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Abstract

A single phase incompressible flow problem is usually modeled by a system
of three equations:a differential equation for the velocity, an algebraic equation
linking the velocity and the pressure and a parabolic equation for the concentration
depending on the velocity. Some limitations have been pointed out in the literature
on the use of a parabolic equations to describe the the concentration evolution,
namely related with the use of Fick’s law to describe the mass flux. To avoid
the pathologic behavior of the classical diffusion equation, non Fickian corrections
have been proposed in the literature. In this paper we introduce a new model to
describe a single phase incompressible flow problem and its stability will be studied.
A numerical method that mimics the continuous model is also studied and some
numerical experiments are included.

Key words: Fikian model, Non Fickian model, Diffusion, pressure, concentra-
tion, numerical method, stability.

1 Introduction

A single phase incompressible flow problem is usually modeled by a system of three
equations: a differential equation for the pressure, an algebraic equation linking the
velocity and the pressure and a parabolic equation for the concentration depending on
the velocity (see [1], [2], [4], [5], [9] and [10]). This system can be rewritten as a system
of an elliptic equation for the pressure and a parabolic equation for the concentration
that depends on the gradient of the pressure.

Traditionally, the a diffusion process in a porous medium is described by the
parabolic equation

∂u

∂t
+∇J = q2, (1)

where u denotes the concentration, J represents the mass flux and q2 denotes the
reaction term. In (1) J can be expressed as

J = Jadv + Jdif + Jdis, (2)
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where
Jadv = uv (3)

represents the advection mass due to the the fluid velocity v,

Jdif = −Dm∇u (4)

denotes the mass flux due to molecular diffusion, beingDm the effective molecular diffu-
sion coefficient, and Jdis satisfies the so called Fick’s law Jdis = −Dd∇u and represents
the dispersive mass flux associated with random deviations of fluid velocities within
the porous space from their macroscopic value v. In the definition of Jdis, Dd denotes

the dispersive tensor Dd = �t∥v∥I + (�ℓ − �t)
1

∥v∥
vvt being �ℓ and �t the longitudinal

and transversal dispersivities.
Combining (1) with (2) we obtain the parabolic equation

∂u

∂t
+∇(uv) = ∇((DmI +Dd)∇u) + q2, (5)

where I is the identity tensor.
Some limitations have been pointed out in the literature on the use of a parabolic

equation (5) to describe the concentration evolution (see, for instance, [3], [6], [8]):
equation (5) prescribes an infinite speed of propagation for the concentration; it is
based on Fick’s law for the mass flux which establishes a linear relation between the
concentration and dispersive mass flux; the mass flux J is independent of the history of
dispersion; in the dispersive tensor the dispersivities coefficients are medium constant
and invariant with time and space (often they increase with the distance and/or with
time).

To avoid the pathologic behavior of the classical diffusion equation, hyperbolic or
non Fickian corrections have been proposed in the literature (see [6], [8]). One possible
approach is to consider that the dispersive mass flux satisfies the following differential
equation

�
∂Jdis

∂t
(x, t) + Jdis(x, t) = −Dd∇u(x, t), (6)

where � is a delay parameter ([7]). We remark that the left hand side of (6) is a first
order approximation of the left hand side of Jdis(x, t+ �) = −Dd∇u(x, t), which means
that the dispersion mass flux at the point x and time t+ � depends on the gradient of
the concentration at the same point but at a delayed time. Equation (6) leads to

Jdis(t) = −
1

�

∫ t

0
e−

t−s
� Dd∇u(s) ds, (7)

provided that Jdis(0) = 0. Combining the partition (2), where Jadv , Jdif and Jdis
are given by (3), (4) and (7), respectively, with (1) we obtain the integro-differential
equation

∂u

∂t
+∇(uv)−∇(Dm∇u) =

1

�

∫ t

0
e−

t−s
� ∇(Dd∇u)(s) ds + f (8)

which replaces (5).
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In this paper we consider the following system of equations:

−∇(A(u)∇p) = q1 in (a, b)× (0, T ], (9)

∂u

∂t
+∇(B(u,∇p)u) +∇(Dm(u,∇p)∇u)

=

∫ t

0
ker(t− s)∇(Dd(u,∇p)∇u)(s) ds + q2 in (a, b) × (0, T ],

(10)

where q1 and q2 are source terms, A, Dm and Dd are smooth enough satisfying the
following assumptions:

