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Direct-search methods

Definition

Direct-search methods sample the objective function at a finite number of
points at each iteration and base actions on those function values and
without any derivative approximation or model building.

Direct search of directional type: Achieve descent by using positive
spanning sets and moving in the directions of the best points.

Direct search of simplicial type: e.g., Nelder-Mead based methods.
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Coordinate search (poll step & simple decrease)
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Problem setting and extreme barrier

In this talk, we consider a constrained minimization problem:

min f(x),

s.t. x ∈ Ω,

where f : Rn → R ∪ {+∞} is nonsmooth and extended-real-valued
and where Ω ⊆ Rn.

We will make use of the extreme barrier function:

fΩ(x) =
{
f(x) if x ∈ Ω,
+∞ otherwise.
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Forcing function

A forcing function ρ(·) is continuous, positive, and satisfies

lim
t−→0+

ρ(t)
t

= 0 and ρ(t1) ≤ ρ(t2) if t1 < t2.

A simple example of a forcing function is ρ(t) = t2.

We will use ρ̄(·) for either ρ(·) above or ρ(·) = 0.
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A class of directional direct-search methods

Includes Coordinate Search, GPS or GSS, and MADS ...

Initialization: Choose x0 ∈ Ω with f(x0) < +∞, and α0 > 0.

Let D be a (possibly infinite) set of positive spanning sets.

For k = 0, 1, 2, . . .

(1) Search step (optional): Try to compute a point x with

fΩ(x) < f(xk)− ρ̄(αk)

by evaluating the function f at a finite number of points.

If such a point is found then set xk+1 = x, declare the iteration and the
search step successful, and skip the poll step.
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Directional direct-search methods

(2) Poll step: Choose a positive spanning set Dk from the set D.

Order Pk = {xk + αkd : d ∈ Dk} and start evaluating fΩ following the
chosen order.

If a point xk + αkdk is found such that

fΩ(xk + αkdk) < f(xk)− ρ̄(αk)

then stop polling, set xk+1 = xk + αkdk, and declare the iteration and the
poll step successful.

Otherwise declare the iteration (and the poll step) unsuccessful and set
xk+1 = xk.
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Directional direct-search methods

(3) Step size update: If the iteration was successful then maintain or
increase the step size parameter: αk+1 ∈ [αk, γαk].

Otherwise decrease the step size parameter: αk+1 ∈ [β1αk, β2αk].

The parameters are chosen at initialization: 0 < β1 ≤ β2 < 1, and γ ≥ 1
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Poll step

The points xk + αkd ∈ Pk are called the poll points and the vectors
d ∈ Dk the poll vectors or poll directions.

The purpose of the poll step is to ensure a decrease of the objective
function for a sufficiently small step size parameter αk.

Polling can be opportunistic (like before) or complete (all the poll points
are evaluated and the best is taken if better than the current iterate).
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Finite directions in the nonsmooth case

The cone of descent directions at the poll center is shaded.
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Need for infinitely many directions

There are two known ways to use an infinite number of directions and still
guarantee global convergence (i.e., convergence from an arbitrary starting
point):

(1) Using integer lattices and simple decrease:

−→ directions must be extracted from a finite set with integer/rational
properties

−→ search step must be restricted to the lattice (and the step size update
must also follow integer/rational requirements).

(MADS by Audet and Dennis, 2006)
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Integer lattice requirements (when using simple decrease)

L(x0) = {x ∈ Rn : f(x) ≤ f(x0)}

The intersection of L(x0) with the underlying lattice must be finite.
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Need for infinitely many directions (suff. decrease)

(2) Using sufficient decrease:

−→ directions can be randomly generated.

(like in GSS — see the 2003 SIAM Review paper of Kolda, Lewis, and
Torczon)
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Conditions on the directions

In both cases, one must also have:

Condition

The distance between xk and the point xk + αkdk tends to zero if and
only if αk does:

lim
k∈K

αk‖dk‖ = 0⇐⇒ lim
k∈K

αk = 0,

for any infinite subsequence K.

and

Condition

The set of refining directions at a limit point (associated with any refining
subsequence) is dense is the unit sphere.
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Behavior of the step size parameter

Assumption

The level set L(x0) = {x ∈ Ω : f(x) ≤ f(x0)} is bounded. The
function f is bounded below in L(x0).

Lemma

If one uses (1) MADS or (2) suff. decrease, then ∃ a subsequence K of
unsuccessful iterations:

lim
k∈K

xk = x∗ and lim
k∈K

αk = 0.

The proof goes back to Torczon 1997 (and was adapted to MADS later by Audet
and Dennis, 2003 and 2006).

The case of suff. decrease is trivial (see IDFO book or the SIAM Rev. paper).
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Refining subsequence and refining direction

This shows the existence of:

Definition

A subsequence {xk}k∈K of iterates corresponding to unsuccessful poll
steps is said to be a refining subsequence if αk −→ 0 in K.

Then we have:

Definition

Let x∗ be the limit point of a convergent refining subsequence.

