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Abstract: In this paper, we study a numerical scheme for a nonlinear system of partial
differential equations arising from the mathematical modeling of drug delivery enhanced
by light. The system consists of diffusion-reaction equations for drug concentration and a
diffusion equation for light propagation. Suitable initial conditions and Neumann-Dirichlet
boundary conditions close the system. We establish that the numerical scheme is second-
order supraconvergent in space in a discrete H1-norm and first-order convergent in time in
a discrete L2-norm. Numerical experiments illustrate our convergence results.
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1 Introduction

In this paper we study a numerical scheme for the system of partial differential equations (1)-(3)
where DI , Dd : R → R are appropriate functions and x ∈ Ω, t ∈ (0, T ]. Let Ω be the set

Ω = (0, 1)2. We denote the boundary of Ω by the union of its edges: ∂Ω =
⋃

Γi, i = l, u, r, d

(edges left, up, right and down). To complete our problem, we impose the initial and boundary
conditions (4)-(6).



1

β

∂I

∂t
= ∇ · (DI∇I)− µaI, (1)

∂cf
∂t

= ∇ · (Dd∇cf ) + γcbI, (2)

∂cb
∂t

= −γcbI, (3)

I(x, 0) = 0, cf (x, 0) = 0,
cb(x, 0) = cb,0(x), x ∈ Ω,

(4)

I(x, t) = I0(t), x ∈ Γl, t ∈ (0, T ],
∇I(x, t) · η = 0, x ∈ ∂Ω− Γl, t ∈ (0, T ],

(5)

∇cf (x, t) · η = 0, x ∈ ∂Ω− Γr, t ∈ (0, T ],
cf (x, t) = 0, x ∈ Γr, t ∈ (0, T ].

(6)

Drug delivery systems (DDS) have great potential for cancer treatment, in particular, those
DDS that use near-infrared (NIR) light as an external stimuli to induce the drug release, since
they allow not only spatio-temporal control of the drug but better penetretion in tissue [1]. We
propose the model (1)-(6) to approximate the drug delivery dynamics from a polymeric matrix
when light is used as enhancer. In equation (1), I is the light intensity. It is well known that
light propagation through a scattering and absorbing medium can be described by the radiative



transfer equation (RTE) [3]. Depending on the magnitude of the absorption and scattering
coefficients, µa and µs, respectively, different approaches can be considered to approximate
the RTE. Following [2], we use the diffusion equation for light intensity (1), where DI is the
traditional light diffusion coefficient DI = 1/(3(µa +µs)), term µaI symbolize the absorption of
light and β is the speed of light in the medium.
It is assumed that drug molecules are initially linked to the polymeric chains and the links are
broken due to energy absorption, that is, the cleavage of the links occur by light irradiation.
Equation (2) approximates the dynamics of the free drug cf and the function γcbI represent
conversion percentages of bound drug cb into free drug that is allowed to be transported through
the polymeric structure by diffusion. In (5) and (6), η denotes the unitary exterior normal.

Suppose that the diffusion coefficients in (1) and (2) are bounded from below by a constant and
are Lipschitz with Lipschitz constant L, i.e

Dρ,ii ≥ D0 > 0 and |Dρ,ii(x)−Dρ,ii(x̃)| ≤ L|x− x̃|, x, x̃ ∈ R, i = 1, 2, ρ = I, d.

Let Λ be a sequence of vectors H = (h, k) with h = (h1, . . . , hN1), k = (k1, . . . , kN2) with

positive entries, such that

N1∑
i=1

hi =

N2∑
i=1

ki = 1, with Hmax = max{hmax, kmax} → 0, where

hmax = max
i=1,...,N1

hi and kmax = max
i=1,...,N2

ki.

Let ΩH be a non-uniform partition of Ω such that ΩH = {(xi, yj), i = 0, . . . , N1, j = 0, . . . , N2},
where xi = xi−1 + hi, i = 1, . . . , N1, yj = yj−1 + kj , j = 1, · · · , N2, and and let ΩH = ΩH ∩ Ω,
∂ΩH = ΩH ∩ ∂Ω, and Γi,H = Ωi ∩ ∂ΩH , i = l, u, r, d.

We introduce the finite difference operatorsD-xuH(xi, yj) =
uH(xi,yj)−uH(xi−1,yj)

hi
, D∗xuH(xi, yj) =

uH(xi+1,yj)−uH(xi,yj)
h
i+1

2

, where hi+ 1
2

= 1
2(hi+1+hi), and the operators∇HuH = (D-xuH , D-yuH),∇∗HuH =

(D∗xuH , D
∗
yuH), where D-y and D∗y are the finite difference operators defined analogously to D-x

and D∗x.