0 < A0 ≤ A(x, y), (x, y) ∈ ℝ × ℝ, (11)

∣B(x, y)∣ ≤ CB∣y∣, (x, y) ∈ ℝ × ℝ, (12)

0 < Dm,0 ≤ Dm(x, y), (x, y) ∈ ℝ × ℝ, (13)

0 < Dd,0 ≤ Dd(x, y) ≤ Dd,1∣y∣, (x, y) ∈ ℝ × ℝ. (14)

In (10) Ker(s) denotes a kernel that satisfies some assumptions that will be speci-

fied later but it can be in particular defined by Ker(s) =
1

�
e−

s
� . System (9), (10) is

complemented by Dirichelet boundary conditions

p(a, t) = pa(t), p(b, t) = pb(t), u(a, t) = ua(t), u(b, t) = ub(t), t×]0, T ], (15)

and initial conditions

p(x, 0) = p0(x), u(x, 0) = u0(x), x ∈ (a, b). (16)

The paper is organized as follows. In Section 2 we study the stability of the initial
boundary value problem (9), (10), (15), (16). A numerical method that mimics the
initial boundary value problem (9), (10), (15), (16) will be presented in Section 3
and its stability will be analized. In Section 4 we include some numerical experiments
illustrating the behavior of the pressure and concentration when we replace (5) by (10).

2 Stability analysis

By H1(a, b) and H1
0 (a, b) we denote the usual Sobolev spaces with the usual norm ∥.∥1.

By (., .) we represent the usual inner product defined in L2(a, b) and ∥.∥ denotes the
norm induced by such inner product. By L2(0, T ;H1(a, b)) we denote the space of func-

tions v : (0, T ) → H1(a, b) such that

∫ T

0
∥v(s)∥21 ds < ∞. We also consider the space

W(0, T ) = {v ∈ L2(0, T ;H1(a, b)) :
dv

dt
∈ L2(0, T ;L2(a, b))}, where L2(0, T ;L2(a, b)) is

the space of functions v : (0, T ) → L2(a, b) such that

∫ T

0
∥v(s)∥2 ds < ∞.
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We study in what follows the stability of the solution (u, p), u ∈ W(0, T ), p ∈
L2(0, T ;H1(a, b)), that satisfies the variational equations

(A(u(t))∇p(t),∇w) = (q1, w), ∀w ∈ H1
0 (a, b), (17)

(
du

dt
(t), w) − (B(u(t),∇p(t))u(t),∇w) + (Dm(u(t),∇p(t))∇u(t),∇w)

= −(

∫ t

0
Ker(t− s)Dd(u(s),∇p(s))∇u(s) ds,∇w) + (q2(t), w), ∀w ∈ H1

0 (a, b),

(18)
almost everywhere in (0, T ], the boundary conditions (15) and the initial conditions
(16) with p0, u0 ∈ L2(a, b).

As this section focuses in the stability analysis of initial boundary value problem
(9), (10), (15), (16) we assume that pa(t) = pb(t) = ua(t) = ub(t) = 0, t ∈]0, T ]. We
also introduce the space L2(0, T ;H1

0 (a, b)) which is obtained from L2(0, T ;H1(a, b))
replacing H1(a, b) by H1

0 (a, b). By W0(0, T ) we denote the subspace of W(0, T ) that is
obtained replacing H1(a, b) by H1

0 (a, b).

Theorem 1 Let us suppose that p0, u0 ∈ L2(a, b), A, B, Dm and Dd satisfy the con-
ditions (11), (12), (13) and (14), respectively. If the solution (u, p) of (17), (18) with
initial conditions (16) is in W0(0, T )× L2(0, T ;H1

0 (a, b)), then

∥∇p(t)∥2 ≤
(b− a)2

2A2
0

∥q1∥
2, (19)

∥u(t)∥2 +

∫ t

0
∥∇u(s)∥2 ds ≤ e−C̃t(∥u0∥

2 +

∫ t

0
eC̃sg(s) ds) (20)

where g(s) =
1

min{1, 2(Dm,0 − �2 − 2)}

(

∥u0∥
2 +

1

2�2

∫ s

0
∥q2(�)∥

2 d�,
)

