
Recent Progress
on

Derivative-Free Trust-Region Methods

Luis Nunes Vicente
University of Coimbra

Sapienza – Università di Roma

June 28, 2016

Seminar Talk # 3

1/51

There are two main classes of rigorous methods in DFO

Direct-search methods, of directional type.

Achieve descent by using directions spanning positively the search
space or randomly generated, and moving in the directions of the best
points.

Trust-region methods, based on the restricted minimization of models
built from sample sets.

We will talk about trust-region methods for DFO:

Smooth obj. functions (worst case complexity, 1st and 2nd order).

Non-smooth obj. functions (smoothing and composite approaches).

Probabilistic methods for deterministic obj. functions.

Stochastic obj. functions.

2/51

There are two main classes of rigorous methods in DFO

Direct-search methods, of directional type.

Achieve descent by using directions spanning positively the search
space or randomly generated, and moving in the directions of the best
points.

Trust-region methods, based on the restricted minimization of models
built from sample sets.

We will talk about trust-region methods for DFO:

Smooth obj. functions (worst case complexity, 1st and 2nd order).

Non-smooth obj. functions (smoothing and composite approaches).

Probabilistic methods for deterministic obj. functions.

Stochastic obj. functions.

2/51

There are two main classes of rigorous methods in DFO

Direct-search methods, of directional type.

Achieve descent by using directions spanning positively the search
space or randomly generated, and moving in the directions of the best
points.

Trust-region methods, based on the restricted minimization of models
built from sample sets.

We will talk about trust-region methods for DFO:

Smooth obj. functions (worst case complexity, 1st and 2nd order).

Non-smooth obj. functions (smoothing and composite approaches).

Probabilistic methods for deterministic obj. functions.

Stochastic obj. functions.

2/51

There are two main classes of rigorous methods in DFO

Direct-search methods, of directional type.

Achieve descent by using directions spanning positively the search
space or randomly generated, and moving in the directions of the best
points.

Trust-region methods, based on the restricted minimization of models
built from sample sets.

We will talk about trust-region methods for DFO:

Smooth obj. functions (worst case complexity, 1st and 2nd order).

Non-smooth obj. functions (smoothing and composite approaches).

Probabilistic methods for deterministic obj. functions.

Stochastic obj. functions.

2/51

There are two main classes of rigorous methods in DFO

Direct-search methods, of directional type.

Achieve descent by using directions spanning positively the search
space or randomly generated, and moving in the directions of the best
points.

Trust-region methods, based on the restricted minimization of models
built from sample sets.

We will talk about trust-region methods for DFO:

Smooth obj. functions (worst case complexity, 1st and 2nd order).

Non-smooth obj. functions (smoothing and composite approaches).

Probabilistic methods for deterministic obj. functions.

Stochastic obj. functions.

2/51

There are two main classes of rigorous methods in DFO

Direct-search methods, of directional type.

Achieve descent by using directions spanning positively the search
space or randomly generated, and moving in the directions of the best
points.

Trust-region methods, based on the restricted minimization of models
built from sample sets.

We will talk about trust-region methods for DFO:

Smooth obj. functions (worst case complexity, 1st and 2nd order).

Non-smooth obj. functions (smoothing and composite approaches).

Probabilistic methods for deterministic obj. functions.

Stochastic obj. functions.

2/51

There are two main classes of rigorous methods in DFO

Direct-search methods, of directional type.

Achieve descent by using directions spanning positively the search
space or randomly generated, and moving in the directions of the best
points.

Trust-region methods, based on the restricted minimization of models
built from sample sets.

We will talk about trust-region methods for DFO:

Smooth obj. functions (worst case complexity, 1st and 2nd order).

Non-smooth obj. functions (smoothing and composite approaches).

Probabilistic methods for deterministic obj. functions.

Stochastic obj. functions.

2/51

3/51

3/51

3/51

3/51

3/51

Trust-region methods

One typically minimizes a model m in a trust region B(x; ∆):

Trust-region subproblem

min
y∈B(x;∆)

m(y)

In derivative-based optimization, one could use:

1st order Taylor:

m(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>H(y − x)

or a 2nd order Taylor:

m(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>∇2f(x)(y − x)

4/51

Trust-region methods

One typically minimizes a model m in a trust region B(x; ∆):

Trust-region subproblem

min
y∈B(x;∆)

m(y)

In derivative-based optimization, one could use:

1st order Taylor:

m(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>H(y − x)

or a 2nd order Taylor:

m(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>∇2f(x)(y − x)

4/51

Trust-region methods

One typically minimizes a model m in a trust region B(x; ∆):

Trust-region subproblem

min
y∈B(x;∆)

m(y)

In derivative-based optimization, one could use:

1st order Taylor:

m(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>H(y − x)

or a 2nd order Taylor:

m(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>∇2f(x)(y − x)

4/51

Fully linear models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully linear if

It is C1 with Lipschitz continuous gradient.

The following error bounds hold:

‖∇f(y)−∇m(y)‖ ≤ κeg ∆ ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x; ∆).

For a class of fully linear models, the (unknown) constants κef , κeg > 0
must be independent of x and ∆.

Fully linear models can be quadratic (or even nonlinear).

5/51

Fully linear models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully linear if

It is C1 with Lipschitz continuous gradient.

The following error bounds hold:

‖∇f(y)−∇m(y)‖ ≤ κeg ∆ ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x; ∆).

For a class of fully linear models, the (unknown) constants κef , κeg > 0
must be independent of x and ∆.

Fully linear models can be quadratic (or even nonlinear).

5/51

Fully linear models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully linear if

It is C1 with Lipschitz continuous gradient.

The following error bounds hold:

‖∇f(y)−∇m(y)‖ ≤ κeg ∆ ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x; ∆).

For a class of fully linear models, the (unknown) constants κef , κeg > 0
must be independent of x and ∆.

Fully linear models can be quadratic (or even nonlinear).

5/51

Fully linear models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully linear if

It is C1 with Lipschitz continuous gradient.

The following error bounds hold:

‖∇f(y)−∇m(y)‖ ≤ κeg ∆ ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x; ∆).

For a class of fully linear models, the (unknown) constants κef , κeg > 0
must be independent of x and ∆.

Fully linear models can be quadratic (or even nonlinear).

5/51

Fully linear models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully linear if

It is C1 with Lipschitz continuous gradient.

The following error bounds hold:

‖∇f(y)−∇m(y)‖ ≤ κeg ∆ ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x; ∆).

For a class of fully linear models, the (unknown) constants κef , κeg > 0
must be independent of x and ∆.

Fully linear models can be quadratic (or even nonlinear).

5/51

Fully quadratic models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is C2 with Lipschitz continuous Hessian.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully quadratic models, the (unknown) constants
κef , κeg, κeh > 0 must be independent of x and ∆.

Fully quadratic models are only necessary for global convergence/WCC to
2nd order stationary points.

6/51

Fully quadratic models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is C2 with Lipschitz continuous Hessian.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully quadratic models, the (unknown) constants
κef , κeg, κeh > 0 must be independent of x and ∆.

Fully quadratic models are only necessary for global convergence/WCC to
2nd order stationary points.

6/51

Fully quadratic models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is C2 with Lipschitz continuous Hessian.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully quadratic models, the (unknown) constants
κef , κeg, κeh > 0 must be independent of x and ∆.

Fully quadratic models are only necessary for global convergence/WCC to
2nd order stationary points.

6/51

Fully quadratic models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is C2 with Lipschitz continuous Hessian.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully quadratic models, the (unknown) constants
κef , κeg, κeh > 0 must be independent of x and ∆.

Fully quadratic models are only necessary for global convergence/WCC to
2nd order stationary points.

6/51

Fully quadratic models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is C2 with Lipschitz continuous Hessian.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully quadratic models, the (unknown) constants
κef , κeg, κeh > 0 must be independent of x and ∆.

Fully quadratic models are only necessary for global convergence/WCC to
2nd order stationary points.

6/51

Trust-region methods

Trust-region methods for DFO typically:

Attempt to form quadratic models (by interpolation/regression and
using polynomials or radial basis functions)

mk(xk + s) = fk + g>k s+
1

2
s>Hks

based on (well poised) sample sets.

−→ Well poisedness ensures fully linear or fully quadratic models.

Calculate a step sk by approximately solving the trust-region
subproblem

min
s∈B(xk;∆k)

mk(xk + s).

7/51

Trust-region methods

Trust-region methods for DFO typically:

Attempt to form quadratic models (by interpolation/regression and
using polynomials or radial basis functions)

mk(xk + s) = fk + g>k s+
1

2
s>Hks

based on (well poised) sample sets.

−→ Well poisedness ensures fully linear or fully quadratic models.

Calculate a step sk by approximately solving the trust-region
subproblem

min
s∈B(xk;∆k)

mk(xk + s).

7/51

Trust-region methods (a general framework)

Set xk+1 to xk + sk (success) or to xk (unsuccess) and update ∆k

depending on the value of

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

Reduce ∆k only if ρk is small and the model is FL/FQ —
unsuccessful iterations.

Successful iterations occur when ρk is large (∆k kept or increased).

Requiring then model-improving iterations (when ρk is small and the
model is not certifiably FL/FQ).

−→ Do not reduce ∆k.

8/51

Trust-region methods (a general framework)

Set xk+1 to xk + sk (success) or to xk (unsuccess) and update ∆k

depending on the value of

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

Reduce ∆k only if ρk is small and the model is FL/FQ —
unsuccessful iterations.