InW (ΩH) we consider the following inner product (uH , vH)H =
∑

(xi,yj)∈ΩH
|�ij |uH(xi, yj)vH(xi, yj),

where �ij = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] ∩ Ω, and uH , vH ∈ W (ΩH). The norm induced by this

inner product is denoted by ‖ · ‖H .
We also use the notations (uH , vH)x,+ =

∑
(xi,yj)∈ΩH−Γl,H

|�x,ij |uH(xi, yj)vH(xi, yj), ‖uH‖x,+ =√
(uH , uH)x,+, where �x,ij = [xi−1, xi]× [yj− 1

2
, yj+ 1

2
] ∩Ω, and uH , vH ∈W (ΩH − Γl,H). Analo-

gously, we define the notations (uH , vH)y,+ and ‖uH‖y,+ where uH , vH ∈W (ΩH − Γd,H).

For uH = (uH,1, uH,2), vH = (vH,1, vH,2), where uH,1, vH,1 ∈W (ΩH−Γl,H), uH,2, vH,2 ∈W (ΩH−
Γd,H), we take (uH , vH)H,+ = (uH,1, vH,1)x,+ + (uH,2, vH,2)y,+ and ‖uH‖+ =

√
(uH , uH)H,+.

The diffusion coefficients DI and Dd are diagonal matrices with entries DI,ii, Dd,ii, for i = 1, 2.
We take Dd as a function of cf , then, to approximate this nonlinear coefficient we use the aver-
age operators MhuH(xi, yj) = 1

2

(
uH(xi, yj) + uH(xi−1, yj)

)
, being Mk defined analogously. By

Dd(MHuH) we denote the diagonal matrix with diagonal entriesDd,11(MhuH) andDd,22(MkuH).

To discretize the light intensity equation (1) and the boundary conditions (5) we need to consider
the auxiliary point xN1+1 = xN1 + hN1 , yN2+1 = yN2 + kN2 and y−1 = −y1 and the fictitious

points Γ
(I)
i,H , for i = d, u, r, see (7). Similarly, to discretize the free drug concentration equation

(2) and the boundary condition (6) we need to introduce the auxiliary point x−1 = −x1 and the

fictitious points Γ
(c)
i,H , for i = l, d, u.

Γ
(I)
d,H = {(xi, y−1), i = 1, . . . , N1}, Γ

(c)
l,H = {(x−1, yj), j = 0, . . . , N2},

Γ
(I)
u,H = {(xi, yN2+1), i = 1, . . . , N1}, Γ

(c)
d,H = {(xi, y−1), i = 0, . . . , N1 − 1},

Γ
(I)
r,H = {(xN1+1, yj), j = 0, . . . , N2}, Γ

(c)
u,H = {(xi, yN2+1), i = 0, . . . , N1 − 1}.

(7)
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Let W ∗I,H and W ∗c,H be the space of grid functions defined in ΩH ∪ (∪i=d,r,uΓ
(I)
i,H) and ΩH ∪

(∪i=l,d,uΓ
(c)
i,H), respectively. Moreover, let Wb(Ω−Γr,H) be the space of grid functions defined in

Ω− Γr,H .

2 Results and discussion

In the time domain [0, T ] we define the uniform grid {tm,m = 0, · · · ,M}, with t0 = 0, tM = 1
and tm+1 = tm + ∆t, for m = 0, · · · ,M − 1.

We consider that the fully-discrete approximation ImH ∈ W ∗I,H , cmf,H ∈ W ∗c,H , cmb,H ∈ Wb(ΩH −
Γr,H) are solution of the system

D-tI
m
H = ∇∗

H · ((DI(MHI
m
H )∇HI

m+1
H )) +G(ImH ) in ΩH − Γl,H (8)

D-tc
m
f,H = ∇∗

H · ((Dd(MHc
m
f,H)∇Hc

m+1
f,h )) + F (ImH , c

m
f,H , c

m
b,H) in ΩH − Γr,H (9)

D-tc
m
b,H = S(ImH , c

m
f,H , c

m
b,H) in ΩH − Γr,H (10)

with IH(tm) = RHIi(tm) on ∂Ωl,H , ∇
(I)
H IH(tm) · η = 0 on (∂ΩH − Γl,H)× (0, T ],

cf,H(tm) = 0 on Γr,H × (0, T ], ∇(c)
H cf,H(tm) · η = 0 on (∂ΩH − Γr,H)× (0, T ].

(11)

DefineD
(I)
ηx uH(xi, yj) = 1

2

(
DI,11(MhuH(xi+1, yj))D-xuH(xi+1, yj)+DI,11(MhuH(xi, yj))D-xuH(xi, yj)

)
,

for (xi, yj) ∈ Γr,H and D
(I)
ηx uH(xi, yj) = 0, for (xi, yj) ∈ ∂ΩH − Γr,H .