, � ∕= 0 is an

arbitrary constant, � ∕= 0,  ∕= 0 satisfy

Dm,0 − �2 − 2 > 0, (21)

Ker and Cq1 are such that

∫ t

0
ker(t− s)2∥q1(s)∥

2 ds ≤ Cq1 , t ∈ (0, T ], (22)

holds, and

C̃ =
max

{

Dd,1Cq1
(b−a)2

2A2
0

1
2�2 , 2

(

�2 + (CB
(b−a)2

2A2
0

)2 1
42 maxt∈[0,T ] ∥q1(t)∥

2
)}

min
{

1, 2
(

Dm,0 − �2 − 2
)} . (23)

Proof: Considering in (17) w = p(t) and using the assumption (11)) we deduce

A0∥∇p(t)∥2 ≤
1

4�2
∥q1(t)∥

2 + �2∥p(t)∥2, (24)
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where � ∕= 0 is an arbitrary constant.

As the Friedrichs-Poincaré inequality ∥p(t)∥2 ≤
(b− a)2

2
∥∇p(t)∥2 holds, from (24) we

obtain
A0

2
∥∇p(t)∥2 + (

A0

2
− �2

(b− a)2

2
)∥∇p(t)∥2 ≤

1

4�2
∥q1∥

2. (25)

Then, for � such that
A0

2
− �2

(b− a)2

2
= 0 we conclude (19).

Taking in (18) w = u(t) and using (12), (13) and (14) we deduce

1

2

d

dt
∥u(t)∥2 − CB∥∇p(t)∥∥u(t)∥∥∇u(t)∥ +Dm,0∥∇u(t)∥2

≤

∫ t

0
∣Ker(t− s)∣Dd,1∥∇p(s)∥∥∇u(s)∥ds∥∇u(t)∥ +

1

4�2
∥q2(t)∥

2 + �2∥u(t)∥2,

(26)
where � ∕= 0 is an arbitrary constant.
It can be shown that

∫ t

0
∣Ker(t− s)∣Dd,1∥∇p(s)∥∥∇u(s)∥ds∥∇u(t)∥

≤ D2
d,1

(b− a)2

2A2
0

Cq1

1

4�2

∫ t

0
∥∇u(s)∥2 ds+ �2∥∇u(t)∥2,

(27)

where � ∕= 0 is an arbitrary constant and Cq1 is fixed by (22).
Considering (19) and (27) in (26) we get

1

2

d

dt
∥u(t)∥2 − CB

(b− a)2

2A2
0

∥q1(t)∥∥u(t)∥∥∇u(t)∥ +
(

Dm,0 − �2
)

∥∇u(t)∥2

≤ Dd,1Cq1

(b− a)2

2A2
0

1

4�2

∫ t

0
∥∇u(s)∥2ds+

1

4�2
∥q2(t)∥

2 + �2∥u(t)∥2.

(28)

Furthermore, as

−CB
(b− a)2

2A2
0

∥q1(t)∥∥u(t)∥∥∇u(t)∥ ≥ −(CB
(b− a)2

2A2
0

)2
1

42
∥q1(t)∥

2∥u(t)∥2−2∥∇u(t)∥2,

where  ∕= 0 is an arbitrary constant, from (28) we obtain

1

2

d

dt
∥u(t)∥2 +

(

Dm,0 − �2 − 2
)

∥∇u(t)∥2 ≤
1

4�2
∥q2(t)∥

2

+Dd,1Cq1

(b− a)2

2A2
0

1

4�2

∫ t

0
∥∇u(s)∥2ds +

(

�2 + (CB
(b− a)2

2A2
0

)2
1

42
∥q1(t)∥

2
)

∥u(t)∥2,

that leads to

∥u(t)∥2 +

∫ t

0
∥∇u(s)∥2 ds ≤ +C̃

∫ t

0

(

∫ s

0
∥∇u(�)∥2d�+ ∥u(s)∥2

)

ds,

+
1

min{1, 2
(

Dm,0 − �2 − 2
)

}

(

∥u0∥
2 +

1

2�2

∫ t

0
∥q2(s)∥

2 ds
) (29)
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provided that � and  are fixed by (21) and C̃ is defined by (23). The proof of (20) is
then concluded applying Gronwall Lemma to (29).

