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Optimization models in Data Science and Learning

A data set for analysis involving optimization is typically of the form

D = {(aj,y5),j=1,...,N}

where the a;'s vectors are features or attributes

the y;'s vectors are labels or observation or responses.
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The analysis consists of finding a prediction function ¢(a;) such that
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Optimization models in Data Science and Learning

A data set for analysis involving optimization is typically of the form

D = {(aj,y5),j=1,...,N}

where the a;'s vectors are features or attributes

the y;'s vectors are labels or observation or responses.

The analysis consists of finding a prediction function ¢(a;) such that

la;) ~y;, j=1,...,N
in some optimal sense.

Often, ¢ is parameterized ¢(x) = ¢(a;x). The parameters are x.
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Notes:

@ The process of finding ¢ is called learning or training.
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Notes:
@ The process of finding ¢ is called learning or training.
@ When the y;’s are reals, one has a regression problem.

© When the y;'s lie in a finite set {1,..., M}, one has a classification
problem.

M = 2 leads to binary classification.
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Notes:

@ The process of finding ¢ is called learning or training.
@ When the y;’s are reals, one has a regression problem.

© When the y;'s lie in a finite set {1,..., M}, one has a classification
problem.

M = 2 leads to binary classification.

©Q The labels may be null. In that case, one may want:
to group the a;'s in clusters (clusterization)

or to identify a low-dimensional subspace (or a collection of)
where the a;’s lie (subspace identification).
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Notes:

o

o

The process of finding ¢ is called learning or training.
When the y;'s are reals, one has a regression problem.

When the y;'s lie in a finite set {1,..., M}, one has a classification
problem.

M = 2 leads to binary classification.

The labels may be null. In that case, one may want:
to group the a;'s in clusters (clusterization)
or to identify a low-dimensional subspace (or a collection of)

where the a;’s lie (subspace identification).

The labels may have to be learned while learning ¢.
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© Data is assumed to be clean for optimization, but still:

i) (aj,y;)'s could be noisy or corrupted.
i) Some a; or y;'s could be missing.

iii) Data could arrive in streaming fashion (¢ must be learned online).
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Thus, ¢ has to be robust to changes in the data set.
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© Data is assumed to be clean for optimization, but still:

i) (aj,y;)'s could be noisy or corrupted.
i) Some a; or y;'s could be missing.

iii) Data could arrive in streaming fashion (¢ must be learned online).

Thus, ¢ has to be robust to changes in the data set.

Such data analysis is often referred to as machine learning or data mining.

unsupervised learning (when
labels are null): extract inter-
esting information from data

predictive or supervised learn-
ing (when labels exist)
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The correct/accurate match of the data is typically quantified by a loss
function ¢(a,y; ¢(x)) and thus learning can be formulated as

N
min 3" €(aj. u;: ()
j=1
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The correct/accurate match of the data is typically quantified by a loss
function £(a,y; ¢(x)) and thus learning can be formulated as

N
mxin Zé(aj,yj;qﬁ(x))

j=1

To avoid overfitting such a model to a sample D, one often adds a
regularizer

N
mzin Zﬁ(ag‘, yj; 6()) + g(x)
j=1
Azl i3

so that ¢ is not so sensitive to changes in D.
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The general form of optimization models in DS is

min f(z) + g(2)

where f: R” — R is smooth.
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The general form of optimization models in DS is

min f(z) + g(2)

where f: R” — R is smooth.
V f is at least Lipschitz continuous.
g:R"™ - RU{+o0} is convex, proper and closed.

g is typically non-smooth.
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Classical example: logistic regression for binary classification
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Classical example: logistic regression for binary classification

Consider a data set with y € {—1,1}

o.. °N
O.G/
° o - _
N y=-1
%4 o0
Q) ‘.l
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Classical example: logistic regression for binary classification

Consider a data set with y € {—1,1}

o.. °N
o.@/
* o« [
N y=-1
%4 D)
Q) ‘.l
&
al

¢(x) = ¢(a;r,b) = r"a — b is a linear classifier. One aims to seek for a
optimal parameter x = (r,b) such that
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Logistic regression can be motivated by two arguments.

@ Smoothing/convexifying the true loss.

