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Why derivative-free optimization

Some of the reasons to apply Derivative-Free Optimization are the
following:

o Growing sophistication of computer hardware and mathematical
algorithms and software (which opens new possibilities for
optimization).

e Function evaluations costly and noisy (one cannot trust derivatives or
approximate them by finite differences).

@ Binary codes (source code not available or owned by a company) —
making automatic differentiation impossible to apply.

@ Legacy codes (written in the past and not maintained by the original
authors).

o Lack of sophistication of the user (users need improvement but want
to use something simple).
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Examples of problems where derivatives are unavailable

Tuning of algorithmic parameters:

@ Most numerical codes depend on a number of critical parameters.

@ One way to automate the choice of the parameters (to find optimal
values) is to solve:

min f(p) = CPU(p; solver) st. péE P,
peR™P

or

mlén f(p) = #iterations(p; solver) s.t. p¢€ P,
peER™P

where n,, is the number of parameters to be tuned and P is of the
form {p e R™ : ¢ < p < u}.

o It is hard to calculate derivatives for such functions f (which are likely
noisy and non-differentiable).

Audet and Vicente (SIOPT2008) @ Introduction  4/109



Examples of problems where derivatives are unavailable

Automatic error analysis:

@ A process in which the computer is used to analyze the accuracy or
stability of a numerical computation.

@ How large can the growth factor for GE be for a pivoting strategy?
Given n and a pivoting strategy, one maximizes the growth factor:

max; j k ]az(-].c)|
max f(A) = =Y

AeRmxn  maxglag]
A starting point could be Ag = I,.

@ When no pivoting is chosen, f is defined and continuous at all points
where GE does not break down (possibly non-differentiability).

e For partial pivoting, the function f is defined everywhere (because GE
cannot break down) but it can be discontinuous when a tie occurs.
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Examples of problems where derivatives are unavailable

Engineering design:
@ A case study in DFO is the helicopter rotor blade design problem:

o The goal is to find the structural design of the rotor blades to minimize
the vibration transmitted to the hub. The variables are the mass,
center of gravity, and stiffness of each segment of the rotor blade.

e The simulation code is multidisciplinary, including dynamic structures,
aerodynamics, and wake modeling and control.

o The problem includes upper and lower bounds on the variables, and
some linear constraints have been considered such as an upper bound
on the sum of masses.

o Each function evaluation requires simulation and can take from
minutes to days of CPU time.

@ Other examples are wing platform design, aeroacoustic shape design,
and hydrodynamic design.
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Examples of problems where derivatives are unavailable

Other known applications:
o Circuit design (tuning parameters of relatively small circuits).

@ Molecular geometry optimization (minimization of the potential
energy of clusters).

@ Groundwater community problems.
o Medical image registration.

@ Dynamic pricing.

Audet and Vicente (SIOPT2008) @ Introduction 7/109



Limitations of derivative-free optimization

iteration |z — x|
0 1.8284e+000
1 5.9099e-001
2 1.0976e-001
3 5.4283e-003
4 1.4654e-005
5 1.0737e-010
6 1.1102e-016

o Newton methods converge quadratically (locally) but require first and
second order derivatives (gradient and Hessian).
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Limitations of derivative-free optimization

iteration

2 — 2]l
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@ Quasi Newton (secant) methods converge superlinearly (locally) but

3.0000e+-000
2.0002e+4-000
6.4656e-001

1.4633e-001
4.0389e-002
6.7861e-003
6.5550e-004
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8.3747e-008
8.8528e-010

require first order derivatives (gradient).
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Limitations of derivative-free optimization

In DFO convergence/stopping is typically slow (per function evaluation):

Contact with friction (dim = 5)
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Pitfalls

The objective function might not be continuous or even well defined:

Contact with friction (dim = 5)
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Pitfalls

The objective function might not be continuous or even well defined:
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What can we solve

With the current state-of-the-art DFO methods one can expect to
successfully address problems where:

@ The evaluation of the function is expensive and/or computed with
noise (and for which accurate finite-difference derivative estimation is
prohibitive and automatic differentiation is ruled out).

@ The number of variables does not exceed, say, a hundred (in serial
computation).

@ The functions are not excessively non-smooth.
@ Rapid asymptotic convergence is not of primary importance.

@ Only a few digits of accuracy are required.
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What can we solve

In addition we can expect to solve problems:

o With hundreds of variables using a parallel environment or exploiting
problem information.

o With a few integer or categorical variables.
@ With a moderate level of multimodality:
It is hard to minimize non-convex functions without derivatives.

However, it is generally accepted that derivative-free optimization
methods have the ability to find ‘good’ local optima.

DFO methods have a tendency to: (i) go to generally low regions in
the early iterations; (ii) ‘smooth’ the function in later iterations.
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Classes of algorithms (globally convergent)

Over-simplifying, all globally convergent DFO algorithms must:

o Guarantee some form of descent away from stationarity.

@ Guarantee some control of the geometry of the sample sets where the
objective function is evaluated.

o Imply convergence of step size parameters to zero, indicating global
convergence to a stationary point.

By global convergence we mean convergence to some form of stationarity
from arbitrary starting points.
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Classes of algorithms (globally convergent)

(Directional) Direct Search:

@ Achieve descent by using positive bases or positive spanning sets and
moving in the directions of the best points (in patterns or meshes).

o Examples are coordinate search, pattern search, generalized pattern

search (GPS), generating set search (GSS), mesh adaptive direct
search (MADS).
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Classes of algorithms (globally convergent)

(Simplicial) Direct Search:

@ Ensure descent from simplex operations like reflections, by moving in
the direction away from the point with the worst function value.

o Examples are the Nelder-Mead method and several modifications to
Nelder-Mead.
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Classes of algorithms (globally convergent)

Line-Search Methods:

@ Aim to get descent along negative simplex gradients (which are
intimately related to polynomial models).

@ Examples are the implicit filtering method.
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Classes of algorithms (globally convergent)

Trust-Region Methods:

@ Minimize trust-region subproblems defined by fully-linear or
fully-quadratic models (typically built from interpolation or
regression).

@ Examples are methods based on polynomial models or radial basis
functions models.
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Presentation outline

© Unconstrained optimization
@ Directional direct search methods
@ Simplicial direct search and line-search methods
@ Interpolation-based trust-region methods



Direct search methods

@ Use the function values directly.

@ Do not require derivatives.

@ Do not attempt to estimate derivatives.

@ MADS is guaranteed to produce solutions that satisfy hierarchical
optimality conditions depending on local smoothness of the functions.

o Examples: DIRECT, MADS, Nelder-Mead, Pattern Search.
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Coordinate search (ancestor of pattern search).

