
Direct Search Based on Probabilistic Descent

Luis Nunes Vicente
University of Coimbra

January 23, 2014 — University of Oxford

http//www.mat.uc.pt/~lnv

1/38

http//www.mat.uc.pt/~lnv


Problem setting

Unconstrained optimization

min
x∈Rn

f(x)

f : Rn → R

f is bounded from below and differentiable
∇f is Lipschitz continuous but unavailable
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Direct search (DS)

Choose: x0, α0, γ ∈ [1,∞), θ ∈ (0, 1), and a forcing function ρ.

For k = 0, 1, 2, . . .

Search step (optional)

Poll step: Select a set Dk of directions, and seek dk ∈ Dk:

f(xk + αkdk) < f(xk)− ρ(αk).

If dk is found, the iteration is successful. Otherwise, it is unsuccessful.

Update the new iterate xk+1 (stay at xk if unsuccessful).

Update the step size αk+1.

αk+1 = γαk if successful, αk+1 = θαk if unsuccessful.
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More ...

A forcing function ρ is a positive and monotonically nondecreasing
function such that

lim
α↓0

ρ(α)

α
= 0.

In this talk:

ρ(α) =
α2

2

α0 = 1 (initial stepsize)

γ = 2 (increasing factor)

θ =
1

2
(decreasing factor)
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Deterministic approach

Positive spanning set (PSS)

Cosine measure of a PSS D

cm(D) = max
d∈D

d>v

‖d‖‖v‖
> 0.

Thus ∃ d ∈ D descent when ∇f(xk) 6= 0.

=⇒ αk small leads to success!
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Deterministic approach (analysis)

If {Dk} is a sequence of positive spanning sets with cosine measures
bounded away from zero:

Global convergence (Torczon 1997, Kolda, Lewis, and Torczon 2003)

lim infk→∞‖∇f(xk)‖ = 0.

limk→∞‖∇f(xk)‖ = 0 if complete polling is performed.

Global rate and worst case complexity (Vicente 2013)

min0≤`≤k ‖∇f(x`)‖ = O(1/
√
k).

‖∇f(xk)‖ is driven under ε within O(ε−2) iterations.
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A more insightful look ...

If derivatives were available, it would have been sufficient to require

Descent condition

cm
(
Dk,−∇f(xk)

)
≥ κ > 0

with cm(D, v) being the cosine measure of D given v, defined by

cm(D, v) = max
d∈D

d>v

‖d‖‖v‖
.
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Descent condition and successful iterations

Assume the polling directions are normalized.

Lemma

If

cm
(
Dk,−∇f(xk)

)
≥ κ and αk <

2κ‖∇f(xk)‖
ν + 1

,

the k-th iteration is successful.

The number ν is a Lipschitz constant of ∇f in Rn.
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Randomly generating ‘positive spanning sets’ ...

−∇f(xk)
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Randomly generating ‘positive spanning sets’ ...

−∇f(xk)

n+ 1 random polling directions

in this case not a PSS

−∇f(xk)

≤ n random polling directions

certainly not a PSS ...

cm
(
Dk,−∇f(xk)

)
≥ κ can be satisfied ‘probabilistically’ ...
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Numerical illustration

Relative performance for different sets of polling directions (n = 40).

[I −I] [Q −Q] 2n n+ 1 n/4 2 1

arglina 3.42 8.44 10.30 6.01 1.88 1.00 –
arglinb 20.50 10.35 7.38 2.81 1.85 1.00 2.04

broydn3d 4.33 6.55 6.54 3.59 1.28 1.00 –
dqrtic 7.16 9.37 9.10 4.56 1.70 1.00 –

engval1 10.53 20.89 11.90 6.48 2.08 1.00 2.08
freuroth 56.00 6.33 1.00 1.67 1.67 1.00 4.00
integreq 16.04 16.29 12.44 6.76 2.04 1.00 –

nondquar 6.90 30.23 7.56 4.23 1.87 1.00 –
sinquad – – 1.65 2.01 1.00 1.55 –
vardim 1.00 3.80 1.80 2.40 1.80 1.80 4.30

Solution accuracy was 10−3. Averages were taken over 10 independent runs.
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Probabilistic descent

From now on, we suppose that the polling directions are not defined
deterministically but generated randomly.

