DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA

ANÁLISE INFINITESIMAL I

Exame Época Normal

14 - 01 - 2010

Duração: - 2h30m

- 1. (a) <u>Traduza</u> em linguagem simbólica e <u>analise a validade</u> do seguinte argumento: *Ficarei cansado(a)* se estudar toda a noite e, se estiver cansado(a), não conseguirei acabar o trabalho de Análise. Logo, para acabar o trabalho, é necessário que não estude toda a noite.
 - (b) Sejam $A, B \subset U$. Prove que $A \cap B = \emptyset$ se e só se $A \subset B^c$. Caracterize o(s) método(s) de demonstração que utilizou.
 - (c) Considere em \mathbb{R} a relação de ordem usual \leq , e em $\mathbb{R} \times \mathbb{R}$ a relação ρ definida por

$$(a,b) \rho (c,d) \iff a \le c \land b \le d.$$

- i. Mostre que ρ é uma relação de ordem parcial em $\mathbb{R} \times \mathbb{R}$.
- ii. Determine, para esta relação, um majorante e um minorante do conjunto

$$A = \{(x, y) : x^2 + y^2 = 1\}.$$

- 2. (a) Defina conjuntos numericamente equivalentes.
 - (b) Prove que é falsa a afirmação se A e B são conjuntos infinitos então A B é finito.
 - (c) Seja $A =]-\infty, -2] \bigcup [0, 1] \bigcup [2, +\infty[.$
 - i. Mostre que o conjunto A é um conjunto fechado.
 - ii. Dê exemplos de um ponto interior e de um ponto de acumulação de A.
- 3. Das seguintes afirmações indique quais as verdadeiras (justifique) e quais as falsas (dê contra-exemplos):
 - (a) As funções $f \in g$ definidas por $f(x) = \cos(\arccos x) \in g(x) = \arccos(\cos x)$ são iguais.
 - (b) Se f e g são funções contínuas em [a,b] e diferenciáveis em]a,b[, e se g não se anula em [a,b], então existem $x,y\in]a,b[$ tais que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x)}{g'(y)}.$$

- (c) Se f é uma aplicação uniformemente contínua em A, então f é contínua em A.
- 4. (a) Prove que se $\lim_{x\to a} f(x) = L$ e $\lambda \in \mathbb{R}$, então $\lim_{x\to a} (\lambda f) = \lambda L$.
 - (b) Dê exemplo de uma função que tenha uma descontinuidade essencial de 2ª espécie.
 - (c) Calcule:

i.
$$\lim_{x \to +\infty} \left(\frac{3^x}{\log_4 x} - x^{\frac{1}{x}} \right).$$

- ii. Os pontos extremos da função $f(x) = \cosh(2x)$.
- iii. O coeficiente angular da tangente ao gráfico da curva de equação implícita

$$e^y - 3 + \ln(x+1)\cos y = 0$$

no ponto $(0, \ln 3)$;

- iv. O polinómio de Taylor de grau 4 da função $f(x)=e^{2x},$ no ponto x=0.
- 5. Sejam f uma função real contínua no intervalo $]a,b[,x_0\in]a,b[$ e c,d números reais tais que $c< f(x_0)< d$.

Prove que existe um real positivo δ tal que c < f(x) < d, para todo o $x \in]x_0 - \delta, x_0 + \delta[$.