DEPARTAMENTO DE MATEMÁTICA - UNIVERSIDADE DE COIMBRA Álgebra Linear e Geometria Analítica I

Ano lectivo 2005/2006 – 2ª Frequência – 25/05/2006 – 1h 15 m de duração

LICENCIATURA EM MATEMÁTICA

Não é permitido qualquer tipo de consulta. Justifique brevemente as suas respostas e indique todos os cálculos que efectuou.

1. Considere a seguinte matriz real

$$A = \begin{bmatrix} 1 & -2 & -1 & 0 \\ 1 & \lambda & 1 & 2 \\ -1 & 2 & \lambda & 0 \end{bmatrix}.$$

- (a) Diga para que valores de λ é que N(A) (o espaço nulo de A) tem dimensão 2.
- (b) Para esses valores de λ , determine uma base de \mathbb{R}^4 que contenha uma base de N(A).
- (c) Usando a alínea anterior determine, para os mesmos valores de λ , uma matriz B tal que

$$\mathbb{R}^4 = N(A) \oplus N(B).$$

(ou diga como procederia, se não tiver resolvido a alínea anterior)

- (d) Considere $\lambda = 1$.
 - i. Determine a solução no sentido dos mínimos quadrados do sistema $Ax = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$.
 - ii. Qual é o vector de C(A) que está mais próximo do vector (1,1,0)?

2. Para cada uma das seguintes afirmações diga, justificando, se é verdadeira ou falsa.

- (a) Sejam $u,v,w\in\mathbb{R}^3$ tais que dim $\mathscr{L}\{u,v\}=\dim\mathscr{L}\{u,w\}=\dim\mathscr{L}\{v,w\}=2$, então $\mathscr{L}\{u,v,w\}=\mathbb{R}^3$.
- (b) Sejam A e B matrizes quadradas de ordem n, se AB = BA então $N(B) + N(A) \subseteq N(BA)$.
- (c) Sejam v_1, \ldots, v_m vectores ortonormados de \mathbb{R}^n , então dim $\mathcal{L}\{v_1, \ldots, v_m\} = m$.
- (d) Seja A uma matriz. Se u é uma solução no sentido dos mínimos quadrado do sistema impossível Ax = b então Au b pertence a $C(A)^{\perp}$.
- 3. (a) Sejam $v_1, v_2, \ldots, v_r \in \mathbb{R}^n$ e A uma matriz $m \times n$. Prove que se $\{v_1, v_2, \ldots, v_r\}$ é linearmente independente e $\operatorname{car}(A) = n$ então $\{Av_1, Av_2, \ldots, Av_r\}$ é linearmente independente.
 - (b) Dê um exemplo de dois vectores $v_1, v_2 \in \mathbb{R}^2$ e uma matriz A, não nula, 3×2 , tais que $\{v_1, v_2\}$ é linearmente independente mas $\{Av_1, Av_2\}$ é linearmente dependente.