Theorem 1 can be easily generalized to analyze the stability of the two dimensional
or three dimensional versions of the initial boundary value problem (15), (16), (17),
(18).

Let us consider the particular non Fickian coupled diffusion model: equation (8),

∇v = q1 in (a, b) × (0, T ], (30)

where v is given by Darcy’s law

v = −
K

�(u)
∇p in (a, b)× (0, T ]. (31)

In (31) K denotes the permeability tensor and �(u) represents the viscosity. System

(9), (10) with Ker(s) =
1

�
e−

s
� , A(x, y) = 1, B(x, y) = − K

�(x)y, Dm(x, y) = Dm(const),

Dd(x, y) = Dd∣y∣, is a non Fickian version of (5), (30) and (31). The coefficient functions
satisfy the conditions (11), (12), (13) and (14) provided that K is bounded and �(x) ≥
�0.

3 The semi-discrete approximation

In this section we introduce the semi-discrete approximation for the variational problem
(9), (10) (15), (16). Let Iℎ = {xi, i = 0, . . . , N, x0 = a, xN = b, xi − xi−1 = ℎ, i =
1, . . . , N} be a uniform partition of [a, b]. By ℙℎuℎ we represent the piecewise linear
interpolator of a grid function uℎ defined in Iℎ. By Wℎ we represent the space of all
grid function defined on Iℎ and by Wℎ,0 its subspace of all grid function null on the
boundary points. The space of piecewise linear functions induced by the partition Iℎ

is denoted by Sℎ = {ℙℎuℎ, uℎ ∈ Wℎ}.

By L2(0, T ;Sℎ) we denote the subspaces of L2(0, T ;H1(a, b)) that is obtained re-
placing H1(a, b) by Sℎ. We introduce now the piecewise linear approximations for the
pressure p and for the concentration u, respectively, ℙℎpℎ ∈ L2(0, T ;Sℎ) and

ℙℎuℎ ∈ {v ∈ L2(0, T ;Sℎ) :
dv

dt
∈ L2(0, T ;Sℎ)} such that

pℎ(x0, t) = pa(t), pℎ(xN , t) = pb(t), uℎ(x0, t) = ua(t), uℎ(xN , t) = ub(t), t ∈ (0, T ], (32)

pℎ(xi, 0) = p0(xi), uℎ(xi, 0) = u0(xi), i = 1, . . . , N − 1, (33)

and
(

A(ℙℎuℎ(t))∇(ℙℎpℎ)(t),∇(ℙℎwℎ)
)

= (q1(t),ℙℎwℎ), wℎ ∈ Wℎ,0, (34)
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( ∂

∂t
(ℙℎuℎ)(t),ℙℎwℎ

)

−
(

B(ℙℎuℎ(t),∇(ℙℎpℎ)(t))ℙℎuℎ(t),∇(ℙℎwℎ)
)

+
(

Dm(ℙℎuℎ(t),∇(ℙℎpℎ)(t))∇(ℙℎuℎ)(t),∇(ℙℎwℎ)
)

= −

∫ t

0
Ker(t− s)

(

Dd(ℙℎuℎ(s),∇(ℙℎpℎ)(s))∇(ℙℎuℎ)(s),∇(ℙℎwℎ)
)

ds

+
(

q2(t),ℙℎwℎ

)

, wℎ ∈ Wℎ,0.

(35)

In the space Wℎ we consider the norm ∥cℎ∥
2
1,ℎ = ∥cℎ∥

2
ℎ + ∥∇(ℙℎcℎ)∥

2, where ∥.∥ℎ
denotes the norm induced by the inner product

(wℎ, vℎ)ℎ =
N
∑

i=1

ℎ

2

(

wℎ(xi−1)vℎ(xi−1) + wℎ(xi)vℎ(xi)
)

, wℎ, vℎ ∈ Wℎ.

Let L2(0, T ;Wℎ) be a discrete version of L2(0, T ;H1(a, b)) which is the space of grid

functions vℎ : [0, T ] → Wℎ such that

∫ T

0
∥vℎ(t)∥

2
1 dt < ∞.