SimilarlyD
(I)
ηy uH(xi, yj) = 1

2

(
DI,22(MkuH(xi, yj+1))D−yuH(xi, yj+1)+DI,22(MkuH(xi, yj))D−yuH(xi, yj)

)
,

for (xi, yj) ∈ Γu,H ∪ Γd,H and D
(I)
ηy uH(xi, yj) = 0, for (xi, yj) ∈ ∂ΩH − (Γu,H ∪ Γd,H).

The boundary operators D
(c)
ηx and D

(c)
ηy are defined analogously. Let ∇(j)

H,η be defined by ∇(j)
H,η =

(D
(j)
ηx , D

(j)
ηy ), for j = I, c.

Notice that system (8)-(11) is an IMEX (implicit-explicit) scheme. In example 1, we illustrate
numerically the convergence rates in time and space for cf,H and cb,H , however, we remark that
IH behaves in the same manner. Example 2 shows the numerical solution of cf for different
values of I0(t) in the system (1)-(6) as well as the release rate of cf .

Example 1 Let Ω = [0, 1] × [0, 1] and t ∈ [0, 1]. In system (1)-(3) we consider the functions
with DI(cf ) = 0.5β, Dd(cf ) = 1 + c2

f . We set the parameters β, γ and µa equal to 1.

The functions gI(x, t), gf (x, t) and gb(x, t) were added to the right hand side of equations (1), (2)
and (3), respectively, such that, the exact solution of the problem is I(x, t) = exp(t) sin(xy)(x−
1)(y−1), cf (x, t) = exp(t)(x2−x)(y2−y) and cb(x, t) = exp(t)x cos(xy). We solved this example
using the IMEX scheme (8)-(10).

For the approximations cf,H and cb,H , define the numerical error on a random mesh H, respec-
tively as Error2

f,H = maxm=1,...,M ‖Emf,H‖2h + ∆t
∑m

k=1‖D-xE
m
f,H‖2+ and Error2

b,H = maxm=1,...,M‖Emb,H‖2h.

The numerical rate of convergence for cf,H is given by Ratef,H = log2

(
Errorf,H
Errorf,H

2

)
, where H

2

denotes the mesh obtained by halving the step sizes of the mesh H. The time step is chosen
small enough (of the order of H2

max) so that the spatial error dominates the time error. The
results are presented in table 1.
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T ∆t Error∆t,f Rate∆t,f Error∆t,b Rate∆t,b

4 ×10−2 1.3384× 10−2 − 6.8469× 10−3 −
8 ×10−3 3.8365× 10−3 0.9013 1.4678× 10−3 1.1109
16 ×10−3 1.0211× 10−3 0.9548 3.3167× 10−4 1.0729
32 ×10−4 2.6236× 10−4 0.9802 7.7990× 10−5 1.0442
64 ×10−5 6.6167× 10−5 0.9936 1.8721× 10−5 1.0293

M N1 N2 Hmax Errorf,H Ratef,H Errorb,H Rateb,H
82 12 12 1.1039× 10−1 7.2627× 10−5 - 1.2644× 10−5 -

328 24 24 5.5195× 10−2 2.7008× 10−6 2.3745 5.6640× 10−7 2.2402

1312 48 48 2.7598× 10−2 1.6714× 10−7 2.0071 3.8612× 10−8 1.9374

5251 96 96 1.3799× 10−2 1.0367× 10−8 2.0055 2.5305× 10−9 1.9658

21007 192 192 6.8994× 10−3 6.4455× 10−10 2.0038 1.6203× 10−10 1.9826

84030 384 384 3.4497× 10−3 4.0165× 10−11 2.0021 1.0251× 10−11 1.9912

Table 1: Time errors (on the left) for cf and cb. Space errors and convergence rates for cf and
cb (on the right).

Example 2 This example illustrate the behavior of the drug delivery system in the domain
Ω× [0, T ]. The initial conditions are cb(x, 0) = 1 for 0 ≤ x ≤ 0.25, cb(x, 0) = 0 for x ≥ 0.25 and
cf (x, 0) = 0, I(x, 0) = 0 for x ∈ Ω. In figure 1, the values of cf are plotted for different values of
I(x, t) = I0(t), x ∈ Γl, t ∈ [0, T ], with T = 60s. Figure 2 shows the cf release rate for a bigger
time domain with T = 3600s. For both figures the parameters values are β = 2.0689×1010cm/s,
µa = 4cm−1, µs = 13cm−1, DI = 1/(3(mu+mus)), Dd = 4× 10−4cm2/s.
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Figure 1: Free drug cf for diferent I0 values
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Figure 2: cf release rate for T = 1h.

3 Conclusions and Future work

We consider an IMEX time scheme combined with a nonuniform finite difference method for a
non-linear system modeling light-enhanced drug delivery. We state and numerically illustrate
that our method is first-order convergent in time and exhibits supraconvergence in space. By
supraconvergence, we mean that the error is second-order convergent in a discrete H1-norm
despite the truncation error being first order in the L∞-norm.
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