Consider the unconstrained problem

min  f(x)

z€R™

where f: R" — RU {o0}.
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Coordinate search (ancestor of pattern search).

Consider the unconstrained problem

min  f(x)

rER?
where f: R" — RU {o0}.

@ INITIALIZATION:
xo : initial point in R™ such that f(zp) < o0
Ag > 0 : initial mesh size.
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Coordinate search (ancestor of pattern search).

Consider the unconstrained problem

min  f(x)

zeR?
where f: R" — RU {o0}.
@ INITIALIZATION:
xo : initial point in R™ such that f(zp) < o0
Ag > 0 : initial mesh size.
e PoLL sTEP: for £k =0,1,...

If f(t) < f(l'k) for some t € P, := {le'k + Ape; i € N},
then set x4 =1
and Agy1 = Ag;
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Coordinate search (ancestor of pattern search).

Consider the unconstrained problem

min  f(x)

rER?
where f: R" — RU {o0}.

@ INITIALIZATION:
xo : initial point in R™ such that f(zp) < o0
Ag > 0 : initial mesh size.
e PoLL sTEP: for £k =0,1,...
If f(t) < f(l'k) for some t € P, := {le'k + Ape; i € N},
then set x4 =1
and Apy1 = Ag;
otherwise xj is a local minimum with respect to Py,
set 41 = o
and Apy1 = %.
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Coordinate search

z0=(2,2)T,Ap=1
f=4401
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Coordinate search

z0=(2,2)T,Ap=1
f=4401
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Coordinate search

z0=(2,2)T,Ap=1
fE4401
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Coordinate search

z0=(2,2)T,Ap=1
fE4401 f¥29286
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Coordinate search

f=4772

z0=(2,2)T,Ap=1
fE4401 f¥29286

Audet and Vicente (SIOPT 2008 Unconstrained optimization 23/109



Coordinate search

f=4772

z0=(2,2)T,Ap=1
=166 fE4401 f+29286
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Coordinate search

f=4772

z0=(2,2)T,Ap=1
=166 fE4401 f+29286

Audet and Vicente (SIOPT 2008 Unconstrained optimization 23/109



Coordinate search

m1:(1,2)T,A1:1
f=166
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Coordinate search

z1=(1,2)T,A1=1
=166
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Coordinate search

m1:(1,2)T7A1:1
f =81 =166
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Coordinate search

z9=(2,2)T,Az=1
If=81
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Coordinate search

z9=(2,2)T,Az=1
f=2646 f=81

Audet and Vicente (SIOPT 2008 Unconstrained optimization 25/109



Coordinate search

mz:(?,?)T,A2=1
f=2646 f=81 =166
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Coordinate search

f=152

mz:(?,?)T,A2=1
f=2646 f=81 =166
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Coordinate search

f=152
z9=(2,2)T,Az=1
f=2646 f=81 =166
if =36
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Coordinate search

z3=(0,1)T,Ag=1

If =36
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Coordinate search

z3=(0,1)T,Ag=1

f=36

=17
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Coordinate search

z4=(0,0)T,A4=1
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Coordinate search

z4=(0,0)T,A4=1

If =36

F=2402 =17 F—82

f=24
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Coordinate search

25=(0,0)T,A5=1
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Coordinate search

25=(0,0)T,A5=1
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Coordinate search

25=(0,0)T,A5=1

f=4d f17 |f=2

=18
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Generalized pattern search — Torczon 1996

@ INITIALIZATION:
xo : initial point in R™ such that f(zg) < co
Ag > 0 : initial mesh size.
D : finite positive spanning set of directions.
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Generalized pattern search — Torczon 1996

@ INITIALIZATION:
xo : initial point in R™ such that f(zg) < co
Ag > 0 : initial mesh size.
D : finite positive spanning set of directions.

D = {dy,ds,...,dy} is a positive spanning set if

p
{Zazdz 7] ZO,iZl,Q,,,_p} = R".
i=1

Remark : p >n + 1.

Definition (Davis)

D ={di,ds,...,d,} is a positive basis is it is a positive spanning set and
no proper subset of D is a positive spanning set.
Remark : n+1 <p < 2n.

V.
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Generalized pattern search — Torczon 1996

@ INITIALIZATION:
xo : initial point in R™ such that f(zg) < co
Ag > 0 : initial mesh size.
D : finite positive spanning set of directions.
o For k=0,1,...

e SEARCH STEP: Evaluate f at a finite number of mesh points.
o PoLL STEP: If the search failed, evaluate f at the poll points
{xr + Ard : d € Dy} where Dy, C D is a positive spanning set.
o PARAMETER UPDATE:
Set Ag4+1 < Ay if no new incumbent was found,
otherwise set Apy1 > Ay, and call ;41 the new incumbent.
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Generalized pattern search

z0=(2,2)T,Ap=1
f=4401
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Generalized pattern search

z0=(2,2)T,Ap=1
f=4401
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Generalized pattern search

z0=(2,2)T,Ap=1
fE4401
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Generalized pattern search

f=4772

z0=(2,2)T,Ap=1
fE4401
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Generalized pattern search

f=4772

z0=(2,2)T,Ap=1
fE4401

f=101
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Generalized pattern search

m1:(1,2)T,A1:2

f=101
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Generalized pattern search

m1:(1,2)T,A1:2

f=101
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Generalized pattern search

f=2341

m1:(1,2)T,A1:2

f=101 f=967

=150
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Generalized pattern search

mz:(?,?)T,A2=1

f=101
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Generalized pattern search

mz:(?,?)T,A2=1

f=101

A SEARCH trial point. Ex: built using a simplex gradient
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Convergence analysis

o If all iterates belong to a bounded set, then liminf; A, = 0.

There is a convergent subsequence of iterates xy, — & of mesh local
optimizers, on meshes that get infinitely fine.
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Convergence analysis

o If all iterates belong to a bounded set, then liminf; A, = 0.

There is a convergent subsequence of iterates xy, — & of mesh local
optimizers, on meshes that get infinitely fine.

@ GPS methods are directional. The analysis is tied to the fixed set of
directions D:  f(xy) < f(xg + Agd) for every d € D, C D.

If f is Lipschitz near &, then for every direction d € D used infinitely often,

fly +td) — f(y)

f°(&;d) = limsup
Y, t—0 t
> limsup flak + Axd) — flan) > 0.
k Ak
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Convergence analysis

o If all iterates belong to a bounded set, then liminf; A, = 0.

There is a convergent subsequence of iterates xy, — & of mesh local
optimizers, on meshes that get infinitely fine.

