DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA

Álgebra Linear e Geometria Analítica I

Licenciatura em Matemática

Frequência, 17/12/2008

Importante: Responda apenas ao que se pede. Justifique as suas respostas. Seja conciso.

1. Considere o sistema de equações lineares

$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 & = 1 \\ x_1 + 4x_2 + 2x_3 + 8x_4 - 3x_5 & = 3 \\ -x_1 - 4x_3 + 3x_4 - 5x_5 & = -2 \end{cases}$$

- (a) Escreva a matriz A do sistema.
- (b) Factorize A na forma LU, onde L é uma matriz triangular inferior com elementos diagonais iguais a 1 e U é uma matriz em escada.
- (c) Diga qual é a característica de A.
- (d) Resolva o sistema.
- 2. Sejam v_1, v_2, \ldots, v_k vectores de \mathbb{R}^n .
 - (a) Dado um subespaço F de \mathbb{R}^n , diga o que significa dizer-se que v_1, v_2, \ldots, v_k geram F.
 - (b) Diga o que significa dizer-se que v_1, v_2, \ldots, v_k são linearmente independentes.
 - (c) Enuncie e demonstre um critério de independência linear que é útil na prática.
- 3. Seja A uma matriz $n \times n$. Sejam w_1, w_2, \ldots, w_k vectores $n \times 1$. Prove que, se $\det(A) \neq 0$ e w_1, w_2, \ldots, w_k forem linearmente independentes, então também Aw_1, Aw_2, \ldots, Aw_k são linearmente independentes.
- 4. (a) Determine uma base ortogonal para o subespaço de \mathbb{R}^3 gerado por (1,1,1) e (0,3,6).
 - (b) Calcule a projecção ortogonal do vector (1, 4, 5) sobre o subespaço da alínea (a).
 - (c) Usando o resultado da alínea anterior, determine a linha recta que melhor se ajusta, no sentido dos mínimos quadrados, aos pontos (0,1), (3,4), (6,5). Represente graficamente.
- 5. Dado um sistema impossível Ax=b, explique porque é que as suas soluções no sentido dos mínimos quadrados são exactamente as soluções do sistema $A^TAx=A^Tb$.