What we want to do is

min L(sign(z) # y) where z = ¢(z).

y=+1

L(sign(z) # +1)
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Smoothing/convexifying to Hinge loss (SVM)

Hinge

max{0, —(+1)z}

Smoothing to Logistic loss

Logistic

=] T~
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@ Probabilistic argument: (x) is equivalent to

o(¢(r)) =

1 >0.5 wheny=1
14 %) < 0.5 wheny=-1
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@ Probabilistic argument: (x) is equivalent to

o(¢(z)) =

1 >0.5 wheny=1
14 %) < 0.5 wheny=-1

Think of it as the probability
P(y=1la) = 0(6(z)) = fr=—cem

P(y=—1la) = 1-0(¢(2)) = =
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@ Probabilistic argument: (x) is equivalent to

o(¢(z)) =

1 >0.5 wheny=1
14 %) < 0.5 wheny=-1

Think of it as the probability
P(y=1la) = 0(6(z)) = fr=—cem

Ply=—1la) = 1-0(¢(z)) = j5=crsm

Assuming data points are i.i.d., the maximum likelihood problem is

max H Plyilas) 1_[11+€ v;i$()

=1 prob. of correct prediction

Introduction to optimization models in Data Science and Learning



Then, the negative log likelihood leads to the loss minimization problem

1 N
i 7 3 a0y 000

with the smooth convex logistic loss function

0r(aj,yj; d(x)) = log(1+e ¥ a—b)
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Then, the negative log likelihood leads to the loss minimization problem

XN
mln N z_: ajv y]7 ))
with the smooth convex logistic loss function
D np.e — —y;(rTa;—b)
Cr(aj,y;;0(x)) = log(L+e % %)
Binary classification is formulated as the optimization problem

min = > Cr(aj, y;; ¢(x)) + *H 13

||M2
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Presentation outline

© Stochastic gradient descent for Stochastic Optimization



Stochastic gradient descent for Stochastic Optimization

Assume a point (a,y) € D arises with a certain (joint) probability Py.
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Stochastic gradient descent for Stochastic Optimization

Assume a point (a,y) € D arises with a certain (joint) probability Py.

The general goal now is to minimize the expected risk of misclassification

R(z) = / ((a, y; 6(x))dPala, )
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Stochastic gradient descent for Stochastic Optimization

Assume a point (a,y) € D arises with a certain (joint) probability Py.
The general goal now is to minimize the expected risk of misclassification

- / ((a, y; 6(x))dPala, )

When Pq is unknown, only having a sample D leads to minimizing the

empirical risk of misclassification

N
Z a]vy]a

as an estimation of R(z).
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For simplicity, let f(z) = (a,y; ¢(z)).
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For simplicity, let f(z) = (a,y; ¢(z)).

w is the random seed variable representing a sample. (A set of realizations
{w;) j»vzl corresponds to a sample set {(a;j,y;),7 =1,...,N}.)
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For simplicity, let f(z) = ¢(a,y; ¢(z)).

w is the random seed variable representing a sample. (A set of realizations
{w;) N, corresponds to a sample set {(a;,y;),j =1,...,N}.)

The general objective could be written as

R(z) = E[f(z;w)] Online setting (expected risk)
R(z) =
) = % ij(:r) Finite sum setting (empirical risk)

where f;(z) = f(z;wy;) is the loss associated with the j-th sample.
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For simplicity, let f(z) = ¢(a,y; ¢(z)).

w is the random seed variable representing a sample. (A set of realizations
{’w[j]}fj\/:l corresponds to a sample set {(a;j,y;),7 =1,...,N}.)

The general objective could be written as

R(z) = E[f(z;w)] Online setting (expected risk)

R(z) = N
Ry(z) = % ij(:r) Finite sum setting (empirical risk)
j=1
where f;(z) = f(z;wy;) is the loss associated with the j-th sample.

Both can be minimized by the stochastic gradient method.
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The stochastic gradient method

Algorithm 1 Stochastic Gradient (SG) method (Robbins and Monro 1951)
1: Choose an initial point zg € R”.

2: fork=0,1,... do

3:  Compute a stochastic gradient g(zy; wy).

4. Choose a step-size aj > 0.

5. Set the new iterate zj11 = x) — agpg(xk; wi). Sutton Monr
6: end for

Stochastic gradient descent for Stochastic Optimization



The stochastic gradient method

Algorithm 1 Stochastic Gradient (SG) method (Robbins and Monro 1951)
1: Choose an initial point zg € R”.

2: fork=0,1,... do

3:  Compute a stochastic gradient g(zy; wy).

