UNIVERSIDADE DE COIMBRA

Departamento de Matemática

Análise Complexa

Exame 20/06/2002

Duração: 2 horas 30 minutos

Esta prova consta de três partes: A PARTE I pretende averiguar se o aluno atingiu os objectivos mínimos da disciplina. Para tal, deve responder correctamente a pelo menos 60% das questões. Por favor, utilize o caderno suplementar para resolução da Parte I.

A PARTE II é de questões de escolha múltipla. As respostas devem ser dadas na primeira folha da prova, escrevendo unicamente a letra correspondente à resposta correcta entre as cinco alternativas indicadas no enunciado.

A PARTE III é constituída por 5 questões. Seja claro e sucinto. Soluções que revelem erros graves não serão cotadas.

 $^{\uparrow}$ 1. Resolva a equação $e^{iz}=e^{z}$. —

2. Calcule
$$\operatorname{tg}(-\pi i)$$
. $= i \frac{e^{\pi} - e^{-\pi}}{e^{\pi} + e^{-\pi}}$

3. Represente geometricamente

Sometricamente
$$\{z\in\mathbb{C}: |\Re z|+|\Im z|=1\}.$$

🕊 Estude a natureza da sucessão complexa

$$z_n = \pi^{1/n} + i \sin \frac{1}{n}$$
. Concuent prof

 $m{eta}$: Determine os pontos de diferenciabilidade e analiticidade da função z
ightarrow x +isin x cosy. The has rentine pt and here emulined ne deferences,

Calcule o resíduo de $\frac{1}{z \sin z}$ no ponto z = 0. $\varphi \in \mathcal{E} + (z) = 0$

7. Enuncie o Teorema da Identidade. Seje f cinclina num obunino D

PARTE II Se o conjunto 2(f)= fel: 1(2)-o (
columna un pento do communico)

X. O valor do raio de convergência da série entro (e i denticamente nue.

$$\sum_{n=1}^{\infty} \frac{z^n}{2(n-1)!}$$

é:

 $(\mathbf{A}) 0;$

- (D) 1/2;
- (E) nenhuma das anteriores opções está correcta.
- 2. Seja T o quadrado de vértices 1, i, -1, -i, percorrido no sentido positivo. O valor do integral

· 2. 图象的 图像 1. 图像

$$\int_{T}\sin(z+rac{1}{z-2})dz$$

and the controlling 化磺基酚 化化二十二甲基酚基酚 医脱腺性 医甲基酚 电电阻电阻 化甲基酚

é

- Lead (A) Operation between the median and the second of the second of the second of the second of the second of
- ones en $(\overline{\mathbb{B}})$ $2\pi i$ ones actaurament carriers a solution should will confirm and Albinousen
 - (C) i;
 - and (\mathbf{D}) $\sin 2i$, we have seen a ℓ , integration appears of an objection the left of the first ℓ .
 - (E) nenhuma das anteriores opções está correcta.

3. Indique quais das afirmações seguintes são verdadeiras:

Considere a função que na origem toma o valor 0 e para $x+iy\neq 0$ é definida por $f(x+iy)=\frac{x^3-y^3}{x^2+y^2}+i\frac{x^3+y^3}{x^2+y^2}$.

- (A) A função é analítica na origem; \(\neq\)
- (B) A função é diferenciável na origem; \(\varphi\)
- (C) O limite de f(z)/z, quando z tende para 0 ao longo de y=x no primeiro quadrante, é $\frac{i}{1+i}$; $\sqrt{}$
 - (D) O limite de f(z)/z, quando z tende para 0 ao longo de x=0, é 1+i; \mp
 - (E) Uma e apenas uma das anteriores opções está correcta.

PARTE III

- 1. Prove que os zeros duma função analítica num domínio, não nula, são isolados.
- 2. Indique o valor lógico da seguinte afirmação, justificando devidamente:

A função com domínio $B_2(1+i)$ (bola fechada de centro em 1+i e raio 2) definida por $z \to e^{3z}$, é injectiva neste domínio. Vendo

ncia e uma recta. Se as rectar que perse reconser< Averigue se, nestas circunstâncias, T(l) é diâmetro (prolongado) de T(C).

4. Calcule

$$\int_{|z|=2} \frac{z^3 e^{1/z}}{1+z} dz. = -\frac{2\pi i}{e}$$

Suponha o caminho percorrido no sentido positivo.

 δ . Desenvolva a função $\frac{z+1}{e^z-1}$ em série de Laurent em torno de z=0. Calcule três termos.

Classifique as suas singularidades.

Singulatedades Reviewvis