Successful iterations occur when ρk is large (∆k kept or increased).

Requiring then model-improving iterations (when ρk is small and the
model is not certifiably FL/FQ).

−→ Do not reduce ∆k.

8/51

Trust-region methods (a general framework)

Set xk+1 to xk + sk (success) or to xk (unsuccess) and update ∆k

depending on the value of

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

Reduce ∆k only if ρk is small and the model is FL/FQ —
unsuccessful iterations.

Successful iterations occur when ρk is large (∆k kept or increased).

Requiring then model-improving iterations (when ρk is small and the
model is not certifiably FL/FQ).

−→ Do not reduce ∆k.

8/51

Trust-region methods (a general framework)

Set xk+1 to xk + sk (success) or to xk (unsuccess) and update ∆k

depending on the value of

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

Reduce ∆k only if ρk is small and the model is FL/FQ —
unsuccessful iterations.

Successful iterations occur when ρk is large (∆k kept or increased).

Requiring then model-improving iterations (when ρk is small and the
model is not certifiably FL/FQ).

−→ Do not reduce ∆k.

8/51

Trust-region methods (a general framework)

Accept new iterates based on simple decrease, i.e., if

ρk > 0 ⇐⇒ f(xk + sk) < f(xk),

as long as the model is FL/FQ — acceptable iterations (∆k reduced).

Incorporate a criticality step (1st or 2nd order) when the ‘stationarity’
of the model is small.

−→ Internal cycle of reductions of ∆k — until model is well poised in
B(xk; ‖gk‖).

Scheinberg and Toint (2010) showed that a criticality step is indeed
necessary.

9/51

Trust-region methods (a general framework)

Accept new iterates based on simple decrease, i.e., if

ρk > 0 ⇐⇒ f(xk + sk) < f(xk),

as long as the model is FL/FQ — acceptable iterations (∆k reduced).

Incorporate a criticality step (1st or 2nd order) when the ‘stationarity’
of the model is small.

−→ Internal cycle of reductions of ∆k — until model is well poised in
B(xk; ‖gk‖).

Scheinberg and Toint (2010) showed that a criticality step is indeed
necessary.

9/51

Global convergence of the CSV framework

Due to the criticality step, one has for successful iterations:

f(xk)− f(xk+1) ≥ O(‖gk‖min{‖gk‖,∆k}) ≥ O(∆2
k).

Theorem (Conn, Scheinberg, and Vicente, 2009)

lim
k→+∞

∆k = 0.

Theorem (CSV, 2009)

Using fully linear models (when f is C1 and bounded below),

lim
k→+∞

‖∇f(xk)‖ = 0.

Theorem (CSV, 2009)

Using fully quadratic models (when f is C2 and bounded below),

lim
k→+∞

max
{
‖∇f(xk)‖,−λmin[∇2f(xk)]

}
= 0.

10/51

Global convergence of the CSV framework

Due to the criticality step, one has for successful iterations:

f(xk)− f(xk+1) ≥ O(‖gk‖min{‖gk‖,∆k}) ≥ O(∆2
k).

Theorem (Conn, Scheinberg, and Vicente, 2009)

lim
k→+∞

∆k = 0.

Theorem (CSV, 2009)

Using fully linear models (when f is C1 and bounded below),

lim
k→+∞

‖∇f(xk)‖ = 0.

Theorem (CSV, 2009)

Using fully quadratic models (when f is C2 and bounded below),

lim
k→+∞

max
{
‖∇f(xk)‖,−λmin[∇2f(xk)]

}
= 0.

10/51

Global convergence of the CSV framework

Due to the criticality step, one has for successful iterations:

f(xk)− f(xk+1) ≥ O(‖gk‖min{‖gk‖,∆k}) ≥ O(∆2
k).

Theorem (Conn, Scheinberg, and Vicente, 2009)

lim
k→+∞

∆k = 0.

Theorem (CSV, 2009)

Using fully linear models (when f is C1 and bounded below),

lim
k→+∞

‖∇f(xk)‖ = 0.

Theorem (CSV, 2009)

Using fully quadratic models (when f is C2 and bounded below),

lim
k→+∞

max
{
‖∇f(xk)‖,−λmin[∇2f(xk)]

}
= 0.

10/51

Global convergence of the CSV framework

Due to the criticality step, one has for successful iterations:

f(xk)− f(xk+1) ≥ O(‖gk‖min{‖gk‖,∆k}) ≥ O(∆2
k).

Theorem (Conn, Scheinberg, and Vicente, 2009)

lim
k→+∞

∆k = 0.

Theorem (CSV, 2009)

Using fully linear models (when f is C1 and bounded below),

lim
k→+∞

‖∇f(xk)‖ = 0.

Theorem (CSV, 2009)

Using fully quadratic models (when f is C2 and bounded below),

lim
k→+∞

max
{
‖∇f(xk)‖,−λmin[∇2f(xk)]

}
= 0.

10/51

How to establish WCC for the CSV framework

Change in ared/pred:

ρk =
f(xk)− f(xk + sk)−c1∆p

k

mk(xk)−mk(xk + sk)
c1 ≥ 0, p > 1.

−→ When c1 = 0 we recover the traditional scenario.

−→ We need the flexibility of p to achieve an optimal WCC for the
smoothing approach.

Each inner iteration of the criticality step is now considered as a
regular trust-region iteration (leading to an optimal WCC).

The global convergence properties are retained.

11/51

How to establish WCC for the CSV framework

Change in ared/pred:

ρk =
f(xk)− f(xk + sk)−c1∆p

k

mk(xk)−mk(xk + sk)
c1 ≥ 0, p > 1.

−→ When c1 = 0 we recover the traditional scenario.

−→ We need the flexibility of p to achieve an optimal WCC for the
smoothing approach.

Each inner iteration of the criticality step is now considered as a
regular trust-region iteration (leading to an optimal WCC).

The global convergence properties are retained.

11/51

How to establish WCC for the CSV framework

Change in ared/pred:

ρk =
f(xk)− f(xk + sk)−c1∆p

k

mk(xk)−mk(xk + sk)
c1 ≥ 0, p > 1.

−→ When c1 = 0 we recover the traditional scenario.

−→ We need the flexibility of p to achieve an optimal WCC for the
smoothing approach.

Each inner iteration of the criticality step is now considered as a
regular trust-region iteration (leading to an optimal WCC).

The global convergence properties are retained.

11/51

How to establish WCC for the CSV framework

Change in ared/pred:

ρk =
f(xk)− f(xk + sk)−c1∆p

k

mk(xk)−mk(xk + sk)
c1 ≥ 0, p > 1.

−→ When c1 = 0 we recover the traditional scenario.

−→ We need the flexibility of p to achieve an optimal WCC for the
smoothing approach.

Each inner iteration of the criticality step is now considered as a
regular trust-region iteration (leading to an optimal WCC).

The global convergence properties are retained.

11/51

How to establish WCC for the CSV framework

Change in ared/pred:

ρk =
f(xk)− f(xk + sk)−c1∆p

k

mk(xk)−mk(xk + sk)
c1 ≥ 0, p > 1.

−→ When c1 = 0 we recover the traditional scenario.

−→ We need the flexibility of p to achieve an optimal WCC for the
smoothing approach.

Each inner iteration of the criticality step is now considered as a
regular trust-region iteration (leading to an optimal WCC).

The global convergence properties are retained.

11/51

WCC of DFTR (1st order, smooth case)

Remember f(xk)− f(xk+1) ≥ O(∆2
k) +O(∆p

k) for successful iterations.

Lemma

If ∆k is reduced, then ‖∇f(xk)‖ ≤ O(∆k) +O(∆p−1
k).

Theorem

To drive ‖∇f(xk)‖ below ε ∈ (0, 1), the # of successful iterations is

|S| ≤ O(ε−2) = O(ε
− max(p,2)

min(p−1,1)).

Theorem

To drive ‖∇f(xk)‖ below ε ∈ (0, 1), the # of other iterations is

|N | ≤ O(|S|+ ε−1) = O(|S|+ ε
− 1

min(p−1,1)).

12/51

WCC of DFTR (1st order, smooth case)

Remember f(xk)− f(xk+1) ≥ O(∆2
k) +O(∆p

k) for successful iterations.

Lemma

If ∆k is reduced, then ‖∇f(xk)‖ ≤ O(∆k) +O(∆p−1
k).

Theorem

To drive ‖∇f(xk)‖ below ε ∈ (0, 1), the # of successful iterations is

|S| ≤ O(ε−2) = O(ε
− max(p,2)

min(p−1,1)).

Theorem

To drive ‖∇f(xk)‖ below ε ∈ (0, 1), the # of other iterations is

|N | ≤ O(|S|+ ε−1) = O(|S|+ ε
− 1

min(p−1,1)).

12/51

WCC of DFTR (1st order, smooth case)

Remember f(xk)− f(xk+1) ≥ O(∆2
k) +O(∆p

k) for successful iterations.

Lemma

If ∆k is reduced, then ‖∇f(xk)‖ ≤ O(∆k) +O(∆p−1
k).

Theorem

To drive ‖∇f(xk)‖ below ε ∈ (0, 1), the # of successful iterations is

|S| ≤ O(ε−2) = O(ε
− max(p,2)

min(p−1,1)).

Theorem

To drive ‖∇f(xk)‖ below ε ∈ (0, 1), the # of other iterations is

|N | ≤ O(|S|+ ε−1) = O(|S|+ ε
− 1

min(p−1,1)).

