Departamento de Matemática da Universidade de Coimbra

Exame de Álgebra Linear e Geometria Analítica II

Licenciatura em Matemática

19 de Janeiro de 2007 Duração: 2h30

Importante: Responda apenas ao que se pede. Justifique as suas respostas. Seja conciso.

1. Considere o seguinte subconjunto de $M_{2\times 2}(\mathbb{R})$,

$$S = \left\{ \left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right] \in M_{2 \times 2}(\mathbb{R}) | \ a = -c \ \right\}.$$

- (a) Prove que S é um subespaço vectorial de $M_{2\times 2}(\mathbb{R})$.
- (b) Determine uma base e a dimensão de S.
- (c) Determine uma base de $M_{2\times 2}(\mathbb{R})$ que contenha a base encontrada na alínea anterior.
- 2. Para cada uma das seguintes afirmações diga, justificando de forma breve, se é verdadeira ou falsa.
 - (a) Seja v um vector arbitrário de um espaço vectorial V sobre o corpo \mathbb{K} e $\alpha, \beta \in \mathbb{K}$. Então $(\alpha \beta)v = \alpha v \beta v$.
 - (b) Sejam v_1, v_2, v_3 e v_4 vectores de um espaço vectorial. Se v_1, v_2 forem linearmente independentes e v_3, v_4 também forem linearmente independentes, então dim $\mathcal{L}\{v_1, v_2, v_3, v_4\} = 4$.
 - (c) Seja r > 1 um inteiro positivo qualquer e A uma matriz real quadrada. Se A for diagonalizável, então A^r também é diagonalizável.
- 3. Sejam V e W espaços vectoriais reais com bases $\{v_1,v_2,v_3\}$ e $\{w_1,w_2\}$, respectivamente. Seja $T:V\longrightarrow W$ a transformação linear representada, relativamente às bases indicadas, pela matriz $A=\left[\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 0 \end{array}\right]$.
 - (a) Calcule $T(5v_1 v_3)$.
 - (b) T será injectiva? E sobrejectiva?
 - (c) Considere a matriz invertível $P = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$. Construa uma base B de V de tal modo que

AP seja a matriz de T relativamente às bases $B \in \{w_1, w_2\}$.

- 4. Considere a matriz $A = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 - (a) Determine os valores próprios de A.
 - (b) Sem efectuar cálculos, poderá afirmar se A é ou não diagonalizável?
 - (c) Determine o subespaço próprio de A associado a um dos seus valores próprios e calcule uma base desse subespaço.
 - (d) Identifique a quádrica dada pela equação $4x^2 + 2xy + 4y^2 + z^2 = 1$.
- 5. Seja V um espaço vectorial real de dimensão finita com produto interno. Dado um subespaço H de V, designe-se por H^{\perp} o complemento ortogonal de H.
 - (a) Sabendo que $V = H \oplus H^{\perp}$, mostre que $(H^{\perp})^{\perp} = H$.
 - (b) Dados $F \in G$ subespaços de V, prove que

i.
$$(F+G)^{\perp} = F^{\perp} \cap G^{\perp};$$

ii.
$$(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$$
.