4. Choose a step-size aj > 0.

5. Set the new iterate zj11 = x) — agpg(xk; wi). Sutton Monr
6: end for

The stochastic gradient g(zy;wy) could be

Vf(zg;wg) = Vfj.(xr) simple or basic SG
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The stochastic gradient method

Algorithm 1 Stochastic Gradient (SG) method (Robbins and Monro 1951)
1: Choose an initial point zg € R”.

2: fork=0,1,... do

3:  Compute a stochastic gradient g(zy; wy).

4. Choose a step-size aj > 0.

5. Set the new iterate zj11 = x) — agpg(xk; wi). Sutton Monr
6: end for

The stochastic gradient g(zy;wy) could be

Vf(zg;wg) = Vfj.(xr) simple or basic SG

1
Bl Z V f(xk;wg,;)  mini-batch SG (| 3| is the mini-batch size)
JEB

Stochastic gradient descent for Stochastic Optimization



Classical assumptions for SG method

@ The sequence of realizations {wy} are i.i.d. sample of w.
@ Function R has Lipschitz continuous gradient.

© The stochastic gradient is an unbiased estimate
By [9(xk;wi)] = VR(zk)
@ The stochastic gradient has bounded variance
Vulg(zeiwp)] < M+ O(IVR(z)|)

@ Function R is bounded below: R(z) > R,,Vx. R, = R(x.) where z,
is a minimizer of R.

E[-] denotes the expected value taken w.r.t. the joint distribution of {wy}.
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Convergence rates for SG method

The strongly convex case (Sacks 1958)
Consider a diminishing step-size sequence (e.g., a; ~ O(1/k)), one has

E[R(zx)] — R < O(1/k)
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Convergence rates for SG method

The strongly convex case (Sacks 1958)
Consider a diminishing step-size sequence (e.g., a; ~ O(1/k)), one has

E[R(zx)] — R < O(1/k)

The convex case (Nemirovski and Yudin 1978)
Consider a diminishing step-size sequence (e.g., ay ~ O(1/vk)), one has
E[R{:est] - R* S O(]‘/\/%)

where Rfest = minlgigk R(:L'Z)
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Multi-Objective Optimization

Multi-Objective Optimization (MOO) deals with multiple potentially
conflicting objectives simultaneously.
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Multi-Objective Optimization

Multi-Objective Optimization (MOO) deals with multiple potentially
conflicting objectives simultaneously.

We consider smooth MOO problems of the general form

min H(z) = (hi(x),..., hn(x))
st. x € X

where h; : R™ — R are smooth functions and X is a feasible region.

20/49
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Multi-Objective Optimization

Multi-Objective Optimization (MOO) deals with multiple potentially
conflicting objectives simultaneously.

We consider smooth MOO problems of the general form

min H(z) = (hi(x),..., hn(x))
st. x € X

where h; : R™ — R are smooth functions and X is a feasible region.

Definition of optimality for MOO
e x dominates y if H(xz) < H(y) componentwise, Vz,y € X.

@ x is a Pareto minimizer if it is not dominated by any other point in X.

Also called a non-dominated or efficient point.
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Pareto front

” Denote P as the set of Pareto
. minimizers.
S: Pareto front is a mapping from P to
" function value space R™, i.e.,
S T~ H(P) = {H(x) : v € P}

Figure: Pareto front of problem SP1
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Pareto front

4.0 |
35

3.0

Denote P as the set of Pareto
minimizers.

25

Si2o0

Pareto front is a mapping from P to
function value space R™, i.e.,

15
1.0

o T~ H(P) = {H(z): 2 € P}

0.0 05 1.0 15 2.0 25 3.0 35 4.0
1

Figure: Pareto front of problem SP1

The goal of MOO: find the set of Pareto minimizers and hence Pareto
front to define the best trade-off among several competing criteria.
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Necessary condition for Pareto minimizers

Pareto first-order stationary condition: z is a Pareto stationary point if

Vhl(l‘)—r
P d € R™ such that : d <0
Vhm(z)T
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Necessary condition for Pareto minimizers

Pareto first-order stationary condition: z is a Pareto stationary point if

Vhl(l‘)—r
P d € R™ such that : d <0
Vhm(z)T

Or equivalently, if the convex hull of Vh;(z)'s contains the origin

X € A™ such that > A Vhi(z) = 0

i=1

where A™ ={X: 3" XNy =1,X >0,¥i=1,..,m} is a simplex set.
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Necessary condition for Pareto minimizers

Pareto first-order stationary condition: z is a Pareto stationary point if

Vhl(l‘)—r
P d € R™ such that : d <0
Vhm(z)T

Or equivalently, if the convex hull of Vh;(z)'s contains the origin
m
X € A™ such that > A Vhi(z) = 0
i=1
where A™ ={X: 3" XNy =1,X >0,¥i=1,..,m} is a simplex set.
Note: when all the functions are convex, = € P iff « is Pareto first-order

stationary.

