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Theassignment problem

Definitions T

® (N, A) complete bipartite network, N’ = N7 U Ny, N1, Ns
disjoint, |N1| = [Na| = n, A = N7 x Na.

® ¢;; € INg cost associated with (7, j) € A.



Theassignment problem

-

Definitions T

® (N, A) complete bipartite network, N’ = N7 U Ny, N1, Ns
disjoint, |N1| = [Na| = n, A = N7 x Na.

® ¢;; € INg cost associated with (7, j) € A.

Problem
Assign each node in N7 to one node in Ny with minimum
cost.

S.t. ZjENz Tij
ZZE./\G L

a:z-j

1,1 € Mq
1, 5 € Ny
0, (4,5) € A (x5 €{0,1}) J
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Algorithm for the assignment problem

o N

The assignment problem can be seen as a minimum cost
flow problem in a bipartite network, where:

# the maximum capacity of arc (s, 7) IS u;; = 1,

# the requirement of node i € N7 is r; = 1, and the
requirement of node j € Ny isr; = —1.

How to solve It:
® consider an initial flow:;

# compute a shortest path in (NV', A"), a residual network
obtained from (N, A);

# update the flow in the network.

o |
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Algorithm for the assignment problem

o N

The residual network (N’, A’) is such that:

o N' =NU{s,t}
o A ={(7):(0j) e ANz =0}U
0,1 (i.5) € ANy = 1} U
csi:O Cjt:()
{(s,9) : i € N1 notused} U{(j,t) : j € Vs not used}



Algorithm for the assignment problem

-

The residual network (N’, A’) is such that:
o N' =NU{s,t}
o A ={(7):(0j) e ANz =0}U

Cji="—Cij
{(45,7) : (4,5) € ANz =1} U

csi:O Cjt:()

~=)

(s,i) : i € N7 notused}U{(j,t) : j € N> not used}

flow <— 0
Repeat n times
Determine shortest path (p) from sto ¢ in (N, A"

L Update flow, In 1 unit, throughout the arcs of p

-

|
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Shortest path in (N, A')

fLabeIing algorithm: T
T «— +oo, Vie N —{s};, ms+— 0
L +— {s}
Wi | e (L # 0) Do
i +— node in L; Delete i from L
For ((Z,]) c A such that Tij = 0) Do
| f (m; Is Improved) Then
T <— T + Cij, Addth L
| f (thereis a (j,7) preceding i in flow) Then
| f (m; Is Improved) Then
Tj < T3 — Cjj, Addth L

o |
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Shortest path in (N, A')

fLabeIing algorithm: T
T «— 400, Vi e N —{s}; ms+— 0
L +— {s}
Wi | e (L # 0) Do
i +— node in L; Delete i from L
For ((Z,]) c A such that Tij = 0) Do
| f (m; Is Improved) Then
T <— T + Cij, Addth L
| f (thereis a (j,7) preceding i in flow) Then
| f (m; Is Improved) Then
Tj < T3 — Cjj, Addth L

Ln SP problems in a network with O(n) nodes = O(nc(n)) J
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Example

Best assignment:
a4 = {(17 2)7 (27 3)7 (37 1)7 (47 4)}
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Example

Best assignment:

a4 = {(17 2)7 (27 3)7 (37 1)7 (47 4)}

00 2 2]

1 3 0 4

0 6 1 0

3320

— o <
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Theranking assignments problem

o N

Consider a value K € IN.

Determine aq, ..., ax by non-decreasing order of cost:
® q; IS determined before a;. ¢
< C(CLZ') S c(a7;+1)

® c(a;) <cla),foranya ¢ {ay,...,ax}

Compute the best assignment and store it
While (k < K) and (there are assignments left to analyse) Do
Choose the best assignment stored (a;) and increase k&
For (¢,75) € ax Do
Compute the best assignment coinciding with ay,
until (¢, 7), but not containing (¢, j)

L Store it J
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Murty’'salgorithm
-

a <— least cost assignment; k£ <+— 0
X +—— {a}



Murty’'salgorithm

a <— least cost assignment; k£ <+— 0

X +—— {a}

Whi | e ((k < K) and (X # ()) Do
k+—k—+1
ai <— best assignment in X; Remove a; from X
Restore the a;, computation conditions

|
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Murty’'salgorithm

a <— least cost assignment; k£ <+— 0 T
X +—— {a}
Whi | e ((k < K) and (X # ()) Do

k+«—k+1

ai <— best assignment in X; Remove a; from X

Restore the a;, computation conditions

For ((¢,5) € ax) Do

a <— best assignment coinciding with a; In

the arcs until (4, j), but not containing (4, j)
Add a to X

|
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Murty’'salgorithm

fa +— least cost assignment; k£ <+— 0 T
X +—— {a}
Whi | e ((k < K) and (X # ()) Do
k+«—k+1
ai <— best assignment in X; Remove a; from X
Restore the a;, computation conditions
For ((¢,5) € ax) Do
a <— best assignment coinciding with a; In

the arcs until (4, j), but not containing (4, j)
Add a to X

Remove extreme nodes of arcs until the previous to (7, j)
¢ Remove (i, j)
L | Determine the best assignment in the modified network J
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Murty’'salgorithm variant

fIn the previous algorithm the a; arcs order of analysis is T
not specified.