If limk∈L dk/‖dk‖ exists, where L ⊆ K and dk ∈ Dk, then this limit is
said to be a refining direction for x∗

(xk + αkdk must be in Ω for sufficiently large k ∈ L).
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Focus first on the unconstrained case

For the analysis, let us consider first the case Ω = Rn.
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Clarke generalized directional derivative

Definition

For f Lipschitz continuous near x∗, the Clarke generalized directional
derivative is:

f◦C(x∗; v) = lim sup
x′→x∗ t↓0

f(x′ + tv)− f(x′)
t

.

If f is increasing from x∗, along v, then

f◦C(x∗; v) ≥ 0.

Definition

x∗ is a Clarke stationary point if

f◦C(x∗; v) ≥ 0, ∀v ∈ Rn.
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Analysis of MADS or of the suff. decrease variant

Assumption

{xk}k∈K refining subsequence converging to x∗.

f Lipschitz continuous near x∗.

Theorem

If v is a refining direction for x∗:

f◦C(x∗; v) ≥ 0.

For the case of MADS, the proof is due to Audet and Dennis, 2006.
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Non-Lipschitzian case

What happens in the case where f is not Lipschitz continuous near x∗?

The previous result does not
apply!

However, f could still have
directional derivatives...

and they could be nonnegative!
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Rockafellar generalized directional derivative

Definition

For f lower semicontinuous at x∗, the Rockafellar generalized directional
derivative is:

f◦R(x∗; v) = lim sup
x′→f x∗,t↓0

f(x′ + tv)− f(x′)
t

.

The notation x′ →f x∗ represents x′ → x∗ and f(x′)→ f(x∗).
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The next question is...

When do these derivatives exist?
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Directionally Lipschitzian function w.r.t. a direction

They exist when the following property holds:

Definition

f directionally Lipschitzian at x∗ with respect to v when

lim sup
x′→f x∗,t↓0

sup
v′→v

f(x′ + tv′)− f(x′)
t

< +∞.
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Directionally Lipschitzian function w.r.t. a direction

This function is directionally Lipschitzian w.r.t. the directions in the
interior of the shaded region.
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Back to our direct-search results...

Assumption

{xk}k∈K refining subsequence converging to x∗ ∈ Ω.

f lower semicontinuous at x∗.

limk∈K f(xk) = f(x∗).

Theorem

If v is a refining direction for x∗ w.r.t. which f directionally Lipschitzian at
x∗:

f◦R(x∗; v) ≥ 0.
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Directionally Lipschitzian function w.r.t. a direction

This theorem allow us to state results in the interior of the shaded region.
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Rockafellar upper subderivative

One also has

Definition

The Rockafellar upper subderivative is defined by

f↑(x∗; v) = lim sup
x′→f x∗,t↓0

inf
v′→v

f(x′ + tv′)− f(x′)
t

.
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Rockafellar upper subderivative

Due to...

Theorem (Rockafellar)

f↑(x∗; v) = lim inf
v′→v

f◦R(x∗; v′).

... we would also get, in this example, f↑(x∗; v) ≥ 0 along the border of
the shaded region.
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The constrained case

As in the continuous case (Audet and Dennis, 2006):

(1) Redefine the derivatives accordingly: f◦R(x∗; v) and f↑(x∗; v).

(2) Rederive the basic result for refining directions v in the hypertangent
cone (for which f is dir. Lips. w.r.t.):

f◦R(x∗; v) ≥ 0.

(3) For directions in the tangent cone (not in the hypertangent cone) use
continuity of f◦R(x∗; v) and l.s.c. of f↑(x∗; v).
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Finite number of step discontinuities

Let us look, now, at functions locally defined by a finite number of steps
or branches:

Assumption

There exists a neighborhood B =
⋃nB

i=1Bi of x∗ such that:

int(Bi) 6= ∅
cl(Bi) has the exterior cone property

f is Lipschitz continuous in int(Bi) and can be cont. extended to ∂Bi

f1 f2 f4 fails! f5
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Finite number of step discontinuities

Theorem

If x∗ belongs to the interior of a partition set, then f◦C(x∗; v) ≥ 0 for all
refining directions v ∈ TΩ(x∗).

Otherwise, there exists a partition set B′ and K ′ ⊂ K such that
{xk}k∈K′ ⊂ cl(B′) and there is an infinite number of poll points belonging
to both int(B′) and Rn\ cl(B′).

Corollary

Additionally, if nB = 2, then f attains its lowest values around x∗ in B′

and limk∈K∗ f(xk) = f(x∗) for K∗ ⊂ K ′.
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Function f1
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Function f2
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Function f3
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Function f4
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Function f5
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Numerical illustration

f1 f2 f3 f4 f5

10 runs for the same initial point

MADS Suff. Decrease

function #failures #fevals #failures #fevals

f1 0 233 0 175.6
f2 0 193.9 0 494.6
f3 0 228.8 0 175.6
f4 10 173.7 10 144.4
f5 2 220.6 1 177.7

Suff. Decrease

function #failures

f1 2
f2 0
f3 2
f4 1000
f5 61

10 runs for
100 initial points
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function #failures

f1 2
f2 0
f3 2
f4 1000
f5 61

10 runs for
100 initial points
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Recall... the class of directional direct-search methods

(2) Poll step: Choose a positive spanning set Dk from the set D.

