ii. Usando o resultado da alínea (i), indique a terceira coluna de A^{-1} .

A terceira coluna de A^{-1} é a coluna v tal que $Av=\begin{bmatrix}0\\0\\1\end{bmatrix}$, ou seja é precisamente a solução do sistema da alínea anterior.

2. Prove que, se uma matriz quadrada A satisfizer $A^2 = A$, então $N(A) \cap C(A) = \{0\}$.

(Este é o exercício 155 da Folha 11.)

Seja $y \in N(A) \cap C(A)$. Como $y \in N(A)$, tem-se Ay = 0. Como $y \in C(A)$, tem-se y = Ax para algum x. Segue-se que $A^2x = 0$. Como $A^2 = A$, tem-se Ax = 0, ou seja y = 0. Provámos assim que um vector que pertença a $N(A) \cap C(A)$ tem que ser o vector nulo, e portanto $N(A) \cap C(A) = \{0\}$.

Nota: Uma matriz que satisfaz $A^2=A$ não é necessariamente a matriz identidade ou a matriz nula. Exemplo: $A=\begin{bmatrix}6&-10\\3&-5\end{bmatrix}$.

- 3. Considere o subespaço de \mathbb{R}^{3} $F = \{(x, y, z) : 2x 5y + z = 0\}.$
 - (a) Determine uma base ortogonal de F.

Todos os vectores (x, y, z) de F satisfazem z = -2x + 5y, e portanto são da forma (x, y, -2x + 5y), isto é, são da forma x(1, 0, -2) + y(0, 1, 5). Segue-se que $v_1 = (1, 0, -2)$ e $v_2 = (0, 1, 5)$ geram F. Como são linearmente independentes, constituem uma base de F. Para obter uma base ortogonal de F, usemos o processo de Gram-Schmidt. Pomos $u_1 = v_1$ e

$$u_2 = v_2 - \frac{\langle v_2, u_1 \rangle}{\|u_1\|^2} u_1 = (0, 1, 5) - \frac{-10}{5} (1, 0, -2) = (2, 1, 1).$$

Assim, $u_1 = (1, 0, -2)$ e $u_2 = (2, 1, 1)$ constituem uma base ortogonal de F.

(b) Sendo b = (-1, 1, -3), calcule a projecção ortogonal de b sobre F.

A projecção ortogonal de b sobre F é igual à soma das projecções ortogonais de b sobre os vectores de uma base ortogonal de F. Usando a base $\{u_1, u_2\}$ obtida na alínea anterior, temos que a projecção ortogonal de b sobre F é igual a

$$\frac{\langle b, u_1 \rangle}{\|u_1\|^2} u_1 + \frac{\langle b, u_2 \rangle}{\|u_2\|^2} u_2 = 1.u_1 - \frac{2}{3}.u_2 = -\frac{1}{3}(1, 2, 8).$$

(c) Usando as alíneas anteriores, construa um sistema de três equações lineares com duas incógnitas, impossível, e que tenha $\overline{x} = (1, -\frac{2}{3})$ como única solução no sentido dos mínimos quadrados. Justifique.