
Stochastic Optimization of Multiple Objectives
and

Supervised Machine Learning

Luis Nunes Vicente

ISE, Lehigh University

Dept. of Industrial Engineering, Univ. of Pittsburgh

November 14, 2019



1 Introduction to optimization models in Data Science and Learning

2 Stochastic gradient descent for Stochastic Optimization

3 Multi-Objective Optimization

4 Stochastic Multi-Objective Optimization
The stochastic multi-gradient algorithm and assumptions
Convergence rates in the strongly convex and convex cases

5 Implementation and numerical results

6 Conclusions and future directions

LNV 2/49



Optimization models in Data Science and Learning

A data set for analysis involving optimization is typically of the form

D = {(aj , yj), j = 1, . . . , N}

where the aj ’s vectors are features or attributes

the yj ’s vectors are labels or observation or responses.

The analysis consists of finding a prediction function φ(aj) such that

φ(aj) ' yj , j = 1, . . . , N

in some optimal sense.

Often, φ is parameterized φ(x) = φ(a;x). The parameters are x.
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Notes:

1 The process of finding φ is called learning or training.

2 When the yj ’s are reals, one has a regression problem.

3 When the yj ’s lie in a finite set {1, . . . ,M}, one has a classification
problem.

M = 2 leads to binary classification.

4 The labels may be null. In that case, one may want:

to group the aj ’s in clusters (clusterization)

or to identify a low-dimensional subspace (or a collection of)
where the aj ’s lie (subspace identification).

The labels may have to be learned while learning φ.
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5 Data is assumed to be clean for optimization, but still:

i) (aj , yj)’s could be noisy or corrupted.

ii) Some aj or yj ’s could be missing.

iii) Data could arrive in streaming fashion (φ must be learned online).

Thus, φ has to be robust to changes in the data set.

Such data analysis is often referred to as machine learning or data mining.

unsupervised learning (when
labels are null): extract inter-
esting information from data

predictive or supervised learn-
ing (when labels exist)
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The correct/accurate match of the data is typically quantified by a loss
function `(a, y;φ(x)) and thus learning can be formulated as

min
x

N∑
j=1

`(aj , yj ;φ(x))

To avoid overfitting such a model to a sample D, one often adds a
regularizer

min
x

N∑
j=1

`(aj , yj ;φ(x)) + g(x)

λ
2‖x‖

2
2λ‖x‖1

so that φ is not so sensitive to changes in D.
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The general form of optimization models in DS is

min
x∈Rn

f(x) + g(x)

where f : Rn → R is smooth.

∇f is at least Lipschitz continuous.

g : Rn → R ∪ {+∞} is convex, proper and closed.

g is typically non-smooth.
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Classical example: logistic regression for binary classification

Consider a data set with y ∈ {−1, 1}

a1

a2

φ(
x)

=
r
> a
−
b

y = 1

y = −1

φ(x) = φ(a; r, b) = r>a− b is a linear classifier. One aims to seek for a
optimal parameter x = (r, b) such that{

r>aj − b ≥ 0 when yj = 1
r>aj − b < 0 when yj = −1

∀j = 1, . . . , N (∗)
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Logistic regression can be motivated by two arguments.

1 Smoothing/convexifying the true loss.

What we want to do is

min 1(sign(z) 6= y) where z = φ(x).

y = +1

1(sign(z) 6= +1)

z
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Smoothing/convexifying to Hinge loss (SVM)

y = +1

Hinge

max{0,−(+1)z}

z

Smoothing to Logistic loss

y = +1

Logistic

log(1 + e−(+1)z)

z
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2 Probabilistic argument: (∗) is equivalent to

σ(φ(x)) =
1

1 + e−φ(x)

{
≥ 0.5 when y = 1
< 0.5 when y = −1

0.5

1

z

Think of it as the probability

P (y = 1|a) = σ(φ(x)) = 1
1+e−(+1)φ(x)

P (y = −1|a) = 1− σ(φ(x)) = 1
1+e−(−1)φ(x)