12/51

WCC of DFTR (1st order, smooth case)

Assumption

For FL models we assume κ = O(
√
nL∇f), where κ = max{κef , κeg}.

p = 2 is indeed optimal in the bounds:

Theorem

To drive the norm of the gradient below ε ∈ (0, 1), DFTR takes at most

O
(
nL2
∇f ε

−2
)

= O
(

(L∇f
√
n)

max(p,2)
min(p−1,1) ε

− max(p,2)
min(p−1,1)

)
.

iterations.

13/51

WCC of DFTR (1st order, smooth case)

Assumption

For FL models we assume κ = O(
√
nL∇f), where κ = max{κef , κeg}.

p = 2 is indeed optimal in the bounds:

Theorem

To drive the norm of the gradient below ε ∈ (0, 1), DFTR takes at most

O
(
nL2
∇f ε

−2
)

= O
(

(L∇f
√
n)

max(p,2)
min(p−1,1) ε

− max(p,2)
min(p−1,1)

)
.

iterations.

13/51

WCC of DFTR (1st order, smooth case)

Corollary (p = 2)

The DFTR method generates a sequence {xk}k≥0 such that:

min
0≤j≤k

‖∇f(xj)‖ = O(1/
√
k)

and takes at most
O
(
n ε−2

)
iterations to reduce the gradient below ε ∈ (0, 1).

The # of fevals must be multiplied by n: O
(
n2 ε−2

)
.

R. Garmanjani, D. Júdice, and LNV, Trust-region methods without
using derivatives: Worst case complexity and the non-smooth case,
Tech. Report 15-03, Dept. Mathematics, Univ. Coimbra, (2015).

14/51

WCC of DFTR (1st order, smooth case)

Corollary (p = 2)

The DFTR method generates a sequence {xk}k≥0 such that:

min
0≤j≤k

‖∇f(xj)‖ = O(1/
√
k)

and takes at most
O
(
n ε−2

)
iterations to reduce the gradient below ε ∈ (0, 1).

The # of fevals must be multiplied by n: O
(
n2 ε−2

)
.

R. Garmanjani, D. Júdice, and LNV, Trust-region methods without
using derivatives: Worst case complexity and the non-smooth case,
Tech. Report 15-03, Dept. Mathematics, Univ. Coimbra, (2015).

14/51

WCC of DFTR (1st order, smooth case)

Corollary (p = 2)

The DFTR method generates a sequence {xk}k≥0 such that:

min
0≤j≤k

‖∇f(xj)‖ = O(1/
√
k)

and takes at most
O
(
n ε−2

)
iterations to reduce the gradient below ε ∈ (0, 1).

The # of fevals must be multiplied by n: O
(
n2 ε−2

)
.

R. Garmanjani, D. Júdice, and LNV, Trust-region methods without
using derivatives: Worst case complexity and the non-smooth case,
Tech. Report 15-03, Dept. Mathematics, Univ. Coimbra, (2015).

14/51

Optimal order of n in the WCC bounds

In Direct Search (DS) one knows that the n2 factor in O(n2ε−2) is

approximately optimal in the sense that min
D PSS

|D|
cm(D)2

≥ O(n2).

For instance, the PSS gives us 2n
(1/
√
n)2

= 2n2.

M. Dodangeh, LNV, and Z. Zhang, On the optimal order of the worst
case complexity of direct search, to appear in Optimization Letters.

Now,
cm(D) = O(1/

√
n) ←→ κef , κeg = O(

√
n)

So, we expect that n2 is also optimal for TRs.

15/51

Optimal order of n in the WCC bounds

In Direct Search (DS) one knows that the n2 factor in O(n2ε−2) is

approximately optimal in the sense that min
D PSS

|D|
cm(D)2

≥ O(n2).

For instance, the PSS gives us 2n
(1/
√
n)2

= 2n2.

M. Dodangeh, LNV, and Z. Zhang, On the optimal order of the worst
case complexity of direct search, to appear in Optimization Letters.

Now,
cm(D) = O(1/

√
n) ←→ κef , κeg = O(

√
n)

So, we expect that n2 is also optimal for TRs.

15/51

Optimal order of n in the WCC bounds

In Direct Search (DS) one knows that the n2 factor in O(n2ε−2) is

approximately optimal in the sense that min
D PSS

|D|
cm(D)2

≥ O(n2).

For instance, the PSS gives us 2n
(1/
√
n)2

= 2n2.

M. Dodangeh, LNV, and Z. Zhang, On the optimal order of the worst
case complexity of direct search, to appear in Optimization Letters.

Now,
cm(D) = O(1/

√
n) ←→ κef , κeg = O(

√
n)

So, we expect that n2 is also optimal for TRs.

15/51

Optimal order of n in the WCC bounds

In Direct Search (DS) one knows that the n2 factor in O(n2ε−2) is

approximately optimal in the sense that min
D PSS

|D|
cm(D)2

≥ O(n2).

For instance, the PSS gives us 2n
(1/
√
n)2

= 2n2.

M. Dodangeh, LNV, and Z. Zhang, On the optimal order of the worst
case complexity of direct search, to appear in Optimization Letters.

Now,
cm(D) = O(1/

√
n) ←→ κef , κeg = O(

√
n)

So, we expect that n2 is also optimal for TRs.

15/51

WCC of DFTR (2nd order, smooth case)

The true criticality measure is σ(x) = max
{
‖∇f(x)‖,−λmin(∇2f(x))

}
.

LEMMA: If ∆k is reduced, then σ(xk) ≤ O(∆k).

The model criticality measure is σmk = max {‖gk‖,−λmin(Hk)}.

Theorem

The DFTR method using FQ models and criticality measure σmk takes at
most

O
(
n3 ε−3

)
iterations to achieve σ(xk) ≤ ε.

The # of fevals must be multiplied by n2: O
(
n5 ε−3

)
.

16/51

WCC of DFTR (2nd order, smooth case)

The true criticality measure is σ(x) = max
{
‖∇f(x)‖,−λmin(∇2f(x))

}
.

LEMMA: If ∆k is reduced, then σ(xk) ≤ O(∆k).

The model criticality measure is σmk = max {‖gk‖,−λmin(Hk)}.

Theorem

The DFTR method using FQ models and criticality measure σmk takes at
most

O
(
n3 ε−3

)
iterations to achieve σ(xk) ≤ ε.

The # of fevals must be multiplied by n2: O
(
n5 ε−3

)
.

16/51

WCC of DFTR (2nd order, smooth case)

The true criticality measure is σ(x) = max
{
‖∇f(x)‖,−λmin(∇2f(x))

}
.

LEMMA: If ∆k is reduced, then σ(xk) ≤ O(∆k).

The model criticality measure is σmk = max {‖gk‖,−λmin(Hk)}.

Theorem

The DFTR method using FQ models and criticality measure σmk takes at
most

O
(
n3 ε−3

)
iterations to achieve σ(xk) ≤ ε.

The # of fevals must be multiplied by n2: O
(
n5 ε−3

)
.

16/51

WCC of DFTR (2nd order, smooth case)

The true criticality measure is σ(x) = max
{
‖∇f(x)‖,−λmin(∇2f(x))

}
.

LEMMA: If ∆k is reduced, then σ(xk) ≤ O(∆k).

The model criticality measure is σmk = max {‖gk‖,−λmin(Hk)}.

Theorem

The DFTR method using FQ models and criticality measure σmk takes at
most

O
(
n3 ε−3

)
iterations to achieve σ(xk) ≤ ε.

The # of fevals must be multiplied by n2: O
(
n5 ε−3

)
.

16/51

WCC of DFTR (2nd order, smooth case)

The true criticality measure is σ(x) = max
{
‖∇f(x)‖,−λmin(∇2f(x))

}
.

LEMMA: If ∆k is reduced, then σ(xk) ≤ O(∆k).

The model criticality measure is σmk = max {‖gk‖,−λmin(Hk)}.

Theorem

The DFTR method using FQ models and criticality measure σmk takes at
most

O
(
n3 ε−3

)
iterations to achieve σ(xk) ≤ ε.

The # of fevals must be multiplied by n2: O
(
n5 ε−3

)
.

16/51

Open issues

Extension to constraints (closed and convex feasible regions).

Particularization to convex (ε−1) and strongly convex (− log(ε)).

−→ Do we have to exclude convex functions like this (as in DS)?

f(x, y) =
√
x2 + y2 − x

M. Dodangeh and

LNV, Worst case

complexity of direct

search under

convexity,

Mathematical

Programming, 155

(2016) 307-332.

17/51

Open issues

Extension to constraints (closed and convex feasible regions).

Particularization to convex (ε−1) and strongly convex (− log(ε)).

−→ Do we have to exclude convex functions like this (as in DS)?

f(x, y) =
√
x2 + y2 − x

M. Dodangeh and

LNV, Worst case

complexity of direct

search under

convexity,

Mathematical

Programming, 155

(2016) 307-332.

17/51

Open issues

Extension to constraints (closed and convex feasible regions).

Particularization to convex (ε−1) and strongly convex (− log(ε)).

−→ Do we have to exclude convex functions like this (as in DS)?

f(x, y) =
√
x2 + y2 − x

M. Dodangeh and

LNV, Worst case

complexity of direct

search under

convexity,

Mathematical

Programming, 155

(2016) 307-332.

17/51

The non-smooth case

There are two avenues:

Smoothing: apply smooth TR approach to smoothed instances.

Composite: building non-smooth TR models.