@ GPS methods are directional. The analysis is tied to the fixed set of
directions D:  f(xy) < f(xg + Agd) for every d € D, C D.

If f Is regular near &, then for every direction d € D used infinitely often,

f(z+td) — f(z)
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Convergence analysis

o If all iterates belong to a bounded set, then liminf; A, = 0.

There is a convergent subsequence of iterates xy, — & of mesh local
optimizers, on meshes that get infinitely fine.

@ GPS methods are directional. The analysis is tied to the fixed set of
directions D:  f(xy) < f(xg + Agd) for every d € D, C D.

If f is strictly differentiable near &, then

V@) = o0
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Related methods

@ The GPS iterates at each iteration are confined to reside on the mesh.

@ The mesh gets finer and finer, but still, some users want to evaluate
the functions at non-mesh points.

@ Frame-based methods, and Generalized Set Search methods remove
this restriction to the mesh. The trade-off is that they require a
minimal decrease on the objective to accept new solutions.

Lk

GPS: trial points on the mesh  Gss: trial points away from xy,
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Related methods

@ The GPS iterates at each iteration are confined to reside on the mesh.

@ The mesh gets finer and finer, but still, some users want to evaluate
the functions at non-mesh points.

o Frame-based methods, and Generalized Set Search methods remove
this restriction to the mesh. The trade-off is that they require a
minimal decrease on the objective to accept new solutions.

@ DIRECT partitions the space of variables into hyperrectangles, and
iteratively refines the most promising ones.

Figure taken from Finkel and Kelley CRSC-TR04-30.
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Positive bases vs. simplices
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Positive bases vs. simplices
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Positive bases vs. simplices

The 3 =n+ 1 points form an affinely independent set.

A set of m + 1 points Y = {y°,y!,...,y™} is said to be affinely independent
if its affine hull aff (3,4, ...,y™) has dimension m.
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Positive bases vs. simplices

Their convex hull is a simplex of dimension n = 2.

Given an affinely independent set of points Y = {3°,¢y*,...,y™},
its convex hull is called a simplex of dimension m.
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Positive bases vs. simplices

/

Its reflection produces a (maximal) positive basis.
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The volume of a simplex of vertices Y = {¢°,y*,...,y"} is defined by

_ [det(S(Y))

n!

vol(Y')
where
SY) = [yt =y’ -y =]
Note that vol(Y) > 0 (since the vertices are affinely independent).

A measure of geometry for simplices is the normalized volume:

1

von(Y) = vol (W(Y)Y) .
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Simplicial Direct-Search Methods

The Nelder-Mead method:

o Considers a simplex at each iteration, trying to replace the worst
vertex by a new one.

o For that it performs one of the following simplex operations:
reflexion, expansion, outside contraction, inside contraction.

— Costs 1 or 2 function evaluations (per iteration).

o If they all the above fail the simplex is shrunk.

— Additional n function evaluations (per iteration).
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Nelder Mead simplex operations (reflections, expansions, outside
contractions, inside contractions)

n
y? ‘» y°
o0
y© is the centroid of the face opposed to the worse vertex 2.

Audet and Vicente (SIOPT 2008 Unconstrained optimization 39/109



Nelder Mead simplex operations (shrinks)

Audet and Vicente (SIOPT 2008 Unconstrained optimization 40/109



McKinnon counter-example:
The Nelder-Mead method:

o Attempts to capture the curvature of the function.
o Is globally convergent when n = 1.

e Can fail for n > 1 (e.g. due to repeated inside contractions).
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McKinnon counter-example
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Nelder-Mead on McKinnon example (two different starting simplices)

Melder-Mead on McKinnon example

! 1
0 RV —ii] o4 &0 0 70 Ll a0
function evaluations
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Modified Nelder-Mead methods
For Nelder-Mead to globally converge one must:

o Control the internal angles (normalized volume) in all simplex
operations but shrinks.

CAUTION (very counterintuitive): Isometric reflections only preserve
internal angles when n = 2 or the simplices are equilateral.

— Need for a back-up polling.

@ Impose sufficient decrease instead of simple decrease for accepting
new iterates:

f(new point) < f(previous point) — o(simplex diameter).
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Modified Nelder-Mead methods

Let {Y%} be the sequence of simplices generated.
Let f be bounded from below and uniformly continuous in R™.

Theorem (Step size going to zero)

The diameters of the simplices converge to zero:

lim diam(Y;) = 0.

k—+oc0

Theorem (Global convergence)

If f is continuously differentiable in R™ and {Y}} lies in a compact set then

{Y%} has at least one stationary limit point x..
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Simplex gradients

It is possible to build a simplex gradient:

VofW) = [ =9 y2—y° ] [ ;EZ;; B §E§2§ ] .
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Simplex gradients

°y

It is possible to build a simplex gradient:

Vof(y°) = STTS(f).
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Simplex gradients

Simple Fact (What is a simplex gradient)

The simplex gradient (based on n + 1 affinely independent points) is the
gradient of the corresponding linear interpolation model:

FOO) + (Vs f 0y =) = f0) + (STTE(S) T (Ser)
F°) +6(f);

= f).

— Simplex derivatives are the derivatives of the polynomial models.
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Line-search methods

For instance, the implicit filtering method:

o Computes a simplex gradient (per iteration).
—— The function evaluations can be computed in parallel.

— It can use regression with more than n + 1 points.

@ Improves the simplex gradient by applying a quasi-Newton update.

@ Performs a line search along the negative computed direction.

The noise is filtered: (i) by the simplex gradient calculation (especially
when using regression); (ii) by not performing an accurate line search.
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Trust-Region Methods for DFO (basics)

Trust-region methods for DFO typically:

@ attempt to form quadratic models (by interpolation/regression and
using polynomials or radial basis functions)

m(Azx) = f(xg) + (gr, Az) + 1/2(Ax, HyAz)
based on well-poised sample sets.

— Well poisedness ensures fully-linear or fully quadratic models.

o Calculate a step Axy by solving

min m(Ax).
AwGB(mk;Ak)
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Example of ill poisedness
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Example of ill poisedness
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Example of ill poisedness
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Example of ill poisedness
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Fully-linear models

Given a point x and a trust-region radius A, a model m(y) around z is
called fully linear if

@ It is continuous differentiable with Lipschitz continuous first
derivatives.

@ The following error bounds hold:
IVF(y) =Vm(y)l| < keg A Vy € B(z;4)

and
1f(y) —m(y)| < ks A® Yy e B(z;A).