1
1+e−z

Assuming data points are i.i.d., the maximum likelihood problem is

max
N∏
j=1

P (yj |aj)︸ ︷︷ ︸
prob. of correct prediction

=
N∏
j=1

1

1 + e−yjφ(x)
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Then, the negative log likelihood leads to the loss minimization problem

min
r,b

1

N

N∑
j=1

`L(aj , yj ;φ(x))

with the smooth convex logistic loss function

`L(aj , yj ;φ(x)) = log(1 + e−yj(r>aj−b))

Binary classification is formulated as the optimization problem

min
r,b

1

N

N∑
j=1

`L(aj , yj ;φ(x)) +
λ

2
‖r‖22
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Stochastic gradient descent for Stochastic Optimization

Assume a point (a, y) ∈ D arises with a certain (joint) probability PΩ.

The general goal now is to minimize the expected risk of misclassification

R(x) =

∫
`(a, y;φ(x))dPΩ(a, y)

When PΩ is unknown, only having a sample D leads to minimizing the

empirical risk of misclassification

RN (x) =
1

N

N∑
j=1

`(aj , yj ;φ(x))

as an estimation of R(x).
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For simplicity, let f(x) = `(a, y;φ(x)).

w is the random seed variable representing a sample. (A set of realizations
{w[j]}Nj=1 corresponds to a sample set {(aj , yj), j = 1, . . . , N}.)

The general objective could be written as

R(x) =


R(x) = E[f(x;w)] Online setting (expected risk)

RN (x) = 1
N

N∑
j=1

fj(x) Finite sum setting (empirical risk)

where fj(x) = f(x;w[j]) is the loss associated with the j-th sample.

Both can be minimized by the stochastic gradient method.
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The stochastic gradient method

Algorithm 1 Stochastic Gradient (SG) method (Robbins and Monro 1951)

1: Choose an initial point x0 ∈ Rn.
2: for k = 0, 1, . . . do
3: Compute a stochastic gradient g(xk;wk).
4: Choose a step-size αk > 0.
5: Set the new iterate xk+1 = xk − αkg(xk;wk).
6: end for

Sutton Monro
Lehigh ISE

The stochastic gradient g(xk;wk) could be

∇f(xk;wk) = ∇fjk(xk) simple or basic SG

1

|Bk|
∑
j∈Bk

∇f(xk;wk,j) mini-batch SG (|Bk| is the mini-batch size)
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Classical assumptions for SG method

1 The sequence of realizations {wk} are i.i.d. sample of w.

2 Function R has Lipschitz continuous gradient.

3 The stochastic gradient is an unbiased estimate

Ewk
[g(xk;wk)] = ∇R(xk)

4 The stochastic gradient has bounded variance

Vwk
[g(xk;wk)] ≤ M +O(‖∇R(xk)‖2)

5 Function R is bounded below: R(x) ≥ R∗, ∀x. R∗ = R(x∗) where x∗
is a minimizer of R.

E[·] denotes the expected value taken w.r.t. the joint distribution of {wk}.

LNV Stochastic gradient descent for Stochastic Optimization 17/49



Convergence rates for SG method

The strongly convex case (Sacks 1958)

Consider a diminishing step-size sequence (e.g., αk ' O(1/k)), one has

E[R(xk)]−R∗ ≤ O(1/k)

The convex case (Nemirovski and Yudin 1978)

Consider a diminishing step-size sequence (e.g., αk ' O(1/
√
k)), one has

E[Rkbest]−R∗ ≤ O(1/
√
k)

where Rkbest = min1≤i≤k R(xi).

LNV Stochastic gradient descent for Stochastic Optimization 18/49



Convergence rates for SG method

The strongly convex case (Sacks 1958)

Consider a diminishing step-size sequence (e.g., αk ' O(1/k)), one has

E[R(xk)]−R∗ ≤ O(1/k)

The convex case (Nemirovski and Yudin 1978)

Consider a diminishing step-size sequence (e.g., αk ' O(1/
√
k)), one has

E[Rkbest]−R∗ ≤ O(1/
√
k)

where Rkbest = min1≤i≤k R(xi).