−→ In both cases, some knowledge of the structure of the original
non-smoothness is necessary

18/51

The non-smooth case

There are two avenues:

Smoothing: apply smooth TR approach to smoothed instances.

Composite: building non-smooth TR models.

−→ In both cases, some knowledge of the structure of the original
non-smoothness is necessary

18/51

The non-smooth case

There are two avenues:

Smoothing: apply smooth TR approach to smoothed instances.

Composite: building non-smooth TR models.

−→ In both cases, some knowledge of the structure of the original
non-smoothness is necessary

18/51

Smoothing functions

Definition

We call f̃ : Rn × [0,∞)→ R a smoothing function of f if, ∀µ ∈ (0,∞),
f̃(·, µ) is C1 and, ∀x ∈ Rn,

lim
z→x,µ↓0

f̃(z, µ) = f(x).

19/51

Smoothing functions

Definition

We call f̃ : Rn × [0,∞)→ R a smoothing function of f if, ∀µ ∈ (0,∞),
f̃(·, µ) is C1 and, ∀x ∈ Rn,

lim
z→x,µ↓0

f̃(z, µ) = f(x).

19/51

Smoothing functions

Definition

We call f̃ : Rn × [0,∞)→ R a smoothing function of f if, ∀µ ∈ (0,∞),
f̃(·, µ) is C1 and, ∀x ∈ Rn,

lim
z→x,µ↓0

f̃(z, µ) = f(x).

19/51

Smoothing functions (consistency & smoothness)

Definition

We say that x∗ is a stationary point associated with the smoothing
function f̃ if 0 ∈ Gf̃ (x∗), where

Gf̃ (x∗) = {all limits of ∇f̃(x, µ) when x→ x∗ and µ→ 0}.

There are forms of building smoothing functions f̃ such that

f̃ satisfies the gradient consistency property

co Gf̃ (x∗) = ∂f(x∗).

Thus, if 0 ∈ Gf̃ (x∗) ⊂ coGf̃ (x∗), then 0 ∈ ∂f(x∗).

L∇f̃ = O
(

1
µ

)
.

20/51

Smoothing functions (consistency & smoothness)

Definition

We say that x∗ is a stationary point associated with the smoothing
function f̃ if 0 ∈ Gf̃ (x∗), where

Gf̃ (x∗) = {all limits of ∇f̃(x, µ) when x→ x∗ and µ→ 0}.

There are forms of building smoothing functions f̃ such that

f̃ satisfies the gradient consistency property

co Gf̃ (x∗) = ∂f(x∗).

Thus, if 0 ∈ Gf̃ (x∗) ⊂ coGf̃ (x∗), then 0 ∈ ∂f(x∗).

L∇f̃ = O
(

1
µ

)
.

20/51

Smoothing functions (consistency & smoothness)

Definition

We say that x∗ is a stationary point associated with the smoothing
function f̃ if 0 ∈ Gf̃ (x∗), where

Gf̃ (x∗) = {all limits of ∇f̃(x, µ) when x→ x∗ and µ→ 0}.

There are forms of building smoothing functions f̃ such that

f̃ satisfies the gradient consistency property

co Gf̃ (x∗) = ∂f(x∗).

Thus, if 0 ∈ Gf̃ (x∗) ⊂ coGf̃ (x∗), then 0 ∈ ∂f(x∗).

L∇f̃ = O
(

1
µ

)
.

20/51

Smoothing functions (consistency & smoothness)

Definition

We say that x∗ is a stationary point associated with the smoothing
function f̃ if 0 ∈ Gf̃ (x∗), where

Gf̃ (x∗) = {all limits of ∇f̃(x, µ) when x→ x∗ and µ→ 0}.

There are forms of building smoothing functions f̃ such that

f̃ satisfies the gradient consistency property

co Gf̃ (x∗) = ∂f(x∗).

Thus, if 0 ∈ Gf̃ (x∗) ⊂ coGf̃ (x∗), then 0 ∈ ∂f(x∗).

L∇f̃ = O
(

1
µ

)
.

20/51

How to construct smoothing functions

Chen and Zhou introduced such a
smoothing function s̃(t, µ) of |t|:

Similarly, for ‖F‖1 =
∑m

i=1 |Fi|,

F̃ (x, µ) =

m∑
i=1

s̃(Fi(x), µ).

R. Garmanjani and LNV, Smoothing and worst-case complexity for
direct-search methods in nonsmooth optimization, IMA Journal of
Numerical Analysis, 33 (2013) 1008-1028.

21/51

How to construct smoothing functions

Chen and Zhou introduced such a
smoothing function s̃(t, µ) of |t|:

Similarly, for ‖F‖1 =
∑m

i=1 |Fi|,

F̃ (x, µ) =

m∑
i=1

s̃(Fi(x), µ).

R. Garmanjani and LNV, Smoothing and worst-case complexity for
direct-search methods in nonsmooth optimization, IMA Journal of
Numerical Analysis, 33 (2013) 1008-1028.

21/51

A class of smoothing TR methods

x(0)
µ0:

x(1)
µ1: x(2)

µ2:

Initialization: Choose a function r(·) such that limµ↓0 r(µ) = 0.

Choose µ0 > 0, and σ ∈ (0, 1)

For k = 0, 1, 2 . . . (Until µk is suff. small)

Apply DFTR to f̃(·, µk) until trust-region radius < r(µk).

Decrease the smoothing parameter: µk+1 = σµk.

22/51

A class of smoothing TR methods

x(0)
µ0:

x(1)
µ1: x(2)

µ2:

Initialization: Choose a function r(·) such that limµ↓0 r(µ) = 0.

Choose µ0 > 0, and σ ∈ (0, 1)

For k = 0, 1, 2 . . . (Until µk is suff. small)

Apply DFTR to f̃(·, µk) until trust-region radius < r(µk).

Decrease the smoothing parameter: µk+1 = σµk.

22/51

Global convergence of smoothing DFTR (behavior of µ)

If we let DFTR run forever for a given k, then ∆ −→ 0. Thus

Theorem

The smoothing parameter goes to zero: lim
k→∞

µk = 0.

Theorem
1 lim

k→∞
∆(k) = 0.

2 ∃x∗ and a subsequence K ⊆ {(0), (1), . . .} of unsucc. DFTR iterates
such that x(k) −→

K
x∗.

23/51

Global convergence of smoothing DFTR (behavior of µ)

If we let DFTR run forever for a given k, then ∆ −→ 0. Thus

Theorem

The smoothing parameter goes to zero: lim
k→∞

µk = 0.

Theorem
1 lim

k→∞
∆(k) = 0.

2 ∃x∗ and a subsequence K ⊆ {(0), (1), . . .} of unsucc. DFTR iterates
such that x(k) −→

K
x∗.

23/51

Global convergence of smoothing DFTR (behavior of µ)

If we let DFTR run forever for a given k, then ∆ −→ 0. Thus

Theorem

The smoothing parameter goes to zero: lim
k→∞

µk = 0.

Theorem
1 lim

k→∞
∆(k) = 0.

2 ∃x∗ and a subsequence K ⊆ {(0), (1), . . .} of unsucc. DFTR iterates
such that x(k) −→

K
x∗.

23/51

Global convergence of smoothing DFTR

Now,

‖∇f̃(x(k), µk)‖ ≤ O(L∇f̃∆(k)) +O(∆(k)p−1)

≤ O(L∇f̃r(µk)) + +O(∆(k)p−1).

Thus, choosing r(·) appropriately, i.e., r(µ) = µ2 when L∇f̃ = O
(

1
µ

)
:

Theorem

lim
k∈K
‖∇f̃(x(k), µk)‖ = 0

and x∗ is stationary point associated with the smoothing function f̃ .

24/51

Global convergence of smoothing DFTR

Now,

‖∇f̃(x(k), µk)‖ ≤ O(L∇f̃∆(k)) +O(∆(k)p−1)

≤ O(L∇f̃r(µk)) + +O(∆(k)p−1).

Thus, choosing r(·) appropriately, i.e., r(µ) = µ2 when L∇f̃ = O
(

1
µ

)
:

Theorem

lim
k∈K
‖∇f̃(x(k), µk)‖ = 0

and x∗ is stationary point associated with the smoothing function f̃ .

24/51

WCC of smoothing DFTR

Theorem

Smoothing DFTR (with c1∆p and r(µ) = µq) takes at most

O
(
| log(ξ)|ξ−pq

)
inner iterations to reduce the smoothing parameter µ below ξ ∈ (0, 1).

WCC bounds come from this, and from

‖∇f̃(x(k), µk)‖ ≤ O(L∇f̃∆(k)) +O(∆(k)p−1)

≤ O(µ−1
k µqk) + +O((µqk)

p−1)

= O(ξ) when p =
3

2
and q = 2.

25/51

WCC of smoothing DFTR

Theorem

Smoothing DFTR (with c1∆p and r(µ) = µq) takes at most

O
(
| log(ξ)|ξ−pq

)
inner iterations to reduce the smoothing parameter µ below ξ ∈ (0, 1).

WCC bounds come from this, and from

‖∇f̃(x(k), µk)‖ ≤ O(L∇f̃∆(k)) +O(∆(k)p−1)

≤ O(µ−1
k µqk) + +O((µqk)

p−1)

= O(ξ) when p =
3

2
and q = 2.

25/51

WCC of smoothing DFTR

The optimal choices are: c1∆p = c1∆
3
2 and r(µ) = µ2.

Theorem

Smoothing DFTR (with such choices) takes at most

O
(
n

3
2 [− log(ε) + log(n)]ε−3

)
iterations to compute a point where µ and ∇f̃ are O(ε).