For a class of fully-linear models, the (unknown) constants k¢, keg > 0
must be independent of x and A.
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Fully-linear models

For a class of fully-linear models, one must also guarantee that:

@ There exists a model-improvement algorithm, that in a finite,
uniformly bounded (with respect to « and A) number of steps can:

— certificate that a given model is fully linear on B(x; A),

— or (if the above fails), find a model that is fully linear on B(x; A).
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Fully-quadratic models

Given a point x and a trust-region radius A, a model m(y) around z is
called fully quadratic if

@ It is twice continuous differentiable with Lipschitz continuous second
derivatives.

o The following error bounds hold (...):
IV2f(y) = V*m(y)| < wen A Yy € B(w; A)

IVF(y) = Vm(y)|| < kegA®  Vy € B(x; A)

and
f(y) —m(y)| < kepA®  Vy e B(x; A).
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TR methods for DFO (basics)

@ Set zp41 to xy + Axy, (success) or to xy (unsuccess) and update Ay
depending on the value of

f(zg) = fzp + Azyg)
m(0) — m(Azg)

Pk =

o Attempt to accept steps based on simple decrease, i.e., if

pe > 0 <= f(zp+Azp) < f(ak)
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TR methods for DFO (main features)

e Reduce Ay only if p is small and the model is FL/FQ.

@ Accept new iterates based on simple decrease (p; > 0) as long as the
model is FL/FQ

@ Allow for model-improving iterations (when py is not large enough
and the model is not certifiably FL/FQ).
—— Do not reduce Ay.

@ Incorporate a criticality step (1st or 2nd order) when the ‘stationarity’
of the model is small.

— Internal cycle of reductions of Ag.
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TR methods for DFO (global convergence)

Theorem (Step size going to zero)

The trust-region radius converges to zero:

A — 0.

Theorem (Global convergence (1st order) — TRM)

If f has Lipschitz continuous first derivatives then

IVf(zp)l — 0.

— Compactness of L(x() is not necessary.
—— True for simple decrease.

— Use of fully-linear models when necessary.
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TR methods for DFO (global convergence)

Theorem (Global convergence (2nd order) — TRM)

If f has Lipschitz continuous second derivatives then

max {| V@)l ~AminlV2F ()]} — 0.

— Compactness of L(x() is not necessary.
—— True for simple decrease.

— Use of fully-quadratic models when necessary.
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Polynomial models

Given a sample set Y = {3°,4!,... 9”} and a polynomial basis ¢, one
considers a system of linear equations:

M(¢,Y)a = f(Y),

where
$o(y°) ¢1(y°) - dp(y?) f@°)
M(6.Y) = ooy oy - dp(yh) Fv) = fyh)
Do) () - bly?) £")

Example: ¢ = {1,271, z2,7%/2,23/2, 2122}
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Polynomial models

The system
M(¢,Y)a = f(Y)

can be
@ Determined when (# points) = (# basis components).

o Overdetermined when (# points) > (# basis components).

— least-squares regression solution.

o Undetermined when (# points) < (# basis components).
— minimum-norm solution

—— minimum Frobenius norm solution

Audet and Vicente (SIOPT 2008 Unconstrained optimization 60/109



Error bounds for polynomial models

Given an interpolation set Y, the error bounds (# points > n + 1) are of
the form

IVi(y) = Vm(y)ll < [Cn)C(HCTITA vy e B(x;A)

where

e C(n) is a small constant depending on n.

e C(f) measures the smoothness of f (in this case the Lipschitz
constant of V f).

e C/(Y) is related to the geometry of Y.
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Geometry constants

Let {£,(2), y € Y} be the set of Lagrange polynomials associated with Y.

The geometry constant is typically given by

Y) = .
O¥) = max Lax 1£y(2)]

— leading to model-improvement algorithms based on the maximization
of Lagrange polynomials.
In fact, we say that Y is A—poised when

= < Al
C(Y) = max L ax 1Ly(2)] < A
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Model improvement (Lagrange polynomials)

Choose A > 1. Let Y be a poised set.

Each iteration of a model-improvement algorithm consists of:

o Estimate

C = L,(2)].
max max | £y (2)|

o If C > A then let y°“! correspond to the polynomial where the
maximum was attained. Let

y" € argmax,cp |L,ou(2)].
Update Y (and the Lagrange polynomials):
Y — YU{y"}\ {y"}.

e Otherwise (i.e., C' < A), Y is A—poised and stop.
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Model improvement (Lagrange polynomials)

For any given A > 1 and a closed ball B, the previous model-improvement
algorithm terminates with a A—poised set Y after at most N = N(A)
iterations.
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Example (model improvement based on LP)

0&r 1

0GR B

0.4r 1

02F B

N2F .

08 1

C =5324
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Example (model improvement based on LP)

IR=R 2 B

0.6} B

o4} -

02k -

N2 -

C = 36.88
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Example (model improvement based on LP)

IR=R 2 B

0.6} B

o4} -

02k -

N2 -

RIR=RJ b

C = 15.66
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Example (model improvement based on LP)

[IR=R g B

06 q

0.4+ B

021 B

a4t -

A6 —

O8F .

C=111
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Example (model improvement based on LP)

0&r B

0B q

0.4r B

02 B

04t -

0B —

NBF .

C =101
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Example (model improvement based on LP)

0&}F B

0.6 B

0.4+ B

02F B

02r B

04t -

RIR=R B

NaF -

C =1.001
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Geometry constants

The geometry constant can also be given by
C(Y) = cond(scaled interpolation matrix M)

— leading to model-improvement algorithms based on pivotal
factorizations (LU/QR or Newton polynomials).

These algorithms yield:

MY < Cn) TM

where

@ £growth 15 the growth factor of the factorization.

@ £ > 0is a (imposed) lower bound on the absolute value of the pivots.

— one knows that £ < 1/4 for quadratics and £ < 1 for linears.

Audet and Vicente (SIOPT 2008 Unconstrained optimization 66/109



Underdetermined polynomial models

Consider a underdetermined quadratic polynomial model built with less
than (n+ 1)(n + 2)/2 points.

IfY is C(Y)—poised for linear interpolation or regression then

IVi(y) = Vm(y)ll < CON[C(H) +[IHIT A Vy e B(z;A)

where H is the Hessian of the model.

—— Thus, one should minimize the norm of H.
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Minimum Frobenius norm models

Motivation comes from:

@ The models are built by minimizing the entries of the Hessian (in the
Frobenius norm) subject to the interpolation conditions.

In this case, one can prove that H is bounded:

IH| < C(n)C(HCY).

@ Or they can be built by minimizing the difference between the current
and previous Hessians (in the Frobenius norm) subject to the
interpolation conditions.