LNV Stochastic gradient descent for Stochastic Optimization 18/49



Presentation outline

1 Introduction to optimization models in Data Science and Learning

2 Stochastic gradient descent for Stochastic Optimization

3 Multi-Objective Optimization

4 Stochastic Multi-Objective Optimization
The stochastic multi-gradient algorithm and assumptions
Convergence rates in the strongly convex and convex cases

5 Implementation and numerical results

6 Conclusions and future directions



Multi-Objective Optimization

Multi-Objective Optimization (MOO) deals with multiple potentially
conflicting objectives simultaneously.

We consider smooth MOO problems of the general form

min H(x) = (h1(x), . . . , hm(x))

s.t. x ∈ X

where hi : Rn → R are smooth functions and X is a feasible region.

Definition of optimality for MOO

x dominates y if H(x) < H(y) componentwise, ∀x, y ∈ X .

x is a Pareto minimizer if it is not dominated by any other point in X .

Also called a non-dominated or efficient point.
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Pareto front
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Figure: Pareto front of problem SP1

Denote P as the set of Pareto
minimizers.

Pareto front is a mapping from P to
function value space Rm, i.e.,

H(P) = {H(x) : x ∈ P}

The goal of MOO: find the set of Pareto minimizers and hence Pareto
front to define the best trade-off among several competing criteria.
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Necessary condition for Pareto minimizers

Pareto first-order stationary condition: x is a Pareto stationary point if

@ d ∈ Rn such that

∇h1(x)>

...
∇hm(x)>

 d < 0

Or equivalently, if the convex hull of ∇hi(x)’s contains the origin

∃λ ∈ ∆m such that
m∑
i=1

λi∇hi(x) = 0

where ∆m = {λ :
∑m

i=1 λi = 1, λi ≥ 0,∀i = 1, ...,m} is a simplex set.

Note: when all the functions are convex, x ∈ P iff x is Pareto first-order
stationary.
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Overview of methods for MOO

Methods with a priori preferences (Ehrgott 2005; Miettinen 2012)

Weighted-sum method

min S(x; a) =
∑m

i=1 aifi(x), where a ∈ ∆m

Limitations: hard to preselect weights for different magnitudes;
cannot find Pareto minimizers in non-convex regions.

ε-constraint method

min fi(x) s.t. fj(x) ≤ εj , ∀j 6= i

where εj ≥ minx∈X fj(x) are upper bounds.

Limitations: inappropriate upper bounds lead to infeasibility.

Common issues: output single nondominated point at one run, produce
poorly distributed Pareto front with multiple runs.
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Overview of methods for MOO

Methods with a posteriori preferences

Population-based heuristic methods: no convergence proofs, e.g.,

NSGA-II (genetic algorithms) (Deb et al. 2002).

AMOSA (simulated annealing) (Bandyopadhyay et al. 2008).

Convergent methods: proved convergence to Pareto stationary points

multi-gradient method (Fliege and Svaiter 2000).

Newton’s method for MOO (Fliege et al. 2009).

direct multi-search algorithm (Custódio et al. 2011), etc.

Superiority: able to construct the whole well-spread Pareto front.
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”Steepest” common descent direction

The multi-gradient algorithm iterates: xk+1 = xk + αkdk.

Subproblem 1 (Fliege and Svaiter 2000):

dk ∈ argmin
d∈Rn

max
1≤i≤m

{−∇hi(xk)>d}+
1

2
‖d‖2

Note: dk = 0 ∈ Rn iff xk is Pareto stationary.

Subproblem 2: dual problem of Subproblem 1

λk ∈ argmin
λ∈Rm

∥∥∥∥∥
m∑
i=1

λi∇hi(xk)

∥∥∥∥∥
2

s.t. λ ∈ ∆m

Then, dk = −
∑m

i=1(λk)i∇hi(xk) is a common descent direction.

Note: when m = 1, one recovers dk = −∇h1(xk).
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Stochastic Multi-Objective Optimization

Consider a stochastic multi-objective problem

min F (x) = (f1(x), . . . , fm(x)) = (E[f1(x;w)], . . . ,E[fm(x;w)])

s.t. x ∈ X

where w ∈ Rm×p are random parameters obeying a certain distribution.