LNV Multi-Objective Optimization 22/49



Overview of methods for MOO

Methods with a priori preferences (Ehrgott 2005; Miettinen 2012)

o Weighted-sum method
min S(z;a) = Y it a;fi(x), where a € A™

Limitations: hard to preselect weights for different magnitudes;
cannot find Pareto minimizers in non-convex regions.

@ c-constraint method
min fi(x) st fij(z) < €5, Vj#i

where €; > mingecx fj(x) are upper bounds.
Limitations: inappropriate upper bounds lead to infeasibility.

Common issues: output single nondominated point at one run, produce
poorly distributed Pareto front with multiple runs.

LNV Multi-Objective Optimization
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Overview of methods for MOO

Methods with a posteriori preferences

Population-based heuristic methods: no convergence proofs, e.g.,

o NSGA-II (genetic algorithms) (Deb et al. 2002).

@ AMOSA (simulated annealing) (Bandyopadhyay et al. 2008).
Convergent methods: proved convergence to Pareto stationary points

e  multi-gradient method (Fliege and Svaiter 2000).
o Newton's method for MOO (Fliege et al. 2009).
o direct multi-search algorithm (Custédio et al. 2011), etc.

Superiority: able to construct the whole well-spread Pareto front.

LNV Multi-Objective Optimization 24/49



" Steepest” common descent direction

The multi-gradient algorithm iterates: zp1 = x + agdy.
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" Steepest” common descent direction

The multi-gradient algorithm iterates: zp1 = x + agdy.
Subproblem 1 (Fliege and Svaiter 2000):
dr € argmin max {—Vh; (sck)Td}—i-—HdH2
dernr 1<i<m

Note: d = 0 € R™ iff zy is Pareto stationary.
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" Steepest” common descent direction

The multi-gradient algorithm iterates: zp1 = x + agdy.
Subproblem 1 (Fliege and Svaiter 2000):

dr € argmin max {—Vh; (sck)Tal}—i-—HdH2
dernr 1<i<m

Note: d = 0 € R™ iff zy is Pareto stationary.

Subproblem 2: dual problem of Subproblem 1

2
A € argmin Z)\ Vhi(xg) st. Ae A™
AER™ i—1
Then, di, = — > (M\,)iVhi(zy) is a common descent direction.
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" Steepest” common descent direction

The multi-gradient algorithm iterates: zp1 = x + agdy.
Subproblem 1 (Fliege and Svaiter 2000):

dr € argmin max {—Vh; (sck)Tal}—i-—HdH2
dernr 1<i<m

Note: d = 0 € R™ iff zy is Pareto stationary.

Subproblem 2: dual problem of Subproblem 1

2
A € argmin Z)\ Vhi(xg) st. Ae A™
AER™ i—1
Then, di, = — > (M\,)iVhi(zy) is a common descent direction.
Note: when m = 1, one recovers d, = —Vhy(xy).

LNV Multi-Objective Optimization 25/49
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@ The stochastic multi-gradient algorithm and assumptions
o Convergence rates in the strongly convex and convex cases



Stochastic Multi-Objective Optimization

Consider a stochastic multi-objective problem

min  F(z) = (fi(z),..., fm(®)) = (E[filz;w)], ..., Elfm(z;w)])

st. e X

where w € R™*P are random parameters obeying a certain distribution.
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Stochastic Multi-Objective Optimization

Consider a stochastic multi-objective problem

min  F(z) = (fi(z),..., fm(®)) = (E[filz;w)], ..., Elfm(z;w)])

st. e X

where w € R™*P are random parameters obeying a certain distribution.

Subproblem 3: replace V f;(x)) by an estimate g;(xx; wy) in Subproblem 2

2
m
N (g wy) € argmin || Nigi(w; wy)
AeRm |14
st. Ae A™

gz wi) = > (A))igi(xk; wi) denotes the stochastic multi-gradient.
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Stochastic Multi-Objective Optimization

Consider a stochastic multi-objective problem

min  F(z) = (fi(z),..., fm(®)) = (E[filz;w)], ..., Elfm(z;w)])

st. e X

where w € R™*P are random parameters obeying a certain distribution.