Same algorithm using a specific order of analysis (namely
reversing it, that is, analysing arcs from the last to the first)

4

Avoid the resolution of n new assignment problems.

I—et ag be {(ilajl)a"w(i?“ajr)a(thsl)?"'7(tn—7'75n—7')}’
which has been determined with:

® nodesiy,...,i, € Nyand 71, ..., 5 € Ny removed,
L # arcs (mi,p1),...,(my,pg) removed. J
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Murty’'salgorithm variant
f tp—r — Sn—r T

Initialize
tn—r—1 Sn—r—1 bn—r—1—Sn—r—1
bn—p <72 > Sp—r bn—r — - Sp—r
b<+— Restore t,,_,—1 and s,,_,_1 Restore (t—r—1,8n—r—1)

Add {(il,jl), ey (tn_r_2, Sn_:r-_Q)} Ub

tn—r—2 Sn—r—2 tn—r—9 — 5 Sp—r—9

tn—r—1 > Sp—r—1 thn—r—1—— Sp—r—1

tn—r > Sp—r by — Sy

b +— Restore t,,_,_o and s,,_,_2 Restore (tn—r—2,8n—r—2)
Add {(ilajl)a L) (tn—r—-?n Sn—T—3)} Ub

B B
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|nserting nodesin an assignment

o N

Let b be the best assignment in (N, .A) and consider:
® jis added to N, i added to N5;

® arcs (i,7) € A—{(i,7)} and (j,7') € A —{(i,7)} are
added to A.

The best assignment ¥’ in the new network can be ob-
tained by:

# computing the shortest path (p) from s to ¢;
# updating the flow, in 1 unit, throughout the arcs of p.

o |
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lnserting arcsin an assignment

fLet b be the best assignment in (N, A) and consider: T
® arc (i,4') is added to A.

The best assignment ¥’ in the new network can be ob-
tained by the procedure used when inserting : and 7'.
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lnserting arcsin an assignment

fLet b be the best assignment in (N, A) and consider: T
® arc (i,4') is added to A.

The best assignment ¥’ in the new network can be ob-
tained by the procedure used when inserting : and 7'.

If (¢,4") is an arc (t;,s;) of az, then ¥’ is the best assign-
ment in a network without:

® i1,... 0, t1,... te—1and g1, ..., 90, S1, ..., Sp—1,
® (m1,p1),- .., (me,pg).
Y
Therefore, v/ = {(tz,sz),..., (th—r, Sn_r)}, Which means it

L IS enough to consider a part of ay. J
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Example

00 2 2
Ao 1304 a1 = {(1,2),(2,3),(3,1), (4,4)}
106 1 0 X =10
3320
1
S t S \t
\3
\4 _,4/ \4 \4/

-

Add (4,4) to A. Add 3 to N; and 1 to Ny, with c3; = +o0.

OOOOOOOOOO
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N = OO DO

O O = Do
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LW O W O
N = OO DO

O O = Do
|
~—
——
VN
:\/—\
S
%
N—"
\'OJ
A
>
p—
N—"
——
——

Add (4,4) to A. Add 3 to N; and 1 to Ny, with c3; = +o0.
Add (3,1) to A. Add 2 to N7 and 3 to N;, with ca3 = +00.

|
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AC
AC

LAO

w O = O
Lw O W O
N — O DO
S O B~ N

(4,4) to A. Add

4
(3,1) to A. Add
(2,3) to A. Add

3 to N7 and
2 to N1 ano

1 to N1 anc

ST

—_—

7

4 .34
1 to Ns, with c31 = +00.
3 to Ns, with co3 = +00.
2 to Ns, with ¢1o = +00. J
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AC
AC

LAO

w O = O
Lw O W O
N — O DO
S O B~ N

(4,4) to A. Add
(3,1) to A. Add

(2,3) to A. Add

ar = {(172)7 (273)7 (37 1)7 (474)}
X =1{{(1,2),(2,3),(3,4), (4, 1)},
{(1,2),(2,1),(3,3),(4,4) },
] {(1,1),(2,3),(3,4),(4,2) }}
1 .1
2 2
S % k‘t
)
NG
3 to N7 and 1 to Ny, with ¢31 = +00
2 to M7 and 3 to N, with co3 = 400
1 to N7 and 2 to N5y, with ¢19 = +o00

OOOOOOOOOO



Computational complexity

o N

“Straightforward” implementation:
K assignments are analysed and for each one O(n) new
assignment problems are solved.

Y
O(Kn (nc(n))) = O(Kn*c(n))

o |
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Computational complexity

o N

“Straightforward” implementation:
K assignments are analysed and for each one O(n) new
assignment problems are solved.

Y
O(Kn (nc(n))) = O(Kn*c(n))

New variant:
K assignments are analysed and for each one O(n)
shortest path problems are solved.

Y
O(Knc(n))

o |
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Computational experiments

o N

Computer characteristics:
o AMD Athlon

® Processor 1.5GHz
#» 512 Mbytes of RAM

Complete bipartite networks:
® n € {50,100,150,200} (generated with 10 seeds)
® ¢;; randomly generated in {0, ..., 1000}

K = 100 assignments determined.

o |
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40
n = 100 —

— 30
— 20
— 10

nwoowm

40 60 80 100

800
n = 200 —
— 600

— 400
— 200

noom

40 60 80 100
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