Iterate Direction set

Random variables Xk Dk

Realizations xk Dk

Definition

The sequence {Dk} is p-probabilistically κ-descent if, for each k ≥ 0,

P
(
cm(Dk,−∇f(Xk)) ≥ κ | D0, . . . ,Dk−1

)
≥ p.
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Global convergence: The idea (by contradiction)

Intuition:

If global convergence does not hold, then
{

cm
(
Dk,−∇f(Xk)

)
≥ κ

}
probably ‘rarely happens’.

Let Zk be the indicator function of
{

cm
(
Dk,−∇f(Xk)

)
≥ κ

}
, and

p0 =
ln θ

ln(γ−1θ)
=

1

2
.
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Global convergence: The idea (by contradiction)

Without any assumption on the probabilistic behavior of {Dk}:

Lemma {
lim inf
k→∞

‖∇f(Xk)‖ > 0
}
⊂

{ ∞∑
k=0

(Zk − p0) = −∞

}
.
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Lemma {
lim inf
k→∞

‖∇f(Xk)‖ > 0
}
⊂

{ ∞∑
k=0

(Zk − p0) = −∞

}
.

k

(∑k−1
`=0 Z`

k
− p0

)
−→ −∞,

and so the ‘frequency’ of descent would be ‘eventually’ below p0.
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Global convergence

In fact, if {Dk} is p0-probabilistically κ-descent, then
{∑k−1

`=0 (Z` − p0)
}

is a submartingale.

A submartingale {Gk} is a sequence of random variables that are integrable

(E(|Gk|) <∞) and that satisfy E(Gk | G0, . . . , Gk−1) ≥ Gk−1.

Theorem

If {Dk} is p0-probabilistically κ-descent, then

P
(

lim inf
k→∞

‖∇f(Xk)‖ = 0
)

= 1.

This analysis is a reorganization of the argument for trust regions:

A. S. Bandeira, K. Scheinberg, and L. N. Vicente, Convergence of

trust-region methods based on probabilistic models, submitted.
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WCC bounds for DFO

Non-smooth, non-convex case: O(ε−3)

Non-convex case: O(ε−2)

Convex case: O(ε−1), global rate 1/k

for Direct Search (papers by Dodangeh, Garmanjani, and Vicente)

Random Gaussian (Nesterov)

O(ε−2) −→ O(ε−3/2) using Cubic Overestimation (Cartis, Gould, Toint)

In this talk we cover:

S. Gratton, C. W. Royer, L. N. Vicente, Z. Zhang, Direct Search
Based on Probabilistic Descent, to be submitted.
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Global rate: What is desirable?

For each realization of the DS algorithm, define

g̃k: the gradient with minimum norm among ∇f(x0), . . . ,∇f(xk),

kε: the smallest integer such that ‖∇f(xk)‖ ≤ ε.

Denote the corresponding random variables by G̃k and Kε.

We are interested in the probabilities

Global rate

P
(
‖G̃k‖ ≤ O(1/

√
k)
)

and

Worst case complexity

P
(
Kε ≤ O(ε−2)

)
.
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Global rate: The idea

Let z` denote the realization of Z` (` ≥ 0).

Intuition: If ‖g̃k‖ is ‘big’, then
∑k−1

`=0 z` is probably ‘small’, thus∑k−1
`=0 z` is possibly bounded by a (nonincreasing) function of ‖g̃k‖.

In fact, we prove that

k−1∑
`=0

z` ≤ O
(

1

‖g̃k‖2

)
+ p0k.
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An auxiliary result: Behavior of the stepsize

From sufficient decrease at successful iterations

ρ(αk) ≤ f(xk)− f(xk+1),

we obtain ∑
k successful

ρ(αk) ≤ f(x0)− flow.

Lemma

For each realization of DS,

∞∑
k=0

ρ(αk) =

∞∑
k=0

α2
k/2 ≤

2

3
+

16

3
[f(x0)− flow]

def
= β.

Again, ρ(αk) = α2
k/2.
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Number of iterations with descent

As we wanted:

Lemma

For each realization of DS,

k−1∑
`=0

z` ≤
(ν + 1)2β

2κ2‖g̃k‖2
+ p0k.

Thus,
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Number of iterations with descent

As we wanted:

Lemma

For each realization of DS,

k−1∑
`=0

z` ≤
(ν + 1)2β

2κ2‖g̃k‖2
+ p0k.