In this case, one can show that if f is itself a quadratic then:

|H = V2f| < | = V2.
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Presentation outline

© Optimization under general constraints
@ Nonsmooth optimality conditions
@ MADS and the extreme barrier for closed constraints
o Filters and progressive barrier for open constraints



Limitations of GPS

Optimization applied to the meeting logo.
Level sets of f: R? — R: f(x) = (1 — e_”x”z) max{||z — ¢|?, ||z — d||*}
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Limitations of GPS




Limitations of GPS

[

—1.5

NN

= o s

For almost all starting points, the iterates of GPS with the coordinate
directions converge to a point & on the diagonal, where f is not
differentiable, with f/(Z;+e;) > 0

but f/(#;d) < 0 with d = (1,-1)7.
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Limitations of GPS - a convex problem

Minimize f(z) = x1 + 2 on a disc
A
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Limitations of GPS - a convex problem

Minimize f(z) = x1 + 2 on a disc
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Limitations of GPS - a convex problem

Minimize f(z) = x1 + 2 on a disc

Infeasible trial points are simply rejected from consideration.
This is called the extreme barrier approach.
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Limitations of GPS - a convex problem

Minimize f(z) = x1 + 2 on a disc

Infeasible trial points are simply rejected from consideration.

This is called the extreme barrier approach.
The GPs iterates with the coordinate directions converge to a suboptimal

point & on the boundary, where f'(#;+e€;) > 0 and & — e; & Q.
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Unconstrained nonsmooth optimality conditions

Given any unconstrained optimization problem (NLP), we desire an
algorithm that produces a solution %

>

(NLP) — | ALGORITHM | —
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Unconstrained nonsmooth optimality conditions

Given any unconstrained optimization problem (NLP), we desire an
algorithm that produces a solution %

>

(NLP) — | ALGORITHM | —

Unconstrained optimization hierarchy of optimality conditions :

if fisC! then 0 =Vf(2) < f'(&;d)>0VdeR"
if fis regular then f(#;d) > 0Vd e R"
if f is convex then 0 € 0f(2)

if £ is Lipschitz near # then 0 € 0f(%) <« f°(i;d)>0Vd € R".
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Clarke derivatives and generalized gradient

Let f be Lipschitz near x € R™.

@ The Clarke generalized devivative of f at x in the direction v € R" is

fO(II?;’U) — limsup f(y + t’U) - f(y)
y—x, t|0 t

@ The generalized gradient of f at x is defined to be

of(x) = {CeR™: fo(x;v) > vl ¢ for every v € R"}
= co{limVf(x;) : ; — x and Vf(x;) exists }.
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Clarke derivatives and generalized gradient

Let f be Lipschitz near x € R™.

@ The Clarke generalized devivative of f at x in the direction v € R" is

fO(II?;’U) — limsup f(y + tv) - f(y)
y—x, t|0 t

@ The generalized gradient of f at x is defined to be

of(x) = {CeR™: fo(x;v) > vl ¢ for every v € R"}
= co{limVf(x;) : ; — x and Vf(x;) exists }.

Properties:
o If fis convex, Of(x) = sub-gradient.

o f is strictly differentiable at x if Of(x) contains a single element, and
that element is Vf(z), and f'(z;-) = f°(x;-).
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Constrained optimization optimality conditions

Necessary optimality condition

If £ € Q is a local minimizer of a differentiable function f over a convex
set ) C R™, then
fl(#;d) >0 VdeTqa(2),

where f'(#;d) = lim Of(”Ht‘?_f@) = d'V ()
and Tq(2) is

the tangent cone to ) at .
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Constrained optimization optimality conditions
Necessary optimality condition

If £ € Q is a local minimizer of a differentiable function f over a convex
set ) C R™, then
fl(#;d) >0 VdeTqa(2),

f(@ +td) —

where f'(i; d) = lim /() = dT'Vf(i)
and Tq(2) is

the tangent cone to ) at .

v

Necessary optimality condition

If £ € Q) is a local minimizer of the function f over the set Q2 C R", then

fo(a;d) >0 VdeTH (),

where f°(&;d) is a generalization of the directional derivative,
and TH (2) is a generalization of the tangent cone.
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Extending GPS to handle nonlinear constraints

@ For unconstrained optimization, GPS garantees
(under a local Lipschitz assumption) to produce a limit point x such
that f°(x;d) > 0 for every d used infinitely often.

Unfortunately, the d's are selected from a fixed finite set D, and GPS
may miss important directions. The effect is more pronounced as the
dimension increases.

@ Torczon and Lewis show how to adapt GPS to explicit bound or linear
inequalities. The directions in D are constructed using the nearby
active constraints.

@ GPS is not suited for nonlinear constraints.
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Extending GPS to handle nonlinear constraints

@ For unconstrained optimization, GPS garantees
(under a local Lipschitz assumption) to produce a limit point x such
that f°(x;d) > 0 for every d used infinitely often.

Unfortunately, the d's are selected from a fixed finite set D, and GPS
may miss important directions. The effect is more pronounced as the
dimension increases.

@ Torczon and Lewis show how to adapt GPS to explicit bound or linear
inequalities. The directions in D are constructed using the nearby
active constraints.

@ GPS is not suited for nonlinear constraints.

o Recently, Kolda, Lewis and Torczon proposed an augmented
Lagrangean Gss approach, analyzed under the assumption that the
objective and constraints be twice continuously differentiable.

@ MADS generalizes GPs by allowing more directions. MADS is
designed for both constrained or unconstrained optimization, and
does not require any smoothness assumptions.
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From Coordinate Search to ORTHOMADS

ORTHOMADS — 2008

Tk
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From Coordinate Search to ORTHOMADS

ORTHOMADS — 2008 Union of all normalized directions
grows dense in the unit sphere

infinite number of directions

Audet and Vicente (SIOPT 2008 Optimization under general constraints 76/109



From Coordinate Search to ORTHOMADS

ORTHOMADS — 2008 Union of all normalized directions
grows dense in the unit sphere

Y
infinite number of directions

o ORTHOMADS is deterministic.
Results are reproducible on any machine.

@ At any given iteration, the directions are orthogonal.
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ORTHOMADS: Halton Pseudo-random sequence

@ ORTHOMADS uses the pseudo-random Halton sequence (1960) to
generate a sequence {u;}7°; of vectors in R™ that is dense in the
hypercube [0, 1]™.

@ The MADS convergence analysis requires that all trial points belong
to a mesh that gets finer and finer as the algorithm unfolds. The
direction wy is translated and scaled to % so that it belongs to
the unit sphere (e is the vector of ones).