Subproblem 3: replace V f;(x)) by an estimate g;(xx; wy) in Subproblem 2

2
m
N (g wy) € argmin || Nigi(w; wy)
AeRm |14
st. Ae A™

gz wi) = > (A))igi(xk; wi) denotes the stochastic multi-gradient.

The stochastic multi-gradient (SMG) algorithm: zy11 = 2 — agpg(xg; wi)
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The stochastic multi-gradient method

Consider using an orthogonal projection P when minimize over a closed
and convex set X' C R".
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The stochastic multi-gradient method

Consider using an orthogonal projection P when minimize over a closed
and convex set X' C R".

Algorithm 1 Stochastic Multi-Gradient (SMG) Algorithm

1: Choose an initial point zy € R™ and a step-size sequence {ay }ren > 0.
2: for k=0,1,... do

3:  Compute the stochastic gradients g;(xp; wy) fori=1,...,m.

4:  Solve Subproblem 3 to obtain the stochastic multi-gradient

m

g(xp;wy) = Z(/\i)igi(mk;wk),With A €A™,
1=1

o

Update the next iterate ;11 = Py (zr — apg(zr; wg)).
6: end for

Stochastic Multi-Objective Optimization



Subproblem 3 illustration

Consider the case m = 2,n = 2.

g1 and go are two stochastic multi-gradients by solving Subproblem 3.

They are estimates of the true multi-gradient g (Subproblem 1 or 2).
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Biasedness of the stochastic multi-gradient

Denote

S(z;A) = D% Nifi(w)
VaS(a;A) = Y MV fi(z)
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Biasedness of the stochastic multi-gradient

Denote

S(z;A) = D% Nifi(w)
VaS(a;A) = Y MV fi(z)

Even under the classical assumption in SG
Eyplgi(z;w)] = Vfi(z), Vi=1,...,m
it turns out that g(z;w) is a biased estimate, i.e.,
Ewlg(z;w)] # VaS(z; M)

where \ are the true coefficients from Subproblem 2.
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Biasedness of the stochastic multi-gradient

Denote

S(z;A) = D% Nifi(w)
VaS(a;A) = Y MV fi(z)

Even under the classical assumption in SG
Eyplgi(z;w)] = Vfi(z), Vi=1,...,m
it turns out that g(z;w) is a biased estimate, i.e.,
Ewlg(z;w)] # VaS(z; M)
where X\ are the true coefficients from Subproblem 2. We also have

Eulg(z; w)] # B[V S(z; A7)
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Biasedness illustration

The biasedness using either the true coefficients A or \9 decreases as

batch size increases and eventually vanishes in the full batch setting.

" 3
7l " " " " " 2510

o

o

2000 2200 2400 2600 2600 3000
batch size ¢ [2000, 3000]

200 2200 2400 2600 2800 3000
batch size € [2000, 3000]

I, norm of expected error using A
©
I, norm of expected error using A?

L L L L L 05 L L L L L
0 100 200 300 400 500 0 100 200 300 400 500

batch size batch size
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Assumptions for convergence

O All objective functions f; : R™ — R are continuously differentiable
with Lipschitz continuous gradients V f;.

Q@ The feasible region X C R"” is bounded.

O (Unbiasedness) E,[gi(z; w)] = Vfi(x).

© (Bound on the biasedness) There exist My, Mr > 0 such that
[Bwlg(z;w) = Ve Sz M| < a (My + Mp|[Ew[VaS(2; M)
(can be guaranteed by dynamic sampling)

@ (Bound on the second moment) There exist G, Gy > 0 such that

Eulllg(z;w)l’] < G* + GV |Eu[VaS(a; M)

Stochastic Multi-Objective Optimization



Sublinear rate in the strongly convex case

Theorem (Individual f; are strongly convex (¢ is max of constants))

Assume Ay — M. Let x, € P be associated with \.

Considering a diminishing step-size sequence a; = we have

_2
c(t+1)’

t:Hllyi”IikE[S(mﬁ)\t)]_E[S(m*;j‘k)] < O(1/k)

where \j, = S1_, Z /\t €A™,

Then, we have min; << E[S(x; \)] — E[S(2.: As)].

Stochastic Multi-Objective Optimization




Rate in the strongly convex case: stronger assumption

Assume A\, being a better approximation to A..