We introduce now the fully discrete approximations (in space) pℎ ∈ L2(0, T ;Wℎ)

and uℎ ∈ Wℎ(0, T ) = {vℎ ∈ L2(0, T ;Wℎ) :
dvℎ

dt
∈ L2(0, T ;Wℎ)} as the grid functions

that satisfy the conditions (32), (33) and the discrete variational equations

(Aℎ(t)∇(ℙℎpℎ)(t),∇(ℙℎwℎ)) = (q1,ℎ, wℎ)ℎ, wℎ ∈ Wℎ,0, (36)
(∂uℎ

∂t
(t), wℎ

)

ℎ
−

(

Mℎ(Bℎ(t)uℎ(t)),D−xwℎ

)

ℎ,+
+

(

Dm,ℎ(t)∇(ℙℎuℎ(t)),∇(ℙℎwℎ)
)

= −

∫ t

0
Ker(t− s)

(

Dd,ℎ(s)∇(ℙℎuℎ(s)),∇(ℙℎwℎ)
)

ds+
(

q2,ℎ(t), wℎ

)

ℎ
, wℎ ∈ Wℎ,0,

(37)

where Mℎ(vℎ)(xi) =
1

2
(vi−1 + vi), i = 1, . . . , N.

In the previous equations the following notations were used: D−xwℎ(xi) =
wi − wi−1

ℎ
,

i = 1, . . . , N, wj = wℎ(xj), (vℎ, wℎ)ℎ,+ =
N
∑

j=1

ℎvjwj,

qℓ,ℎ(xi, t) =
1

ℎ

∫ xi+1/2

xi−1/2

qℓ(x, t) dx, i = 1, . . . , N − 1, ℓ = 1, 2, (38)

Aℎ(x, t) and Dm,ℎ(x, t) are x piecewise constant functions defined by

Aℎ(x, t) = A(
1

2
(uℎ(xi, t) + uℎ(xi+1, t))), (39)

Dm,ℎ(x, t) = Dm(
1

2
(uℎ(xi, t) + uℎ(xi+1, t)),D−xpℎ(xi+1, t)), (40)

for x ∈ [xi, xi+1), and the grid function Bℎ(t) is given by

Bℎ(xi, t) =

⎧

⎨

⎩

B(uℎ(x0, t),D−xpℎ(x1, t)), i = 0,
B(uℎ(xi, t),Dcpℎ(xi, t)), i = 1, . . . , N − 1,
B(uℎ(xN , t),D−xpℎ(xN , t)), i = N,

(41)
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and Dc will be defined bellow. The definition of the piecewise constant function Dd,ℎ

is analogous to the definition of Dm,ℎ.

In what follows we establish an ordinary differential system equivalent to the fully
discrete (in space) variational problem (32), (33) (36), (37). In order to do that we
introduce the following finite difference operators

Dcwℎ(xi) =
wi+1 − wi−1

2ℎ
, Dxwℎ(xi+1/2) =

wi+1 − wi

ℎ
,D1/2

x wℎ(xi) =
wi+1/2 − wi−1/2

ℎ
,

where and wj±1/2 is used as far it makes sense.

It can be shown that the approximations pℎ(t) and uℎ(t) are solutions of the discrete
problem

−D1/2
x (Aℎ(t)Dxpℎ(t)) = q1,ℎ(t) in Iℎ − {a, b}, (42)

duℎ

dt
(t) +Dc(Bℎ(t)uℎ(t))−D1/2

x (Dm,ℎ(t)Dxpℎ(t))

=

∫ t

0
Ker(t− s)D1/2

x (Dd,ℎ(s)Dxpℎ(s))ds + q2,ℎ(t) in Iℎ − {a, b}
(43)

with the conditions (32), (33).

4 Stability of concentration and pressure

We establish now the stability of the coupled variational problem (36), (37) or equiva-
lently the stability of the coupled finite difference problems (42), (43) under Dirichlet
boundary conditions, that is pa(t) = pb(t) = ua(t) = ub(t) = 0. Let C1([0, T ];Wℎ,0)

be the space of grid functions uℎ : [0, T ] → Wℎ,0 such that
duℎ

dt
: [0, T ] → Wℎ,0 is

continuous when in Wℎ,0 we consider the norm ∥.∥ℎ.