@ The direction is rounded to the nearest mesh direction q.

q. o - S . .:///I

1
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ORTHOMADS: Householder orthogonal matrix

@ The Householder transformation is then applied to the integer
direction ¢:

H = |q|*I, — 2qq",

where I, is the identity matrix.

@ By construction, H is an integer orthogonal basis of R".

@ The poll directions for ORTHOMADS are defined to be the columns of
H and —H.

@ A lower bound on the cosine of the maximum angle between any
arbitrary nonzero vector v € R™ and the set of directions in D is

defined as
vT'd

D — 1 axX —.
AD) = min e

With ORTHOMADS the measure x(D) = %ﬁ is maximized over all
positive bases.
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Convergence analysis - ORTHOMADS with extreme barrier

As k — o0, the set of ORTHOMADS normalized poll directions is dense in
the unit sphere.

OrthoMads n=2 OrthoMads n=3

XX Xox
%x %&
05 ;f %&

B

3

A
-0.5 &X& g"
% X

&%xx SO

-1
-1 05 0 05 1
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Convergence analysis - ORTHOMADS with extreme barrier

As k — o0, the set of ORTHOMADS normalized poll directions is dense in
the unit sphere.

OrthoMads n=2 OrthoMads n=3
x%x "X(% 3 %

X %
2.

)%;
A

o
»
x&%

Let & be the the limit of a subsequence of mesh local optimizers on
meshes that get infinitely fine. If f is Lipschitz near z,
then f°(%,v) > 0 for all v € TE (2).

Assuming more smoothness, Abramson studies second order convergence.



Open, closed and hidden constraints

Consider the toy problem: miré x? — /7o
z€eR

s.t. —a:f +$% <1
T2 20
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Open, closed and hidden constraints

Consider the toy problem: miré x? — /7o
z€eR

st. —z¥+a2<1
T2 2 0
o Closed constraints must be satisfied at every trial vector of decision
variables in order for the functions to evaluate.
Here 29 > 0 is a closed constraint, because if it is violated, the
objective function will fail.
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Open, closed and hidden constraints

Consider the toy problem: miré x? — /7o
z€eR

s.t. —m% + $% <1
T2 20

o Closed constraints must be satisfied at every trial vector of decision
variables in order for the functions to evaluate.
Here 29 > 0 is a closed constraint, because if it is violated, the
objective function will fail.

@ Open constraints must be satisfied at the solution, but an
optimization algorithm may generate iterates that violate it. Here
—27 4 23 < 1 is an open constraint.
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Open, closed and hidden constraints

Consider the toy problem: min 22— In(z2)
z€R?

st. —z¥+a2<1
T2 20

o Closed constraints must be satisfied at every trial vector of decision
variables in order for the functions to evaluate.
Here 29 > 0 is a closed constraint, because if it is violated, the
objective function will fail.

@ Open constraints must be satisfied at the solution, but an
optimization algorithm may generate iterates that violate it. Here
—27 4+ 23 < 1 is an open constraint.

o Lets change the objective. x5 # 0 is now an hidden constraint.
f is set to co when x € Q) but z fails to satisfy an hidden contraint.

Audet and Vicente (SIOPT 2008 Optimization under general constraints 80/109



Open, closed and hidden constraints

Consider the toy problem: min 22— In(z2)
z€R?

st. —z¥+a2<1
T2 20

o Closed constraints must be satisfied at every trial vector of decision
variables in order for the functions to evaluate.
Here 29 > 0 is a closed constraint, because if it is violated, the
objective function will fail.

@ Open constraints must be satisfied at the solution, but an
optimization algorithm may generate iterates that violate it. Here
—27 4+ 23 < 1 is an open constraint.

o Lets change the objective. x5 # 0 is now an hidden constraint.
f is set to co when x € Q) but z fails to satisfy an hidden contraint.

@ This terminology differs from soft and hard constraints which mean
that satisfaction might allow, or might not, for some tolerance on the
right hand side of ¢;(z) < 0.
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Constrained optimization

Consider the constrained problem

min f(z)

€N

where f: R" — RU {o0}
and Q={r € X CR": C(x) <0} with C: R" — (RU {oco})™.
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Constrained optimization

Consider the constrained problem

min f(z)

€N

where f: R" — RU {o0}
and Q={r € X CR": C(x) <0} with C: R" — (RU {oco})™.

An initial xg € X with f(zo) < oo, and C(z) < oo is provided.
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Filter approach to constraints (Based on Fletcher - Leyffer)

min  f(z)

The extreme barrier handles the closed and hidden constraints X.
A filter handles C'(x) < 0.

Define the nonnegative constraint violation function

ifreX .
Zmax((),cj(x))2 € X and < open constraints
h(z) := r f(x) < oo,
+o00 otherwise. <« closed constraints

h(z) =0 if and only if x € Q.

The constrained optimization problem is then viewed as a biobjective one:
to minimize f and h, with a priority to h. This allows trial points that
violate the open constraints.
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Filter approach to constraints
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Filter approach to constraints
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Filter approach to constraints

(h(z,f ("))
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Filter approach to constraints

2l

(hz! f(aT))
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Filter approach to constraints

b (h(zF f(zF))
(hz! f(aT))
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Filter approach to constraints

f (h(X), F(X))

2l
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Filter approach to constraints

2l

Audet and Vicente (SIOPT 2008 Optimization under general constraints 83/109



Filter approach to constraints

2l

™

X

Optimal solution
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Filter approach to constraints

h=3

X
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Optimal solution
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Filter approach to constraints

Local min of h

h=3

f

X
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A MADS algorithm with a progressive barrier

We present an algorithm that

o At iteration k, any trial point whose constraint violation value exceeds
the value h;'®* is discarded from consideration.

@ As k increases, the threshold h;'** is reduced.