Thus, {
‖G̃k‖ > ε

}
⊂

{
k−1∑
`=0

Z` ≤
[
O
( 1

kε2

)
+ p0

]
k

}
.
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A universal result

Our observation links P
(
‖G̃k‖ ≤ ε

)
to the lower tail of

∑k−1
`=0 Z`.

Denoting

πk(λ) = P

(
k−1∑
`=0

Z` ≤ λ k

)
,

one has the following universal result:

Lemma

P
(
‖G̃k‖ ≤ ε

)
≥ 1− πk

(
(ν + 1)2β

2κ2kε2
+ p0

)
.

No assumption is imposed on the probabilistic behavior of {Dk}.
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Chernoff bound

If {Dk} is probabilistic descent, then πk obeys a Chernoff type bound.

Lemma

Suppose that {Dk} is p-probabilistically κ-descent and λ ∈ (0, p). Then

πk(λ) ≤ exp

[
−(p− λ)2

2p
k

]
.
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Global rate

Now we plug the Chernoff type bound into the universal result.

Theorem

Suppose that {Dk} is p-probabilistically κ-descent with p > p0 and

k ≥ (ν + 1)2β

(p− p0)κ2ε2
.

Then

P
(
‖G̃k‖ ≤ ε

)
≥ 1− exp

[
−(p− p0)2

8p
k

]
.
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Global rate

Theorem

Suppose that {Dk} is p-probabilistically κ-descent with p > p0. Then

P

(
‖G̃k‖ ≤

(
(ν + 1)β

1
2

(p− p0)
1
2κ

)
1√
k

)
≥ 1− exp

[
−(p− p0)2

8p
k

]
.

−→ O(1/
√
k) decaying sublinear rate for gradient holds with

overwhelmingly high probability, matching the deterministic case.
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Worst case complexity

Since P(Kε ≤ k) = P(‖G̃k‖ ≤ ε), we also get:

Theorem

Suppose that {Dk} is p-probabilistically κ-descent with p > p0. Then

P
(
Kε ≤

⌈
(ν + 1)2β

(p− p0)κ2
ε−2
⌉)
≥ 1− exp

[
−β(p− p0)(ν + 1)2

8pκ2
ε−2
]
.

−→ O(ε−2) complexity bound for # of iterations holds with
overwhelmingly high probability, matching the deterministic case.
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High probability iteration complexity

Proposition

Suppose that {Dk} is p-probabilistically κ-descent with p > p0. Then

k ≥ 3(ν + 1)2β

4(p− p0)κ2
ε−2 − 3p ln(1− P )

(p− p0)2

guarantees
P
(
‖G̃k‖ ≤ ε

)
≥ P .
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Expected minimum gradient

Proposition

Suppose that {Dk} is p-probabilistically κ-descent with p > p0. Then

E
(
‖G̃k‖

)
≤

(
(ν + 1)β

1
2

(p− p0)
1
2κ

)
1√
k

+ ‖∇f(x0)‖ exp

[
−(p− p0)2

8p
k

]
.

−→ O(1/
√
k) decaying sublinear rate for E(‖G̃k‖), matching the

deterministic case.
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Global rate implies global convergence

Proposition

Suppose that {Dk} is p-probabilistically κ-descent with p > p0. Then

P
(

inf
k≥0
‖Gk‖ = 0

)
= 1.

If the iterates never arrive at a stationary point in finite iterations, then{
inf
k≥0
‖Gk‖ = 0

}
=

{
lim inf
k→∞

‖Gk‖ = 0

}
.
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Without conditioning to the past ...

Proposition

If
P
(
cm(Dk,−Gk) ≥ κ

)
≥ p

for each k ≥ 0, then

P
(
‖G̃k‖ ≤ ε

)
≥ p− p0

1− p0
− (ν + 1)2β

2(1− p0)κ2
k−1ε−2.

The bound does not tend to 1 when k tends to infinity.
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Practical probabilistic descent sets

For each k ≥ 0,

Dk is independent of the previous iterations,

Dk is a set {d1, . . . , dm} of independent random vectors.

di is uniformly distributed on the unit sphere,

di can be obtained by normalizing a vector from standard normal
distribution.
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Practical probabilistic descent sets

{Dk} generated in this way is probabilistically descent.