Theorem 2 If uℎ ∈ C1([0, T ];Wℎ,0) then, under the conditions of Theorem 1,

∥pℎ(t)∥1 ≤
b− a

A0
∥q1,ℎ(t)∥ℎ, t ∈ [0, T ]. (44)

and

∥uℎ(t)∥
2
ℎ +

∫ t

0
∥∇(ℙℎuℎ)(s)∣

2 ds ≤ eC̃t
(

∥uℎ(0)∥
2
ℎ +

∫ t

0
e−C̃sgℎ(s) ds

)

, t ∈ [0, T ], (45)

provided that
∫ t

0
ker(t− s)2∥q1,ℎ∥

2
ℎ ds ≤ Cq1 , t ∈ [0, T ]. (46)

In (45) gℎ(s) is given by

gℎ(s) =
1

min {1, 2(Dm,0 − �2 − �2)}

(

∥uℎ(0)∥
2
ℎ +

1

2�2

∫ s

0
∥q2,ℎ(s)∥

2
ℎ ds

)

,
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� ∕= 0 is an arbitrary constant, C̃ is defined by

C̃ =
max

{

Cq1D
2
d,1

(b−a)2

A2
0

1
4�2 ,

(

�2 +
C2

pC
2
B

42 maxt∈[0,T ] ∥q1,ℎ(t)∥
2
ℎ

}

min {1, 2(Dm,0 − �2 − 2)}
(47)

and � ∕= 0,  ∕= 0 are such that

Dm,0 − �2 − 2 > 0. (48)

Proof: As Friedrich’s-Poincaré inequality (b− a)2∥∇(ℙℎwℎ)∥
2 ≥ ∥wℎ∥

2
ℎ holds, the proof

of (44) follows the proof of the correspondent continuous inequality (19).
Taking in (37) wℎ replaced by uℎ(t) we easily deduce that

1

2

d

dt
∥uℎ(t)∥

2
ℎ − (Mℎ(Bℎ(t)uℎ(t)),D−xuℎ(t))ℎ,+ +Dm,0∥∇(ℙℎuℎ)(t)∥

2

≤

∫ t

0
Ker(t− s)(Dd,ℎ(s)∇(ℙℎuℎ)(s),∇(ℙℎuℎ)(t))ds+

1

4�2
∥q2,ℎ(t)∥

2
ℎ + �2∥uℎ(t)∥

2
ℎ,

(49)
where � ∕= 0 is an arbitrary constant.
As from (12) we have

∣(Mℎ(Bℎ(t)uℎ(t)),D−xuℎ(t))ℎ,+∣ ≤ 2CB∥∇(ℙℎpℎ)(t)∥∥uℎ(t)∥ℎ∥∇(ℙℎuℎ)(t)∥,

considering (44) we obtain

∣(Mℎ(Bℎ(t)uℎ(t)),D−xuℎ(t))ℎ,+∣ ≤ C2
B
(b− a)2

A2
0

1

2
∥q1,ℎ(t)∥

2
ℎ∥uℎ(t)∥

2
ℎ+2∥∇(ℙℎuℎ)(t)∥

2,

(50)
where  ∕= 0 is an arbitrary constant.
As in the proof of Theorem 1, it can be shown that

∫ t

0
Ker(t− s)∣(Dd,ℎ(s)∇(ℙℎuℎ(s)),∇(ℙℎuℎ)(t))ds∣

≤ D2
d,1

(b− a)2

A2
0

Cq1

1

4�2

∫ t

0
∥∇(ℙℎuℎ)(t)∥

2 ds+ �2∥∇(ℙℎuℎ)(s)∥
2,

(51)

where � ∕= 0 is an arbitrary constant and Cq1 is fixed by (46).
Finally, using (50) and (51) in (49) we obtain

1

2

d

dt
∥uℎ(t)∥

2 +
(

Dm,0 − �2 − 2
)

∥∇(ℙℎuℎ)(t)∥
2 ≤

1

4�2
∥q2,ℎ(t)∥

2
ℎ

+Cq1D
2
d,1

(b− a)2

A2
0

1

4�2

∫ t

0
∥∇(ℙℎuℎ)(s)∥

2ds +
(

�2 +
C2
pC

2
B

42
∥q1,ℎ(t)∥

2
ℎ

)

∥uℎ(t)∥
2
ℎ.