The # of function evaluations must be multiplied by n.

26/51

WCC of smoothing DFTR

The optimal choices are: c1∆p = c1∆
3
2 and r(µ) = µ2.

Theorem

Smoothing DFTR (with such choices) takes at most

O
(
n

3
2 [− log(ε) + log(n)]ε−3

)
iterations to compute a point where µ and ∇f̃ are O(ε).

The # of function evaluations must be multiplied by n.

26/51

WCC of smoothing DFTR

The optimal choices are: c1∆p = c1∆
3
2 and r(µ) = µ2.

Theorem

Smoothing DFTR (with such choices) takes at most

O
(
n

3
2 [− log(ε) + log(n)]ε−3

)
iterations to compute a point where µ and ∇f̃ are O(ε).

The # of function evaluations must be multiplied by n.

26/51

Composite DFTR

Consider
f = h(F),

with h : R` → R non-smooth convex, and F smooth.

When there are derivatives (Cartis, Gould, and Toint, 2011),

l(x, s) = h(F (x) + J(x)s),

Ψ(x,∆) = l(x, 0)− min
‖s‖≤∆

l(x, s), Ψ(x, 1) is a criticality measure.

Without derivatives,

lm(x, s) = h(m(x+ s)), with m(x+ s) = F (x) + Jm(x)s

Ψm(x,∆) = lm(x, 0)− min
‖s‖≤∆

lm(x, s).

27/51

Composite DFTR

Consider
f = h(F),

with h : R` → R non-smooth convex, and F smooth.

When there are derivatives (Cartis, Gould, and Toint, 2011),

l(x, s) = h(F (x) + J(x)s),

Ψ(x,∆) = l(x, 0)− min
‖s‖≤∆

l(x, s), Ψ(x, 1) is a criticality measure.

Without derivatives,

lm(x, s) = h(m(x+ s)), with m(x+ s) = F (x) + Jm(x)s

Ψm(x,∆) = lm(x, 0)− min
‖s‖≤∆

lm(x, s).

27/51

Composite DFTR

Consider
f = h(F),

with h : R` → R non-smooth convex, and F smooth.

When there are derivatives (Cartis, Gould, and Toint, 2011),

l(x, s) = h(F (x) + J(x)s),

Ψ(x,∆) = l(x, 0)− min
‖s‖≤∆

l(x, s), Ψ(x, 1) is a criticality measure.

Without derivatives,

lm(x, s) = h(m(x+ s)), with m(x+ s) = F (x) + Jm(x)s

Ψm(x,∆) = lm(x, 0)− min
‖s‖≤∆

lm(x, s).

27/51

Composite DFTR algorithm

Then, Ψm(x, 1) is a FL model of criticality measure:

|Ψ(x+ t, 1)−Ψm(x+ t, 1)| = O(∆), ∀t ∈ B(0; ∆).

Changes to DFTR algorithm:

The TR subproblem is now min
‖s‖≤∆k

lm(xk, s).

The predicted reduction mk(xk)−mk(xk + sk) becomes
Ψm(xk,∆k).

The model criticality measure ‖gk‖ is replaced by Ψm(xk, 1).

28/51

Composite DFTR algorithm

Then, Ψm(x, 1) is a FL model of criticality measure:

|Ψ(x+ t, 1)−Ψm(x+ t, 1)| = O(∆), ∀t ∈ B(0; ∆).

Changes to DFTR algorithm:

The TR subproblem is now min
‖s‖≤∆k

lm(xk, s).

The predicted reduction mk(xk)−mk(xk + sk) becomes
Ψm(xk,∆k).

The model criticality measure ‖gk‖ is replaced by Ψm(xk, 1).

28/51

Composite DFTR algorithm

Then, Ψm(x, 1) is a FL model of criticality measure:

|Ψ(x+ t, 1)−Ψm(x+ t, 1)| = O(∆), ∀t ∈ B(0; ∆).

Changes to DFTR algorithm:

The TR subproblem is now min
‖s‖≤∆k

lm(xk, s).

The predicted reduction mk(xk)−mk(xk + sk) becomes
Ψm(xk,∆k).

The model criticality measure ‖gk‖ is replaced by Ψm(xk, 1).

28/51

Composite DFTR algorithm

Then, Ψm(x, 1) is a FL model of criticality measure:

|Ψ(x+ t, 1)−Ψm(x+ t, 1)| = O(∆), ∀t ∈ B(0; ∆).

Changes to DFTR algorithm:

The TR subproblem is now min
‖s‖≤∆k

lm(xk, s).

The predicted reduction mk(xk)−mk(xk + sk) becomes
Ψm(xk,∆k).

The model criticality measure ‖gk‖ is replaced by Ψm(xk, 1).

28/51

Global convergence of composite DFTR

Theorem

lim
k→+∞

∆k = 0.

Lemma

If ∆k is reduced, then

∆k ≥ O(min{
√

Ψk,Ψk}).

Theorem

lim inf
k→∞

Ψk = 0.

29/51

Global convergence of composite DFTR

Theorem

lim
k→+∞

∆k = 0.

Lemma

If ∆k is reduced, then

∆k ≥ O(min{
√

Ψk,Ψk}).

Theorem

lim inf
k→∞

Ψk = 0.

29/51

Global convergence of composite DFTR

Theorem

lim
k→+∞

∆k = 0.

Lemma

If ∆k is reduced, then

∆k ≥ O(min{
√

Ψk,Ψk}).

Theorem

lim inf
k→∞

Ψk = 0.

29/51

WCC of composite DFTR

Theorem

To drive Ψ below ε ∈ (0, 1), composite DFTR needs

|S| ≤ O(nε−2) sucessful iterations,

|N | ≤ O(|S|+ ε−1) other iterations.

Thus, a total of O(nε−2).

The # of fevals must be multiplied by ` n: O
(
` n2 ε−2

)
.

−→ The # of function evaluations derived here are better by a factor of
| log ε| than the O(| log ε|ε−2) type bound derived by Grapiglia, Yuan, and
Yuan (2014).

30/51

WCC of composite DFTR

Theorem

To drive Ψ below ε ∈ (0, 1), composite DFTR needs

|S| ≤ O(nε−2) sucessful iterations,

|N | ≤ O(|S|+ ε−1) other iterations.

Thus, a total of O(nε−2).

The # of fevals must be multiplied by ` n: O
(
` n2 ε−2

)
.

−→ The # of function evaluations derived here are better by a factor of
| log ε| than the O(| log ε|ε−2) type bound derived by Grapiglia, Yuan, and
Yuan (2014).

30/51

WCC of composite DFTR

Theorem

To drive Ψ below ε ∈ (0, 1), composite DFTR needs

|S| ≤ O(nε−2) sucessful iterations,

|N | ≤ O(|S|+ ε−1) other iterations.

Thus, a total of O(nε−2).

The # of fevals must be multiplied by ` n: O
(
` n2 ε−2

)
.

−→ The # of function evaluations derived here are better by a factor of
| log ε| than the O(| log ε|ε−2) type bound derived by Grapiglia, Yuan, and
Yuan (2014).

30/51

Smoothing DFTR code

For the smoothing code (Sdfo-tr), the smooth TR code (dfo-tr) is taken
from Bandeira, Scheinberg, and LNV (2012):

New sample points are only defined by the trust-region step x+ s (no
model management iterations), as in Fasano, Morales, and Nocedal
(2009).

Quadratic underdetermined models are built by minimum Frobenius
norm minimization.

Points too far from the current iterate are thrown away (sort of a
criticality step).

Trust-region radius is not reduced when the sample set has less than
n+ 1 points.

31/51

Smoothing DFTR code

For the smoothing code (Sdfo-tr), the smooth TR code (dfo-tr) is taken
from Bandeira, Scheinberg, and LNV (2012):

New sample points are only defined by the trust-region step x+ s (no
model management iterations), as in Fasano, Morales, and Nocedal
(2009).

Quadratic underdetermined models are built by minimum Frobenius
norm minimization.

Points too far from the current iterate are thrown away (sort of a
criticality step).

Trust-region radius is not reduced when the sample set has less than
n+ 1 points.

31/51

Smoothing DFTR code

For the smoothing code (Sdfo-tr), the smooth TR code (dfo-tr) is taken
from Bandeira, Scheinberg, and LNV (2012):

New sample points are only defined by the trust-region step x+ s (no
model management iterations), as in Fasano, Morales, and Nocedal
(2009).

Quadratic underdetermined models are built by minimum Frobenius
norm minimization.

Points too far from the current iterate are thrown away (sort of a
criticality step).

Trust-region radius is not reduced when the sample set has less than
n+ 1 points.

31/51

Smoothing DFTR code

For the smoothing code (Sdfo-tr), the smooth TR code (dfo-tr) is taken
from Bandeira, Scheinberg, and LNV (2012):

New sample points are only defined by the trust-region step x+ s (no
model management iterations), as in Fasano, Morales, and Nocedal
(2009).

Quadratic underdetermined models are built by minimum Frobenius
norm minimization.

Points too far from the current iterate are thrown away (sort of a
criticality step).

Trust-region radius is not reduced when the sample set has less than
n+ 1 points.

31/51

Composite DFTR code

The composite code (Cdfo-tr) is an adaptation of the smooth one:

In the TR subproblem

mk(xk + s) = F (xk) + Jm(xk)s,

where the rows of Jm(xk) are regression simplex gradients computed
using the 2n points xk ± ei min(10−2,∆k).