We know VS (24 A) T (2 — ) > 0.
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Rate in the strongly convex case: stronger assumption

Assume A\, being a better approximation to A..

We know VS (24 A) T (2 — ) > 0.

For any z, € X, one has

VS (x; Ae) T (@ — 24) >0

where \i are the true coefficients by solving Subproblem 2.
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Rate in the strongly convex case: stronger assumption

Theorem (SL&LNV 2019)

Let z, be the Pareto minimizer associated with ).

Considering a step-size sequence oy, = v/k with v > 1/2¢, we have

Ef|lzg — 2] < O(1/k)
and

E[S(zk; A)] = E[S(z4; A)] < O(1/k)

Stochastic Multi-Objective Optimization
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Pareto-Front stochastic multi-gradient method

The Pareto-Front version of SMG is designed to obtain a complete Pareto
front in a single run.

Algorithm 2 Pareto-Front Stochastic Multi-Gradient (PF-SMG) Algorithm

1: Generate a list of starting points Ly. Select r,p,q € N.
2: fork=0,1,... do
3: Set »Ck—i-l = L.

4: for each point x in the list L1, do

5: fort=1,...,r do

6: Add x +w' to the list £; 11 where w' is a realization of wy.
7 for each point x in the list £, do

8: fort=1,...,pdo

9: Apply q iterations of the SMG algorithm starting from .
10: Add the final output point x, to the list L.

11: Remove all the dominated points from Ly 1.
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PF-SMG illustration

r=3,p=2

f2 Generate starting points

f
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PF-SMG illustration

r=3,p=2

f2 Add perturbed points

f
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PF-SMG illustration

r=3,p=2

f2 . Apply multiple times SMG

f
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PF-SMG illustration

r=3,p=2

f2 Remove dominated points

f
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PF-SMG illustration

r=3,p=2

f2 After certain number of iterations

fi
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Numerical results: logistic regression problems

Motivation: consider a set of data points in 2D

— For entire group

--- For minor group ¢

Data points labeled by ¢ and e may be collected from different
sources/groups.
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Numerical results: logistic regression problems

Motivation: consider a set of data points in 2D

— For entire group

--- For minor group ¢

Data points labeled by ¢ and e may be collected from different
sources/groups.

Key idea: design a MOO problem to identify the existence of bias in data
and define the best trade-off if data bias exists.
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@ Recall the logistic (prediction) loss function

N
1 i (rTa,— A
f(?",b) = NZIOg(l—Fe Y5 ( J b))+§|’T.H2

J=1

where {(a],y])}N , are i.i.d. feature/label pairs sampled from a
certain joint probability distribution of (A,Y").

o Testing data sets are selected from LIBSVM (Chang and Lin 2011).

@ Split a data set into two groups according to a binary feature. Let Jy
and Jy be two index sets. A two-objective problem is constructed as

H;,ibn (fl (7", b)? fg(?“, b))

where

Ai
fi(r,b) = | > log( (14 e ¥tTa=b)y 4 5”7"”2

\J
J€J;
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Approximated Pareto fronts for the multi-objective logistic regression

problems:
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(c) svmguide3
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Consistently, wider Pareto fronts of heart and svmguide3 indicate higher

distinction between two groups.
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Consistently, wider Pareto fronts of heart and svmguide3 indicate higher

distinction between two groups.

Two implications:

o Given groups of data instances for the same problem, one can

evaluate the bias by observing the range of Pareto fronts.

o New data instance (of unknown group) can be classified more

accurately by selecting a set of nondominated points.
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Presentation outline

@ Conclusions and future directions



Conclusions

o Established sublinear convergence rates, O(1/k) for strongly convex
and O(1/+/k) for convex case in terms of a weighted sum function.

@ Designed PF-SMG algorithm that is robust and efficient to generate
well-spread and sufficiently accurate Pareto fronts.

@ In logistic binary classification, developed a novel tool for identifying
bias among potentially different sources of data.

S. Liu and L. N. Vicente, The stochastic multi-gradient algorithm for
multi-objective optimization and its application to supervised machine learning,
ISE Technical Report 19T-011, Lehigh University.
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Future directions

@ Have a (probabilistic?) result for determining the whole Pareto front.

Investigate variance reduction techniques.

Deal with nonconvexity, nonsmoothness, general constraints, ...

Expand use of MOO in machine learning:

o Handling discrimination and unfairness (Calders et al. 2009; Hardt et
al. 2016).
o Conflicting robotic learning.
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