Proposition

Given τ ∈ [0,
√
n], {Dk} is p-probabilistically (τ/

√
n)-descent with

p = 1−
(

1

2
+

τ√
2π

)m
.

For instance,
m = 2

τ =
1

2

 =⇒ p >
1

2
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Worst case complexity: Dependence on the dimension

More generally, if {Dk} is generated in this way and

m > log2
[
1− (ln θ)/(ln γ)] = 1

then it is p-probabilistically (τ/
√
n)-descent for some constants

p > p0 = 1/2 and τ > 0 that are independent of n.

Plugging κ = τ/
√
n into the WCC bound, one obtains

WCC (number of iterations)

P
(
Kε ≤

⌈
(ν + 1)2β

(p− p0)τ2
(nε−2)

⌉)
≥ 1− exp

[
−β(p− p0)(ν + 1)2

8pκ2
ε−2
]

,

WCC (number of function evaluations)

P
(
Kf
ε ≤

⌈
(ν + 1)2β

(p− p0)τ2
(nε−2)

⌉
m

)
≥ 1− exp

[
−β(p− p0)(ν + 1)2

8pκ2
ε−2
]

.
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A more detailed look at the numerical experiments

Relative performance for different sets of polling directions (n = 40).

[I −I] [Q −Q] 2 (γ = 2) 4 (γ = 1.1)

arglina 1.00 3.17 5.86 6.73
arglinb 34.12 5.34 1.00 2.02

broydn3d 1.00 1.91 2.04 3.47
dqrtic 1.18 1.36 1.00 1.48

engval1 1.05 1.00 2.29 2.89
freuroth 17.74 7.39 1.35 1.00
integreq 1.54 1.49 1.00 1.34

nondquar 1.00 2.82 1.37 1.73
sinquad – 1.26 1.00 –
vardim 20.31 11.02 1.00 1.84

Now γ = 1 for [I −I] and [Q −Q].
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A more detailed look at the numerical experiments

Relative performance for different sets of polling directions (n = 100).

[I −I] [Q −Q] 2 (γ = 2) 4 (γ = 1.1)

arglina 1.00 3.86 5.86 7.58
arglinb 138.28 107.32 1.00 1.99

broydn3d 1.00 2.57 1.92 3.21
dqrtic 3.01 3.25 1.00 1.46

engval1 1.04 1.00 2.06 2.84
freuroth 31.94 17.72 1.36 1.00
integreq 1.83 1.66 1.00 1.22

nondquar 1.18 2.83 1.00 1.17
sinquad – – – –
vardim 112.22 19.72 1.00 2.36

Now γ = 1 for [I −I] and [Q −Q].
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Final remarks: General forcing function

The analysis can be extended to all forcing functions ρ satisfying the
following assumption.

Assumption

There exist constants θ̄ and γ̄ that 0 < θ̄ < 1 ≤ γ̄ such that

ρ(θα) ≤ θ̄ρ(α), ρ(γα) ≤ γ̄ρ(α), ∀α > 0.

Using an auxiliary function ϕ(t) = inf
{
α : α > 0, ρ(α)

α + 1
2να ≥ t

}
.

Worst case complexity in general case: O
(
1/ρ[ϕ(κε)]

)
with

overwhelmingly high probability.
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Final remarks: A new proof technique

A new proof technique for establishing global rates and worst case
complexity bounds for randomized algorithms for which

the new iterate depends on some object (directions, models),

the quality of the object is favorable with a certain probability.

The technique is based on:

counting the number of iterations for which the quality is favorable,

examining the probabilistic behavior of this number.
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Final remarks: Trust-region case

Trust-region methods based on probabilistic models:

Global convergence: Bandeira, Scheinberg, and Vicente 2013.

What about a global rate?

One can use the same proof technique:

the new iterate depends on the models,

the models are probabilistically fully linear.

It is thus possible to obtain a global decaying rate for the gradient:

O(1/
√
k), with overwhelmingly high probability.
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Final remarks: Better complexity

Worst case complexity in terms of number of function evaluations:

DS based on PSS: O(n2ε−2) (Vicente 2013).

DS based on probabilistic descent: O(mnε−2), with overwhelmingly
high probability.

The second one is strictly better if m is ‘smaller than’ n.
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