(52)
Inequality (52) implies that

∥uℎ(t)∥
2 +

∫ t

0
∥∇(ℙℎuℎ)(t)∥

2 ≤ C̃

∫ t

0

(

∫ s

0
∥∇(ℙℎuℎ)(�)∥

2d�+ ∥uℎ(s)∥
2
ℎ

)

ds

+
1

min{1, 2(Dm,0 − �2 − 2)}

(

∥uℎ(0)∥
2
ℎ +

1

2�2
∥q2,ℎ(t)∥

2
ℎ

)

,
(53)
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where � and  are fixed by (48) and C̃ is given by (47). Finally, the inequality (53)
leads to (45).

Stability results similar to Theorems 1 and 2 hold when q2 depends on u. In fact
we need only to assume that ∣q2(y)∣ ≤ Cq2 ∣y∣.

5 Numerical results

In this section, as an example, we apply the proposed non Fickian model to a single
phase incompressible flow problem in a porous media with a point source and sink term.
This fluid flow process involves fully miscible displacement of one incompressible fluid
by another. In this case p is the pressure of the fluid mixture, u the volumetric concen-
tration of the injected fluid, � the porosity of the medium, K the permeability of the
medium, Dm the molecular diffusion coefficient and Dd(u,∇p) the mechanical disper-
sion Dd(u,∇p) = Dd∣v∣, where Dd denotes the dispersion coefficient and v represents
Darcy’s velocity of the fluid mixture which is given by (31). In (31) the viscosity of the

mixture �(u) is determined by the commonly used rule �(u) = �0((1− u) +M
1

4u)−4,

where M is the mobility ratio and �0 the viscosity of resident fluid. In (5) the func-
tion q2 is given by q2 = u∗q1, where u∗ is the injected concentration at sources or the
concentration u at sinks. The function q1 is the source and sink terms.

To closed the system (8), (30), (31) we assume natural boundary conditions v = 0

on {a, b} × (0, T ], Dm∇u+
1

�

∫ t

0
e−

t−s
� (Dd∇u) ds = 0 on {a, b} × (0, T ]. In order to

compare the Fickian and non Fickian models, we integrate in time the ordinary dif-
ferential system (36), (37) using the implicit Euler method with a very small step size
and discretizing the integral term using the right rectangular rule.

Let 0 = t0 < t1 < . . . < tN = T be a partition of the time interval [0, T ] with Δt =
tn+1− tn and N the number of time steps. Denote by pnℎ, v

n
ℎ and unℎ the approximations

of p, v and u, respectively, at time level tn. To compute the numerical approximations
at time level tn+1 we use the following algorithm:

Step 1: Given unℎ, solve the finite difference equation

−D1/2
x

( K

�(unℎ)
Dxp

n+1
ℎ

)

= qn+1
1

to compute pn+1
ℎ ;

Step 2: With pn+1
ℎ , compute the velocity of the convective term using the dis-

cretization in (41) and vn+1
ℎ in Dd(v

n+1
ℎ ) by

vn+1
ℎ = − K

�(un
ℎ)
D−xp

n+1
ℎ ;

Step 3: Compute un+1
ℎ using

�
un+1
ℎ − unℎ

Δt
+Dc(u

n
ℎv

n+1
ℎ )−D1/2

x (DmDxu
n
ℎ) =

Δt

�

tn+1
∑

j=1

e−
tn+1−tj

� D1/2
x (Dd(v

j
ℎ)Dxu

j
ℎ)+qn2 .
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José A. Ferreira, Lúıs Pinto

The simulation was performed considering [a, b] = [0, 1] and the following param-
eters: T = 800, � = 1, K = 60, M = 41, �0 = 1, u∗ = 5, Dm = �10−5, Dd =
�10−3, � = 0.001, ℎ = 10−4, Δt = 0.025 The injection well cover one cell at the left
extreme of the interval [a, b] and has a constant injection rate equal to 5. The produc-
tion well also cover one cell which is located at the right extreme with the production
rate equal to −5.

In Figure 1 we plot the numerical approximation for Fickian and non Fickian
pressures and concentrations at t = 800. From the numerical experiments we observe
for the Fickian and non Fickian pressure, pF and pnF respectively, a similar behavior.
However for Fickian and non Fickian concentrations uf , unf , respectively we observe
that uF > unF near the injection point and uF < unF near the sink point.
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