The TR subproblem is an LP when using `∞ for defining the
trust-region ball.

Due to fully linearity of the models, no critical or model-improvement
iterations were considered.

32/51

Composite DFTR code

The composite code (Cdfo-tr) is an adaptation of the smooth one:

In the TR subproblem

mk(xk + s) = F (xk) + Jm(xk)s,

where the rows of Jm(xk) are regression simplex gradients computed
using the 2n points xk ± ei min(10−2,∆k).

The TR subproblem is an LP when using `∞ for defining the
trust-region ball.

Due to fully linearity of the models, no critical or model-improvement
iterations were considered.

32/51

Composite DFTR code

The composite code (Cdfo-tr) is an adaptation of the smooth one:

In the TR subproblem

mk(xk + s) = F (xk) + Jm(xk)s,

where the rows of Jm(xk) are regression simplex gradients computed
using the 2n points xk ± ei min(10−2,∆k).

The TR subproblem is an LP when using `∞ for defining the
trust-region ball.

Due to fully linearity of the models, no critical or model-improvement
iterations were considered.

32/51

Problems and testing

We used a set of 53 problems of the form

min
x∈Rn

f(x) = ‖F (x)‖1,

where F varies among 22 nonlinear vector functions of CUTEr with
2 ≤ n ≤ 12 and different initial points, Moré and Wild (2009).

Results are shown using data profiles (1500 fevals).

The smoothing version Sdfo-tr is compared with smoothing Direct Search
(Ssid-psm), Custódio and LNV (2009).

−→ TR parameters are the same for both Sdfo-tr and Cdfo-tr.

−→ Smoothing parameters are the same for both Sdfo-tr and Ssid-psm.

33/51

Problems and testing

We used a set of 53 problems of the form

min
x∈Rn

f(x) = ‖F (x)‖1,

where F varies among 22 nonlinear vector functions of CUTEr with
2 ≤ n ≤ 12 and different initial points, Moré and Wild (2009).

Results are shown using data profiles (1500 fevals).

The smoothing version Sdfo-tr is compared with smoothing Direct Search
(Ssid-psm), Custódio and LNV (2009).

−→ TR parameters are the same for both Sdfo-tr and Cdfo-tr.

−→ Smoothing parameters are the same for both Sdfo-tr and Ssid-psm.

33/51

Problems and testing

We used a set of 53 problems of the form

min
x∈Rn

f(x) = ‖F (x)‖1,

where F varies among 22 nonlinear vector functions of CUTEr with
2 ≤ n ≤ 12 and different initial points, Moré and Wild (2009).

Results are shown using data profiles (1500 fevals).

The smoothing version Sdfo-tr is compared with smoothing Direct Search
(Ssid-psm), Custódio and LNV (2009).

−→ TR parameters are the same for both Sdfo-tr and Cdfo-tr.

−→ Smoothing parameters are the same for both Sdfo-tr and Ssid-psm.

33/51

Problems and testing

We used a set of 53 problems of the form

min
x∈Rn

f(x) = ‖F (x)‖1,

where F varies among 22 nonlinear vector functions of CUTEr with
2 ≤ n ≤ 12 and different initial points, Moré and Wild (2009).

Results are shown using data profiles (1500 fevals).

The smoothing version Sdfo-tr is compared with smoothing Direct Search
(Ssid-psm), Custódio and LNV (2009).

−→ TR parameters are the same for both Sdfo-tr and Cdfo-tr.

−→ Smoothing parameters are the same for both Sdfo-tr and Ssid-psm.

33/51

Data profiles (Sdfo-tr vs. Cdfo-tr)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scaledpbudgetpofpfunctionpevaluations

DatapProfilepforppiecewisepsmoothpproblems,θ=p1e−7

Sdfo−tr

Cdfo−tr

34/51

Data profiles (Sdfo-tr vs. Ssid-psm)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scaledpbudgetpofpfunctionpevaluations

DatapProfilepforppiecewisepsmoothpproblems,θ=p1e−7

Sdfo−tr

Ssid−psm

35/51

Open issues

A TR smoothing approach for the determination of second-order
stationary points of non-smooth functions (global convergence and
WCC).

A general TR methodology & theory for the totally black-box
non-smooth case.

36/51

Open issues

A TR smoothing approach for the determination of second-order
stationary points of non-smooth functions (global convergence and
WCC).

A general TR methodology & theory for the totally black-box
non-smooth case.

36/51

TR based on probabilistic models

Random models (random sample sets) may maintain a higher quality by
using fewer sample points.
−→ Hessian sparse but sparsity structure unknown.

Random models may give an advantage in a parallel environment without
full synchronization.
−→ Time to compute function values is random and a budget is imposed.

So, now, models are built iteratively in some random fashion.

−→ Mk for random models, and mk = Mk(ωk) for their realizations.

The key assumption for convergence will be then that these models exhibit
good accuracy with sufficiently high probability.

37/51

TR based on probabilistic models

Random models (random sample sets) may maintain a higher quality by
using fewer sample points.
−→ Hessian sparse but sparsity structure unknown.

Random models may give an advantage in a parallel environment without
full synchronization.
−→ Time to compute function values is random and a budget is imposed.

So, now, models are built iteratively in some random fashion.

−→ Mk for random models, and mk = Mk(ωk) for their realizations.

The key assumption for convergence will be then that these models exhibit
good accuracy with sufficiently high probability.

37/51

TR based on probabilistic models

Random models (random sample sets) may maintain a higher quality by
using fewer sample points.
−→ Hessian sparse but sparsity structure unknown.

Random models may give an advantage in a parallel environment without
full synchronization.
−→ Time to compute function values is random and a budget is imposed.

So, now, models are built iteratively in some random fashion.

−→ Mk for random models, and mk = Mk(ωk) for their realizations.

The key assumption for convergence will be then that these models exhibit
good accuracy with sufficiently high probability.

37/51

TR based on probabilistic models

Fix three positive parameters η1, η2, γ, β, with β < 1 < γ.

Algorithm (Iteration k)

Approximate the function f in B(xk; δk) with mk.

Compute a step sk by solving min
s∈B(0;δk)

mk(xk + s).

Let

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1 and ‖gk‖ ≥ η2δk, set xk+1 = xk + sk and δk+1 = γδk.

Otherwise, set xk+1 = xk and δk+1 = βδk.

38/51

Probabilistic fully linear/quadratic models

Assumption

We say that a sequence of random models {Mk} is p-probabilistically
(κeg, κef)-fully linear for a corresponding sequence {B(Xk,∆k)} if the
events

Sk = {Mk is a (κeg, κef)-fully linear model of f on B(Xk,∆k)}

satisfy the following submartingale-like condition

P (Sk|σ(M0, . . . ,Mk−1)) ≥ p.

p-probabilistically (κeh, κeg, κef)-fully quadratic are defined accordingly.

39/51

Probabilistic fully linear/quadratic models

Assumption

We say that a sequence of random models {Mk} is p-probabilistically
(κeg, κef)-fully linear for a corresponding sequence {B(Xk,∆k)} if the
events

Sk = {Mk is a (κeg, κef)-fully linear model of f on B(Xk,∆k)}

satisfy the following submartingale-like condition

P (Sk|σ(M0, . . . ,Mk−1)) ≥ p.

p-probabilistically (κeh, κeg, κef)-fully quadratic are defined accordingly.

39/51

Getting ready for global convergence

Let Zk be the indicator function of Sk.

Let

p0 =
lnβ

ln(γ−1β)
=

1

2
when β = 1/2, γ = 2.

If {Mk} is p0-probabilistically fully linear/quadratic, then (due to a
submartingale argument)

P

[∞∑
`=0

(Z` − p0) = −∞

]
= 0.

This is a key observation for global convergence, established in:

A. S. Bandeira, K. Scheinberg, and LNV, Convergence of trust-region
methods based on probabilistic models, SIAM J. on Optimization, 24
(2014) 1238-1264.

40/51

Getting ready for global convergence

Let Zk be the indicator function of Sk.

Let

p0 =
lnβ

ln(γ−1β)
=

1

2
when β = 1/2, γ = 2.

If {Mk} is p0-probabilistically fully linear/quadratic, then (due to a
submartingale argument)

P

[∞∑
`=0

(Z` − p0) = −∞

]
= 0.

This is a key observation for global convergence, established in:

A. S. Bandeira, K. Scheinberg, and LNV, Convergence of trust-region
methods based on probabilistic models, SIAM J. on Optimization, 24
(2014) 1238-1264.

40/51

Getting ready for global convergence

Let Zk be the indicator function of Sk.

Let

p0 =
lnβ

ln(γ−1β)
=

1

2
when β = 1/2, γ = 2.

If {Mk} is p0-probabilistically fully linear/quadratic, then (due to a
submartingale argument)

P

[∞∑
`=0

(Z` − p0) = −∞

]
= 0.

This is a key observation for global convergence, established in:

A. S. Bandeira, K. Scheinberg, and LNV, Convergence of trust-region
methods based on probabilistic models, SIAM J. on Optimization, 24
(2014) 1238-1264.

40/51

Getting ready for global convergence

Let Zk be the indicator function of Sk.

Let

p0 =
lnβ

ln(γ−1β)
=

1

2
when β = 1/2, γ = 2.

If {Mk} is p0-probabilistically fully linear/quadratic, then (due to a
submartingale argument)

P

[∞∑
`=0

(Z` − p0) = −∞

]
= 0.