@ The algorithm accepts some trial points that violate the open
constraints.
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Progressive barrier algorithm : Iteration 0

0 o
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Progressive barrier algorithm : Iteration 0

max
hO

0 /’x\
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Progressive barrier algorithm : Iteration 0

x no
f
AL
/ A -
N h
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Progressive barrier algorithm : Iteration 0

Worst h and worst f

x no
IR
N
/ A -
N h
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Progressive barrier algorithm : Iteration 0

Outside closed constraints X : reject point (barrier approach)

f
AN .
/ A -
N h
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Progressive barrier algorithm : Iteration 0

Better h but worst f

. 4 P
Zo —
NEEERER
/ A -
N h
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Progressive barrier algorithm : Iteration 0

Better h and better f

. ‘ hpax
f
e
/N X . :
[T N\ -
_ g
\_// X .
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Progressive barrier algorithm : Iteration 0

The new infeasible incumbent is the one to the left
(in (h, f) plot) of the last one with the best f value

maxjy, max
° \ hl hO
o
1 °
N o

== | L
AU =

If time > 11h35, then Skip 12 clicks
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Progressive barrier algorithm : lteration 1

max
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Progressive barrier algorithm : lteration 1

max

1

/AN
[N .
AU =
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Progressive barrier algorithm : lteration 1

max
hl

B\ R
N
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Progressive barrier algorithm : lteration 1

New infeasible incumbent

max
hl

B\ B
N
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Progressive barrier algorithm : lteration 1

New feasible incumbent

Ak
AU

max
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Progressive barrier algorithm : lteration 2

hi;®* progressively decreases

hgla.)(

/\
[\ |
AU =
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Convergence analysis of ORTHOMADS under the

progressive barrier

Assumptions

@ At least one initial point in X is provided — but not required to be in
Q.

@ All iterates belong to some compact set — it is sufficient to assume
that level sets of f in X are bounded.
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Convergence analysis of ORTHOMADS under the

progressive barrier

Assumptions

@ At least one initial point in X is provided — but not required to be in
Q.

@ All iterates belong to some compact set — it is sufficient to assume
that level sets of f in X are bounded.

As k — oo, ORTHOMADS s normalized polling directions form a dense set
in the unit sphere.
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Limit of feasible POLL centers

Let & € Q be the limit of unsuccessful feasible poll centers {x'} on
meshes that get infinitely fine. If f is Lipschitz near &,
then f°(2,v) > 0 for all v € TE (2).
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Limit of feasible POLL centers

Let & € Q be the limit of unsuccessful feasible poll centers {x'} on
meshes that get infinitely fine. If f is Lipschitz near &,
then f°(2,v) > 0 for all v € TE (2).

v

Corollary

In addition, if f is strictly differentiable near &, and if ) is regular near z,
then f'(z,v) > 0 for all v € To(), i.e., & is a KKT point for miél f(z).
Te
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Limit of infeasible POLL centers

Let & € X be the limit of unsuccessful infeasible poll centers {mi} on
meshes that get infinitely fine. If h is Lipschitz near &,
then h°(&,v) > 0 for all v € TH(%).
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Limit of infeasible POLL centers

Let & € X be the limit of unsuccessful infeasible poll centers {mi} on
meshes that get infinitely fine. If h is Lipschitz near &,
then h°(&,v) > 0 for all v € TH(%).

v

Corollary

In addition, if h is strictly differentiable near &, and if X is regular near z,
then h'(Z,v) > 0 for all v € Tx (%) i.e., & is a KKT point for Hli)r(l h(x).
fAS
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Equality constraints

@ All the above ideas dealt with inequality constraints.

@ Dreisigmeyer recently proposed to construct a mesh using geodesics of
the Riemannian manifold formed by equalities (not necessarily linear).
Knowledge of the equalities is necessary.

Manifold
T3 \
A : z1
z2
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Knowledge of the equalities is necessary.
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Equality constraints

@ All the above ideas dealt with inequality constraints.

@ Dreisigmeyer recently proposed to construct a mesh using geodesics of
the Riemannian manifold formed by equalities (not necessarily linear).
Knowledge of the equalities is necessary.

zs, Manifold
é o
* N
o poll center xy,
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Presentation outline

o Surrogates, global DFO, software, and references
@ The surrogate management framework
o Constrained TR interpolation-based methods
@ Towards global DFO optimization
@ Software and references



Surrogate functions

Definition

A surrogate s of the function f is a function that shares some similarities
with f BUT is much cheaper to evaluate.

Examples:
@ surfaces obtained from f values at selected sites
o simplified physical models
o lower fidelity models

@ a function that evaluates something similar
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An example in R! of an excellent surrogate

A surrogate sy is not necessarily a good approximation of the truth f

601
50
a0

307

20
101

(o] 2 4 6 8 10
X

obj ecti ve

surrogate

Example: Minimize f, the total time required to perform 1000 tasks.
sy might be the time required to perform 10 tasks.
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A strawman surrogate approach

@ Given surrogates sy and Sq of both the objective function and the
constraints.

@ Minimize s¢(x) for So(x) < 0 to obtain x,.
Every user has their favorite approach for this part
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A strawman surrogate approach

@ Given surrogates sy and Sq of both the objective function and the
constraints.

@ Minimize s¢(x) for So(x) < 0 to obtain x,.
Every user has their favorite approach for this part

o Compute f(zs),C(xs) to determine if improvement has
been made over the best x found to date.
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A strawman surrogate approach

@ Given surrogates sy and Sq of both the objective function and the
constraints.
@ Minimize s¢(x) for So(x) < 0 to obtain x,.
Every user has their favorite approach for this part
o Compute f(zs),C(xs) to determine if improvement has
been made over the best x found to date.
But, what if no improvement was found?
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Response surface global models

@ Choose a space filling set of points.
— say by Latin hypercube or orthogonal array sampling.

@ Run the expensive simulations at these sites.
@ Interpolate or smooth to f,C' on this data.

@ May be able to interpolate to gradients as well — Alexandrov
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Form of the DACE interpolants

Polynomials introduce extraneous extremes that trap strawman
Spline-like DACE interpolants can be written

d
§(z) = sz‘(ff)f(ivi) :
i=1

DACE predictions at any = are weighted averages of f at the data sites.
Weight depends on how far site is from .
Correlation parameters for each site are estimated.
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Surrogate Management Framework

I

zg/

* is the incumbent solution
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Surrogate Management Framework

f1  Surrogate function

s

zg/

* is the incumbent solution
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Surrogate Management Framework

f1  Surrogate function

s

zg/

* is the incumbent solution

Trial point produced using the surrogate
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Surrogate Management Framework

f1  Surrogate function

s

zg/

* is the incumbent solution

f is evaluated at the trial point
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Surrogate Management Framework

 New surrogate function

12’/

* is the incumbent solution

the surrogate function is updated
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Surrogate Management Framework

 New surrogate function

12/

* is the incumbent solution

the surrogate function is updated
Poll around the incumbent (order based on surrogate)
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Surrogate Management Framework

 New surrogate function

12/

* is the incumbent solution

the surrogate function is updated
Poll around the incumbent (order based on surrogate)
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Surrogate Management Framework

 New surrogate function

> 4

12/

* is the incumbent solution

the surrogate function is updated
Poll around the incumbent (order based on surrogate)
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Some ways to use the surrogate

@ MADS is applied to minimize the surrogate function s from zo,
leading to the solution z®. The functions f and C are then evaluated
at °. MADS is then applied to minimize sy from the starting points

{:L‘Oaws}'
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Some ways to use the surrogate

@ MADS is applied to minimize the surrogate function s from zo,
leading to the solution z®. The functions f and C are then evaluated
at °. MADS is then applied to minimize sy from the starting points
{:L‘Oa ws}_

@ At each iteration, the search and poll trial points are sorted according
to their surrogate function values. Promising trial points are
evaluated first.
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Some ways to use the surrogate

@ MADS is applied to minimize the surrogate function s from zo,
leading to the solution z®. The functions f and C are then evaluated
at °. MADS is then applied to minimize sy from the starting points
{$03 ws}_

@ At each iteration, the search and poll trial points are sorted according
to their surrogate function values. Promising trial points are
evaluated first.