Order Pk = {xk + αkd : d ∈ Dk} and start evaluating fΩ following the
chosen order.

If a point xk + αkdk is found such that

fΩ(xk + αkdk) < f(xk)− ρ̄(αk)

then stop polling, set xk+1 = xk + αkdk, and declare the iteration and the
poll step successful.

40/60



Coordinate search (poll ordering — opportunistic)
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Coordinate search (poll ordering — opportunistic)
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Coordinate search (poll ordering — opportunistic)

3
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Coordinate search (poll ordering — opportunistic)
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Poll ordering strategies

1 consecutive order of storage

2 random order

3 dynamic order (start by last successful direction)

4 cycling order (start by the vector right after the last tested in the
previous iteration)

5 (simplex descent) indicator order
−→ uses the negative simplex gradient

6 (model descent) indicator order

7 model values order

8 combinations of previous strategies:

Best strategy (for us):

negative simplex gradient + cycling order
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Poll ordering by simplex gradients

−→ Provided reductions of over 50% for smooth problems and over 25%
for nonsmooth problems.

−→ It is possible to identify subsequences of well-poised sets in GPS and
MADS.

−→ Analysis (in particular in the nonsmooth case) indicates favorable
directional properties of the negative simplex gradient.

1 A. L. Custódio and L. N. Vicente, Using sampling and simplex
derivatives in pattern search methods, SIAM Journal on Optimization,
18 (2007), 537-555

2 A. L. Custódio, J. E. Dennis Jr., and L. N. Vicente, Using simplex
gradients of nonsmooth functions in direct search methods, IMA
Journal of Numerical Analysis, 28 (2008), 770-784
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Recall... the class of directional direct-search methods

(1) Search step (optional): Try to compute a point x with

fΩ(x) < f(xk)− ρ̄(αk)

by evaluating the function f at a finite number of points.

If such a point is found then set xk+1 = x, declare the iteration and the
search step successful, and skip the poll step.
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Search step

The search step consists of evaluating the objective function at a finite
number of points.

The search step is optional and is not necessary for the convergence
properties of the method.

The search step can take advantage of the existence of surrogate models
for f to improve the efficiency of the direct-search method.
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Search step requirements (when using simple decrease)

The search step must return a lattice point when ρ̄(·) = 0.
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Minimum Frobenius Norm quadratic models

Given a sample set, MFN quadratic models are formed by:

min ‖model Hessian‖F
s.t interpolation conditions.

−→ MFN models can be shown ‘fully linear’ (see IDFO book).

−→ MFN models provide very good numerical results when used in
trust-region interpolation-based methods (within the codes DFO and
NEWUOA).
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Our search step

We collect previously evaluated poll points into a sample set.

Then, our search step consists of:

Computing a MFN quadratic model when interpolation is
underdetermined.

Computing an `2–regression quadratic model when interpolation is
overdetermined.

Minimizing the model in a trust region in B(xk; ∆k) with

∆k = O(αk),

where αk is the step size parameter in direct search.
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sid-psm

Our code sid-psm does essentially:

Search step as described above.

Poll step (no constraints and simple bounds): Dk = [ e − e I − I].

Poll step: negative simplex gradient + cycling order.

Software freely available at: http://www.mat.uc.pt/sid-psm
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Numerical tests

Comparisons are made against the codes:

APPSPACK — generalized pattern search (poll by random order), by
T. G. Kolda’s group.

NEWUOA — interpolation-based trust-region method (least updating
MFN models), by M. J. D. Powell.

NMSMAX — Nelder-Mead method, by N. J. Higham.

Using an unconstrained test set (Moré and Wild) formed by:

Smooth (53 nonlinear least squares problems obtained from CUTEr
functions, with n ∈ [2, 12]).

Non-stochastic noisy (adding oscillatory noise to the smooth ones).

Non-differentiable (as in the smooth case but by taking `1 norms).

Stochastic noisy (adding random noise to the smooth ones).
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Data profiles — smooth

τ = 10−7
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Data profiles — non-stochastic noisy

τ = 10−7
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Data profiles — stochastic noisy

τ = 10−7
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Data profiles — non-smooth

τ = 10−7
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The study by Sahinihis and Rios

23 DFO codes have recently been tested and compared by:

L. M. Rios and N. Sahinidis, Derivative-free optimization: A review of
algorithms and comparison of software implementations, 2010.

−→ Test set of 505 problems (convex & nonconvex).
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Upcoming papers

Model based:

Bilevel Derivative-Free Optimization and its Application to Robust
Optimization

Sparse Reconstruction of First and Second Order Information and its
Application to Derivative-Free Optimization

Direct search:

Direct Multisearch for Multiobjective Optimization

Complexity of Direct Search can be O(ε−2)
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The book!

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
Derivative-Free Optimization, MPS-SIAM Series on Optimization,
SIAM, Philadelphia, 2009.
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