This is a key observation for global convergence, established in:

A. S. Bandeira, K. Scheinberg, and LNV, Convergence of trust-region
methods based on probabilistic models, SIAM J. on Optimization, 24
(2014) 1238-1264.

40/51

Global convergence of TR based on probabilistic models

Theorem

Let {Xk} be a sequence of random iterates generated by the algorithm.

Suppose that the model sequence {Mk} is p0-probabilistically
(κeg, κef)-fully linear for some κeg, κef > 0. Then,

P

[
lim
k→∞

‖∇f(Xk)‖ = 0

]
= 1.

Suppose that the model sequence {Mk} is p0-probabilistically
(κeh, κeg, κef)-fully quadratic for some κeh, κeg, κef > 0. Then,

P

[
lim inf
k→∞

max
{
‖∇f(xk)‖,−λmin[∇2f(xk)]

}
= 0

]
= 1.

41/51

Global convergence of TR based on probabilistic models

Theorem

Let {Xk} be a sequence of random iterates generated by the algorithm.

Suppose that the model sequence {Mk} is p0-probabilistically
(κeg, κef)-fully linear for some κeg, κef > 0. Then,

P

[
lim
k→∞

‖∇f(Xk)‖ = 0

]
= 1.

Suppose that the model sequence {Mk} is p0-probabilistically
(κeh, κeg, κef)-fully quadratic for some κeh, κeg, κef > 0. Then,

P

[
lim inf
k→∞

max
{
‖∇f(xk)‖,−λmin[∇2f(xk)]

}
= 0

]
= 1.

41/51

Global rate and WCC

Global rates and WCC bounds were developed for DS based on
probabilistic descent in:

S. Gratton, C. W. Royer, LNV, and Z. Zhang, Direct search based on
probabilistic descent, SIAM J. on Optimization, 25 (2015) 1249-1716.

The same theory applies for TR methods based on probabilistic models.

42/51

Global rate and WCC

Global rates and WCC bounds were developed for DS based on
probabilistic descent in:

S. Gratton, C. W. Royer, LNV, and Z. Zhang, Direct search based on
probabilistic descent, SIAM J. on Optimization, 25 (2015) 1249-1716.

The same theory applies for TR methods based on probabilistic models.

42/51

Global rate: What is desirable?

For each realization of the TR method, define

g̃k: the gradient with minimum norm among ∇f(x0), . . . ,∇f(xk),

kε: the smallest integer such that ‖∇f(xk)‖ ≤ ε.

Denote the corresponding random variables by G̃k and Kε.

We are interested in the probabilities

Global rate

P
(
‖G̃k‖ ≤ O(1/

√
k)
)

and

Worst case complexity

P
(
Kε ≤ O(ε−2)

)
.

43/51

Global rate: What is desirable?

For each realization of the TR method, define

g̃k: the gradient with minimum norm among ∇f(x0), . . . ,∇f(xk),

kε: the smallest integer such that ‖∇f(xk)‖ ≤ ε.

Denote the corresponding random variables by G̃k and Kε.

We are interested in the probabilities

Global rate

P
(
‖G̃k‖ ≤ O(1/

√
k)
)

and

Worst case complexity

P
(
Kε ≤ O(ε−2)

)
.

43/51

Global rate: What is desirable?

For each realization of the TR method, define

g̃k: the gradient with minimum norm among ∇f(x0), . . . ,∇f(xk),

kε: the smallest integer such that ‖∇f(xk)‖ ≤ ε.

Denote the corresponding random variables by G̃k and Kε.

We are interested in the probabilities

Global rate

P
(
‖G̃k‖ ≤ O(1/

√
k)
)

and

Worst case complexity

P
(
Kε ≤ O(ε−2)

)
.

43/51

Global rate: What is desirable?

For each realization of the TR method, define

g̃k: the gradient with minimum norm among ∇f(x0), . . . ,∇f(xk),

kε: the smallest integer such that ‖∇f(xk)‖ ≤ ε.

Denote the corresponding random variables by G̃k and Kε.

We are interested in the probabilities

Global rate

P
(
‖G̃k‖ ≤ O(1/

√
k)
)

and

Worst case complexity

P
(
Kε ≤ O(ε−2)

)
.

43/51

Global rate: What is desirable?

For each realization of the TR method, define

g̃k: the gradient with minimum norm among ∇f(x0), . . . ,∇f(xk),

kε: the smallest integer such that ‖∇f(xk)‖ ≤ ε.

Denote the corresponding random variables by G̃k and Kε.

We are interested in the probabilities

Global rate

P
(
‖G̃k‖ ≤ O(1/

√
k)
)

and

Worst case complexity

P
(
Kε ≤ O(ε−2)

)
.

43/51

Global rate: Counting descent

Let z` denote the realization of Z` (` ≥ 0).

Intuition: If ‖g̃k‖ is ‘big’, then
∑k−1

`=0 z` is probably ‘small’.

44/51

Global rate: Counting descent

Let z` denote the realization of Z` (` ≥ 0).

Intuition: If ‖g̃k‖ is ‘big’, then
∑k−1

`=0 z` is probably ‘small’.

In fact, one can prove

k−1∑
`=0

z` ≤ O
(

1

‖g̃k‖2

)
+ p0k.

44/51

Global rate: Counting descent

Let z` denote the realization of Z` (` ≥ 0).

Intuition: If ‖g̃k‖ is ‘big’, then
∑k−1

`=0 z` is probably ‘small’.

In fact, one can prove

k−1∑
`=0

z` ≤ O
(

1

‖g̃k‖2

)
+ p0k.

It then results,

{
‖G̃k‖ > ε

}
⊂

{
k−1∑
`=0

Z` ≤
[
O
(1

kε2

)
+ p0

]
k

}
.

44/51

Global rate: Counting descent

Let z` denote the realization of Z` (` ≥ 0).

Intuition: If ‖g̃k‖ is ‘big’, then
∑k−1

`=0 z` is probably ‘small’.

In fact, one can prove

k−1∑
`=0

z` ≤ O
(

1

‖g̃k‖2

)
+ p0k.

It then results,

{
‖G̃k‖ > ε

}
⊂

{
k−1∑
`=0

Z` ≤
[
O
(1

kε2

)
+ p0

]
k

}
.

λ

44/51

A universal result

Hence P
(
‖G̃k‖ ≤ ε

)
= 1− P

(
‖G̃k‖ > ε

)
≥ 1− P

(∑k−1
`=0 Z` ≤ λ k

)
.

Denote

πk(λ) = P

(
k−1∑
`=0

Z` ≤ λ k

)
.

If {Mk} is a probabilistic model, then πk obeys a Chernoff type bound:

Lemma

Suppose that {Mk} is p-probabilistically (κeg, κef)-fully linear and
λ ∈ (0, p). Then

πk(λ) ≤ exp

[
−(p− λ)2

2p
k

]
.

45/51

A universal result

Hence P
(
‖G̃k‖ ≤ ε

)
= 1− P

(
‖G̃k‖ > ε

)
≥ 1− P

(∑k−1
`=0 Z` ≤ λ k

)
.

Denote

πk(λ) = P

(
k−1∑
`=0

Z` ≤ λ k

)
.

If {Mk} is a probabilistic model, then πk obeys a Chernoff type bound:

Lemma

Suppose that {Mk} is p-probabilistically (κeg, κef)-fully linear and
λ ∈ (0, p). Then

πk(λ) ≤ exp

[
−(p− λ)2

2p
k

]
.

45/51

A universal result

Hence P
(
‖G̃k‖ ≤ ε

)
= 1− P

(
‖G̃k‖ > ε

)
≥ 1− P

(∑k−1
`=0 Z` ≤ λ k

)
.

Denote

πk(λ) = P

(
k−1∑
`=0

Z` ≤ λ k

)
.

If {Mk} is a probabilistic model, then πk obeys a Chernoff type bound:

Lemma

Suppose that {Mk} is p-probabilistically (κeg, κef)-fully linear and
λ ∈ (0, p). Then

πk(λ) ≤ exp

[
−(p− λ)2

2p
k

]
.

45/51

Global rate

Now we plug the Chernoff type bound into

P
(
‖G̃k‖ ≤ ε

)
≥ 1− P

(
k−1∑
`=0

Z` ≤ λ k

)
.

Theorem

Suppose that {Mk} is p-probabilistically (κeg, κef)-fully linear with p > p0

and

k ≥ O
(

1

ε2

)
.

Then
P
(
‖G̃k‖ ≤ ε

)
≥ 1− exp [−O(k)] .

46/51

Global rate

Now we plug the Chernoff type bound into

P
(
‖G̃k‖ ≤ ε

)
≥ 1− P

(
k−1∑
`=0

Z` ≤ λ k

)
.

Theorem

Suppose that {Mk} is p-probabilistically (κeg, κef)-fully linear with p > p0

and

k ≥ O
(

1

ε2

)
.

Then
P
(
‖G̃k‖ ≤ ε

)
≥ 1− exp [−O(k)] .

46/51

Global rate

Now we plug the Chernoff type bound into

P
(
‖G̃k‖ ≤ ε

)
≥ 1− P

(
k−1∑
`=0

Z` ≤ λ k

)
.

Theorem

Suppose that {Mk} is p-probabilistically (κeg, κef)-fully linear with p > p0

and

k ≥ O
(

1

ε2

)
.

Then
P
(
‖G̃k‖ ≤ ε

)
≥ 1− exp [−O(k)] .

