∀d ∈ TΩ(x∗), ∃j = j(d) ∈ {1, . . . ,m}, f◦j (x∗; d) ≥ 0
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Convergence Results

Consider a refining subsequence converging to x∗ (and assume that f is
Lipschitz continuous near x∗)

Theorem

If d ∈ int(TΩ(x∗)) is a refining direction for x∗ then

∃j = j(d) ∈ {1, . . . ,m} : f◦j (x∗; d) ≥ 0

DMS: Custódio, Madeira, Vaz, and Vicente [2010]

DS: Audet and Dennis [2006], Vicente and Custódio [2010]
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Proof Sketch

f◦j (x∗; d) = lim sup
x′ → x∗, x

′ ∈ Ω
t ↓ 0, x′ + td ∈ Ω

fj(x
′ + td)− fj(x′)

t

≥ lim sup
k∈K

fj(xk + αk‖dk‖(dk/‖dk‖))− fj(xk)

αk‖dk‖

= lim sup
k∈K

fj(xk + αkdk)− fj(xk) + ρ(αk‖dk‖)
αk‖dk‖

− ρ(αk‖dk‖)
αk‖dk‖

Since {xk}k∈K is a refining subsequence, for each k ∈ K, xk + αkdk does
not dominate xk

Thus, for each k ∈ K it is possible to find j(k) ∈ {1, . . . ,m} such that

fj(k)(xk + αkdk)− fj(k)(xk) + ρ(αk‖dk‖) ≥ 0
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′ + td)− fj(x′)

t
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k∈K

fj(xk + αk‖dk‖(dk/‖dk‖))− fj(xk)

αk‖dk‖

= lim sup
k∈K

fj(xk + αkdk)− fj(xk) + ρ(αk‖dk‖)
αk‖dk‖

− ρ(αk‖dk‖)
αk‖dk‖
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Convergence Results

Consider a refining subsequence converging to x∗ (and assume that f is
Lipschitz continuous near x∗)

By passing from the interior to the closure of the tangent cone, as in DS
(m = 1)

Theorem

If the set of refining directions for x∗ is dense in TΩ(x∗) then x∗ is a
Pareto-Clarke critical point

∀d ∈ TΩ(x∗), ∃j = j(d) ∈ {1, . . . ,m}, f◦j (x∗; d) ≥ 0
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Numerical Testing Framework

Problems

100 bound constrained MOO problems (AMPL models available
at http://www.mat.uc.pt/dms)

number of variables between 1 and 30

number of objectives between 2 and 4

Solvers

DMS version 0.1 tested against 8 different MOO solvers (complete
results available at http://www.mat.uc.pt/dms)

results reported only for
AMOSA – simulated annealing code
BIMADS – based on Mesh Adaptive Direct Search
NSGA-II (C version) – genetic algorithm code

All solvers tested with default values

59/73

http://www.mat.uc.pt/dms
http://www.mat.uc.pt/dms


Numerical Testing Framework

Problems

100 bound constrained MOO problems (AMPL models available
at http://www.mat.uc.pt/dms)

number of variables between 1 and 30

number of objectives between 2 and 4

Solvers

DMS version 0.1 tested against 8 different MOO solvers (complete
results available at http://www.mat.uc.pt/dms)

results reported only for
AMOSA – simulated annealing code
BIMADS – based on Mesh Adaptive Direct Search
NSGA-II (C version) – genetic algorithm code

All solvers tested with default values

59/73

http://www.mat.uc.pt/dms
http://www.mat.uc.pt/dms


DMS Numerical Options

No search step

List initialization: line sampling

List selection: all current nondominated points

List ordering: new points added at the end of the list, poll center
moved to the end of the list

Polling directions: [I − I]

Step size parameter: α0 = 1, halved at unsuccessful iterations

Stopping criteria: minimum step size of 10−3 or a maximum of 20000
function evaluations
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Performance Metrics – Purity

Consider

Fp,s (approximated Pareto front computed by solver s for problem p)

Fp (approximated Pareto front computed for problem p, using results for
all solvers)

The Purity value for solver s on problem p is

|Fp,s ∩ Fp|
|Fp,s|
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Performance Profiles (Dolan and Moré [2002])

Let tp,s be a metric for which lower values indicate better performance

Given rp,s = tp,s/min{tp,s : s ∈ S}, consider

ρs(τ) =
|{p ∈ P : rp,s ≤ τ}|

|P|

incorporates results for all problems and all solvers

allows to access ‘efficiency’ and robustness

ρs(1) represents ‘efficiency’ of solver s

ρs(τ), with τ large, gives robustness of solver s
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Comparing DMS to Other Solvers (Purity)
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Performance Metrics – Spread

Gamma Metric
(largest gap in the Pareto
front)

Γp,s = maxi∈{0,...,N}{di}

f
1

f 2

d
N

Computed extreme points

d
0

d
1

d
2

d
N−2 d

N−1

Obtained points

Delta Metric
(uniformity of gaps in the
Pareto front)

∆p,s =
d0+dN+

∑N−1
i=1 |di−d̄|

d0+dN+(N−1)d̄
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Comparing DMS to Other Solvers (Spread)

Gamma Metric
(largest gap in the Pareto
front)
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Data Profiles (Moré and Wild [2009])

Indicate how likely is an algorithm to ‘solve’ a problem, given some
computational budget

Let hp,s be the number of function evaluations required for solver s to
solve problem p

Consider

ds(σ) =
|{p ∈ P : hp,s ≤ σ}|

|P|

A problem is solved to ε–accuracy if

|Fp,s ∩ Fp|
|Fp|/|S|

≥ 1− ε
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Comparing DMS to Other Solvers
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Improving DMS Performance

Cache implementation: objective function values only computed for
points that dist at least 10−3 from any previously evaluated point

Ordering strategy for Lk based on the Γ metric: poll centers
correspond to the highest Γ metric value (ties broken by the largest
step size)
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Improving DMS Performance (Purity)
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Improving DMS Performance (Spread)

Gamma Metric
(largest gap in the Pareto
front)

Γp,s = maxi∈{0,...,N}{di}
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Improving DMS Performance (Data Profiles)
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