Subproblem 3: replace ∇fi(xk) by an estimate gi(xk;wk) in Subproblem 2

λg(xk;wk) ∈ argmin
λ∈Rm

∥∥∥∥∥
m∑
i=1

λigi(xk;wk)

∥∥∥∥∥
2

s.t. λ ∈ ∆m

g(xk;wk) =
∑m

i=1 (λgk)igi(xk;wk) denotes the stochastic multi-gradient.

The stochastic multi-gradient (SMG) algorithm: xk+1 = xk − αkg(xk;wk)
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The stochastic multi-gradient method

Consider using an orthogonal projection P when minimize over a closed
and convex set X ⊆ Rn.

Algorithm 1 Stochastic Multi-Gradient (SMG) Algorithm

1: Choose an initial point x0 ∈ Rn and a step-size sequence {αk}k∈N > 0.

2: for k = 0, 1, . . . do

3: Compute the stochastic gradients gi(xk;wk) for i = 1, . . . ,m.

4: Solve Subproblem 3 to obtain the stochastic multi-gradient

g(xk;wk) =

m∑
i=1

(λgk)igi(xk;wk),with λgk ∈ ∆m.

5: Update the next iterate xk+1 = PX (xk − αkg(xk;wk)).

6: end for
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Subproblem 3 illustration

Consider the case m = 2, n = 2.

∇f1(x)

g11

g21

g2

∇f2(x)g22

g12

g

g1

g1 and g2 are two stochastic multi-gradients by solving Subproblem 3.

They are estimates of the true multi-gradient g (Subproblem 1 or 2).
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Biasedness of the stochastic multi-gradient

Denote

S(x;λ) =
∑m

i=1 λifi(x)

∇xS(x;λ) =
∑m

i=1 λi∇fi(x)

Even under the classical assumption in SG

Ew[gi(x;w)] = ∇fi(x), ∀i = 1, . . . ,m

it turns out that g(x;w) is a biased estimate, i.e.,

Ew[g(x;w)] 6= ∇xS(x;λ)

where λ are the true coefficients from Subproblem 2. We also have

Ew[g(x;w)] 6= Ew[∇xS(x;λg)]
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Biasedness illustration

The biasedness using either the true coefficients λ or λg decreases as

batch size increases and eventually vanishes in the full batch setting.
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Assumptions for convergence

1 All objective functions fi : Rn → R are continuously differentiable
with Lipschitz continuous gradients ∇fi.

2 The feasible region X ⊆ Rn is bounded.

3 (Unbiasedness) Ew[gi(x;w)] = ∇fi(x).

4 (Bound on the biasedness) There exist M1,MF > 0 such that

‖Ew[g(x;w)−∇xS(x;λg)]‖ ≤ α (M1 +MF ‖Ew[∇xS(x;λg)]‖)

(can be guaranteed by dynamic sampling)

5 (Bound on the second moment) There exist G,GV > 0 such that

Ew[‖g(x;w)‖2] ≤ G2 +G2
V ‖Ew[∇xS(x;λg)]‖2
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Sublinear rate in the strongly convex case

Theorem (Individual fi are strongly convex (c is max of constants))

Assume λt → λ∗. Let x∗ ∈ P be associated with λ∗.

Considering a diminishing step-size sequence αt = 2
c(t+1) , we have

min
t=1,...,k

E[S(xt;λt)]− E[S(x∗; λ̄k)] ≤ O(1/k)

where λ̄k =
∑k

t=1
t∑k
t=1 t

λt ∈ ∆m.

Then, we have min1≤t≤k E[S(xt;λt)]→ E[S(x∗;λ∗)].
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Rate in the strongly convex case: stronger assumption

Assume λk being a better approximation to λ∗.