46/51

Global rate

Theorem

Suppose that {Mk} is p-probabilistically (κeg, κef)-fully linear with p > p0.
Then

P

(
‖G̃k‖ ≤

1√
k

)
≥ 1− exp [−O(k)] .

−→ O(1/
√
k) decaying sublinear rate for gradient holds with

overwhelmingly high probability, matching the deterministic case.

47/51

Global rate

Theorem

Suppose that {Mk} is p-probabilistically (κeg, κef)-fully linear with p > p0.
Then

P

(
‖G̃k‖ ≤

1√
k

)
≥ 1− exp [−O(k)] .

−→ O(1/
√
k) decaying sublinear rate for gradient holds with

overwhelmingly high probability, matching the deterministic case.

47/51

Worst case complexity

Since P (Kε ≤ k) = P (‖G̃k‖ ≤ ε), we also get:

Theorem

Suppose that {Mk} is p-probabilistically (κeg, κef)-fully linear with p > p0.
Then

P
(
Kε ≤

⌈
O
(
nε−2

)⌉)
≥ 1− exp

[
−O(ε−2)

]
,

where the n comes, as before, from squaring κ = O(
√
nL∇f) in bound for

FL models.

−→ O(nε−2) complexity bound for # of iterations holds with
overwhelmingly high probability, matching the deterministic case.

48/51

Worst case complexity

Since P (Kε ≤ k) = P (‖G̃k‖ ≤ ε), we also get:

Theorem

Suppose that {Mk} is p-probabilistically (κeg, κef)-fully linear with p > p0.
Then

P
(
Kε ≤

⌈
O
(
nε−2

)⌉)
≥ 1− exp

[
−O(ε−2)

]
,

where the n comes, as before, from squaring κ = O(
√
nL∇f) in bound for

FL models.

−→ O(nε−2) complexity bound for # of iterations holds with
overwhelmingly high probability, matching the deterministic case.

48/51

Worst case complexity

Since P (Kε ≤ k) = P (‖G̃k‖ ≤ ε), we also get:

Theorem

Suppose that {Mk} is p-probabilistically (κeg, κef)-fully linear with p > p0.
Then

P
(
Kε ≤

⌈
O
(
nε−2

)⌉)
≥ 1− exp

[
−O(ε−2)

]
,

where the n comes, as before, from squaring κ = O(
√
nL∇f) in bound for

FL models.

−→ O(nε−2) complexity bound for # of iterations holds with
overwhelmingly high probability, matching the deterministic case.

48/51

Open issues

In DS based on probabilistic descent, the WCC bound for function
evaluations is

O(mnε−2) = O(nε−2),

where m > 1 is the number of directions used (say m = 2).

Can one do something similar (in the sense of getting O(n)) for TR
methods based on probabilistic models?

Particularization to the convex and strongly convex cases.

Extension to constraints and non-smooth obj. functions.

49/51

Open issues

In DS based on probabilistic descent, the WCC bound for function
evaluations is

O(mnε−2) = O(nε−2),

where m > 1 is the number of directions used (say m = 2).

Can one do something similar (in the sense of getting O(n)) for TR
methods based on probabilistic models?

Particularization to the convex and strongly convex cases.

Extension to constraints and non-smooth obj. functions.

49/51

Open issues

In DS based on probabilistic descent, the WCC bound for function
evaluations is

O(mnε−2) = O(nε−2),

where m > 1 is the number of directions used (say m = 2).

Can one do something similar (in the sense of getting O(n)) for TR
methods based on probabilistic models?

Particularization to the convex and strongly convex cases.

Extension to constraints and non-smooth obj. functions.

49/51

Open issues

In DS based on probabilistic descent, the WCC bound for function
evaluations is

O(mnε−2) = O(nε−2),

where m > 1 is the number of directions used (say m = 2).

Can one do something similar (in the sense of getting O(n)) for TR
methods based on probabilistic models?

Particularization to the convex and strongly convex cases.

Extension to constraints and non-smooth obj. functions.

49/51

Stochastic optimization

What is observable is f̃(x, ε(ω)), where ε is a random variable. The
objective function f(x) may be given by E(f̃(x, ε)).

One possible approach is to extend the CSV framework using SAA
(Sample-Average Approximation).

First-order global convergence wp1 was derived in:

ASTRO-DF: A class of adaptive sampling trust-region algorithms for
derivative-free simulation optimization, S. Shashaani, F. S. Hashemi,
and R. Pasuparhy, 2015.

The number of observations in each Monte Carlo oracle may be up
to O(δ−4).

The proof seems correct but... for algorithmic parameters that depend on
unknown constants. To follow...

50/51

Stochastic optimization

What is observable is f̃(x, ε(ω)), where ε is a random variable. The
objective function f(x) may be given by E(f̃(x, ε)).

One possible approach is to extend the CSV framework using SAA
(Sample-Average Approximation).

First-order global convergence wp1 was derived in:

ASTRO-DF: A class of adaptive sampling trust-region algorithms for
derivative-free simulation optimization, S. Shashaani, F. S. Hashemi,
and R. Pasuparhy, 2015.

The number of observations in each Monte Carlo oracle may be up
to O(δ−4).

The proof seems correct but... for algorithmic parameters that depend on
unknown constants. To follow...

50/51

Stochastic optimization

What is observable is f̃(x, ε(ω)), where ε is a random variable. The
objective function f(x) may be given by E(f̃(x, ε)).

One possible approach is to extend the CSV framework using SAA
(Sample-Average Approximation).

First-order global convergence wp1 was derived in:

ASTRO-DF: A class of adaptive sampling trust-region algorithms for
derivative-free simulation optimization, S. Shashaani, F. S. Hashemi,
and R. Pasuparhy, 2015.

The number of observations in each Monte Carlo oracle may be up
to O(δ−4).

The proof seems correct but... for algorithmic parameters that depend on
unknown constants. To follow...

50/51

Stochastic optimization

What is observable is f̃(x, ε(ω)), where ε is a random variable. The
objective function f(x) may be given by E(f̃(x, ε)).

One possible approach is to extend the CSV framework using SAA
(Sample-Average Approximation).

First-order global convergence wp1 was derived in:

ASTRO-DF: A class of adaptive sampling trust-region algorithms for
derivative-free simulation optimization, S. Shashaani, F. S. Hashemi,
and R. Pasuparhy, 2015.

The number of observations in each Monte Carlo oracle may be up
to O(δ−4).

The proof seems correct but... for algorithmic parameters that depend on
unknown constants. To follow...

50/51

Stochastic optimization

What is observable is f̃(x, ε(ω)), where ε is a random variable. The
objective function f(x) may be given by E(f̃(x, ε)).

One possible approach is to extend the CSV framework using SAA
(Sample-Average Approximation).

First-order global convergence wp1 was derived in:

ASTRO-DF: A class of adaptive sampling trust-region algorithms for
derivative-free simulation optimization, S. Shashaani, F. S. Hashemi,
and R. Pasuparhy, 2015.

The number of observations in each Monte Carlo oracle may be up
to O(δ−4).

The proof seems correct but... for algorithmic parameters that depend on
unknown constants. To follow...

50/51

Stochastic optimization

Another avenue is to extend the TR based on probabilistic models to
cover also probabilistic estimates of the obj. function:

Stochastic optimization using a trust-region method and random
models, R. Chen, M. Menickelly, and K. Scheinberg, 2015.

First-order global convergence wp1 has also been derived, but also for
algorithmic parameters that depend on unknown constants. To follow...

In the non biased case f(x) = E(f̃(x, ε)), the probabilistic assumptions
can be ensured by SAA (with O(δ−4) observations).

This approach can handle biased cases like failures in function evaluations
or even processor failures (thus accommodating gradient failures when
using f.d.).

51/51

Stochastic optimization

Another avenue is to extend the TR based on probabilistic models to
cover also probabilistic estimates of the obj. function:

Stochastic optimization using a trust-region method and random
models, R. Chen, M. Menickelly, and K. Scheinberg, 2015.

First-order global convergence wp1 has also been derived, but also for
algorithmic parameters that depend on unknown constants. To follow...

In the non biased case f(x) = E(f̃(x, ε)), the probabilistic assumptions
can be ensured by SAA (with O(δ−4) observations).

This approach can handle biased cases like failures in function evaluations
or even processor failures (thus accommodating gradient failures when
using f.d.).

51/51

Stochastic optimization

Another avenue is to extend the TR based on probabilistic models to
cover also probabilistic estimates of the obj. function:

Stochastic optimization using a trust-region method and random
models, R. Chen, M. Menickelly, and K. Scheinberg, 2015.

First-order global convergence wp1 has also been derived, but also for
algorithmic parameters that depend on unknown constants. To follow...

In the non biased case f(x) = E(f̃(x, ε)), the probabilistic assumptions
can be ensured by SAA (with O(δ−4) observations).

This approach can handle biased cases like failures in function evaluations
or even processor failures (thus accommodating gradient failures when
using f.d.).

51/51

Stochastic optimization

Another avenue is to extend the TR based on probabilistic models to
cover also probabilistic estimates of the obj. function:

Stochastic optimization using a trust-region method and random
models, R. Chen, M. Menickelly, and K. Scheinberg, 2015.

First-order global convergence wp1 has also been derived, but also for
algorithmic parameters that depend on unknown constants. To follow...

In the non biased case f(x) = E(f̃(x, ε)), the probabilistic assumptions
can be ensured by SAA (with O(δ−4) observations).

This approach can handle biased cases like failures in function evaluations
or even processor failures (thus accommodating gradient failures when
using f.d.).

51/51