@ At each iteration, the search step returns a list of trial points.
The true functions are evaluated only at those having a good
surrogate value.
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Some ways to use the surrogate

@ MADS is applied to minimize the surrogate function s from zo,
leading to the solution z®. The functions f and C are then evaluated
at °. MADS is then applied to minimize sy from the starting points
{$03 :Es}'

@ At each iteration, the search and poll trial points are sorted according
to their surrogate function values. Promising trial points are
evaluated first.

@ At each iteration, the search step returns a list of trial points.
The true functions are evaluated only at those having a good
surrogate value.

@ Surrogates are updated when new information about the truth is
available. This may be based on an interpolation model of f — s;.
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Some ways to use the surrogate

@ MADS is applied to minimize the surrogate function s from zo,
leading to the solution z®. The functions f and C are then evaluated
at °. MADS is then applied to minimize sy from the starting points
{$03 :Es}'

@ At each iteration, the search and poll trial points are sorted according
to their surrogate function values. Promising trial points are
evaluated first.

@ At each iteration, the search step returns a list of trial points.
The true functions are evaluated only at those having a good
surrogate value.

@ Surrogates are updated when new information about the truth is
available. This may be based on an interpolation model of f — s;.

o Convergence analysis is not altered by the use of surrogates.
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Presentation outline

@ Introduction

© Unconstrained optimization

© Optimization under general constraints

o Surrogates, global DFO, software, and references

o Constrained TR interpolation-based methods



Constrained TR interpolation-based methods

A number of pratical trust-region SQP type methods have been proposed
(see available software).

The main ideas are the following:
@ Use of quadratic models for the Lagrangian function.

@ Models for the constraints can be linear, or quadratic (especially when
function evaluations are expensive but leading to quadratically
constrained TR subproblems).

o Globalization requires a merit function (typically f) or a filter.

@ Open constraints have no influence on the poisedness for f.
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Constrained TR interpolation-based methods

A number of pratical trust-region SQP type methods have been proposed
(see available software).

The main ideas are the following:

@ Use of quadratic models for the Lagrangian function.

@ Models for the constraints can be linear, or quadratic (especially when
function evaluations are expensive but leading to quadratically
constrained TR subproblems).

o Globalization requires a merit function (typically f) or a filter.

@ Open constraints have no influence on the poisedness for f.

Currently, there is no (non-obvious) convergence theory developed for TR
interpolation-based methods (in the constrained case).

For example, for (i) linear or box constraints (closed) and (ii) open
constraints without derivatives, the unconstrained theory should be

reasonably easy to adapt.
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Towards global optimization

(A) One direction is along radial basis functions.

(B) Another is to adapt direct search:
@ Use the search step of the search-poll framework to incorporate a
dissemination method or heuristic for global optimization purposes.

—— Such schemes provide a wider exploration of the variable domain
or feasible region.

—— Examples are particle swarm and variable neighborhood search.

@ Global convergence (of the overall algorithm) to a stationary point is
still guaranteed.

@ Robustness and efficiency of the heuristic (used in the search step)
are generally improved.
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Software (directional direct search)

APPSPACK: Asynchronous parallel pattern search
http://software.sandia.gov/appspack

NOMAD: Generalized pattern search and mesh adaptive direct search
http://www.gerad.ca/NOMAD
http://www.afit.edu/en/ENC/Faculty/MAbramson/NOMADm.html

Mads: Matlab’s implementation of the LtMads method — gads toolbox
http://www.mathworks.com/products/gads

SID-PSM: Generalized pattern search guided by simplex derivatives
http://www.mat.uc.pt/sid-psm
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Software (direct search — others in Matlab)

Iterative Methods for Optimization: Matlab Codes
Hooke-Jeeves, multidirectional search, and Nelder-Mead methods
http://wwwd.ncsu.edu/"ctk/matlab_darts.html

The Matrix Computation Toolbox
Multidirectional search, alternating directions, and Nelder-Mead methods
http://www.maths.manchester.ac.uk/ higham/mctoolbox

fminsearch: Matlab's implementation of the Nelder-Mead method
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/
fminsearch.html
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Software (trust-region interpolation based methods)

DFO: Trust-region interpolation-based method
http://wuw.coin-or.org/projects.html

UOBYQA, NEWUOA: Trust-region interpolation-based methods
mjdp@cam.ac.uk

WEDGE: Trust-region interpolation-based method
http://www.ece.northwestern.edu/ " nocedal/wedge.html
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Software (others)

BOOSTERS: Trust-region interpolation-based method (based on radial basis
functions)
http://roso.epfl.ch/rodrigue/boosters.htm

CONDOR: Trust-region interpolation-based method (version of UOBYQA in
parallel)

http://wuw.applied-mathematics.net/optimization/
CONDORdownload.html

Implicit Filtering: implicit filtering method
http://wwwd.ncsu.edu/"ctk/iffco.html
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Software (Global Optimization)

PSwarm: Coordinate search and particle swarm for global optimization
http://www.norg.uminho.pt/aivaz/pswarm
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Benchmarking

o K. R. Fowler, J. P. Reese, C. E. Kees, J. E. Dennis Jr., C. T. Kelley,
C. T. Miller, C. Audet, A. J. Booker, G. Couture, R. W. Darwin, M.
W. Farthing, D. E. Finkel, J. M. Gablonsky, G. Gray, and T. G. Kolda,
A comparison of derivative-free optimization methods for groundwater
supply and hydraulic capture community problems, Advances in
Water Resources, 31(2): 743-757, 2008.

@ J. J. Moré and S. M. Wild, Benchmarking derivative-free optimization

algorithms, Tech. Report ANL/MCS-P1471-1207, Mathematics and
Computer Science Division, Argonne National Laboratory, USA, 2007.
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