We know ∇xS(x∗;λ∗)
>(xk − x∗) ≥ 0.

f1

f2

λ∗

λk

Assumption

For any xk ∈ X , one has

∇xS(x∗;λk)
>(xk − x∗) ≥ 0

where λk are the true coefficients by solving Subproblem 2.
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Rate in the strongly convex case: stronger assumption

Theorem (SL&LNV 2019)

Let x∗ be the Pareto minimizer associated with λ∗.

Considering a step-size sequence αk = γ/k with γ > 1/2c, we have

E[‖xk − x∗‖2] ≤ O(1/k)

and

E[S(xk;λ∗)]− E[S(x∗;λ∗)] ≤ O(1/k)
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Pareto-Front stochastic multi-gradient method

The Pareto-Front version of SMG is designed to obtain a complete Pareto
front in a single run.

Algorithm 2 Pareto-Front Stochastic Multi-Gradient (PF-SMG) Algorithm

1: Generate a list of starting points L0. Select r, p, q ∈ N.
2: for k = 0, 1, . . . do
3: Set Lk+1 = Lk.
4: for each point x in the list Lk+1 do
5: for t = 1, . . . , r do
6: Add x+wt to the list Lk+1 where wt is a realization of wk.
7: for each point x in the list Lk+1 do
8: for t = 1, . . . , p do
9: Apply q iterations of the SMG algorithm starting from x.

10: Add the final output point xq to the list Lk+1.
11: Remove all the dominated points from Lk+1.
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PF-SMG illustration

r = 3, p = 2

f1

f2 Generate starting points

LNV Implementation and numerical results 38/49



PF-SMG illustration

r = 3, p = 2

f1

f2 Add perturbed points
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PF-SMG illustration

r = 3, p = 2

f1

f2 Apply multiple times SMG
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PF-SMG illustration

r = 3, p = 2

f1

f2 Remove dominated points
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PF-SMG illustration

r = 3, p = 2

f1

f2 After certain number of iterations
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Numerical results: logistic regression problems

Motivation: consider a set of data points in 2D

y = 1
y = −1

For entire group

For minor group �

Data points labeled by � and • may be collected from different
sources/groups.

Key idea: design a MOO problem to identify the existence of bias in data
and define the best trade-off if data bias exists.
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Recall the logistic (prediction) loss function

f(r, b) =
1

N

N∑
j=1

log(1 + e−yj(r>aj−b)) +
λ

2
‖r‖2

where {(aj , yj)}Nj=1 are i.i.d. feature/label pairs sampled from a

certain joint probability distribution of (A, Y ).

Testing data sets are selected from LIBSVM (Chang and Lin 2011).

Split a data set into two groups according to a binary feature. Let J1

and J2 be two index sets. A two-objective problem is constructed as

min
r,b

(f1(r, b), f2(r, b))

where

fi(r, b) =
1

|Ji|
∑
j∈Ji

log(1 + e−yj(r>aj−b)) +
λi
2
‖r‖2
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Approximated Pareto fronts for the multi-objective logistic regression
problems:
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Consistently, wider Pareto fronts of heart and svmguide3 indicate higher

distinction between two groups.

Two implications:

Given groups of data instances for the same problem, one can

evaluate the bias by observing the range of Pareto fronts.

New data instance (of unknown group) can be classified more

accurately by selecting a set of nondominated points.
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Conclusions

Established sublinear convergence rates, O(1/k) for strongly convex
and O(1/

√
k) for convex case in terms of a weighted sum function.

Designed PF-SMG algorithm that is robust and efficient to generate
well-spread and sufficiently accurate Pareto fronts.

In logistic binary classification, developed a novel tool for identifying
bias among potentially different sources of data.

S. Liu and L. N. Vicente, The stochastic multi-gradient algorithm for
multi-objective optimization and its application to supervised machine learning,
ISE Technical Report 19T-011, Lehigh University.
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Future directions

Have a (probabilistic?) result for determining the whole Pareto front.

Investigate variance reduction techniques.

Deal with nonconvexity, nonsmoothness, general constraints, . . .

Expand use of MOO in machine learning:

Handling discrimination and unfairness (Calders et al. 2009; Hardt et

al. 2016).

Conflicting robotic learning.
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