Duração: 2h30m

Exame (época normal)

19/06/09

Justifique convenientemente as suas respostas e indique os principais cálculos.

1. Determine:

- (a) O menor subanel de \mathbb{Z} que contém $\{6, 8\}$.
- (b) O máximo divisor comum de $x^5 7x^3 + 2x^2 14$ e $x^3 x^2 7x + 7$ em $\mathbb{Q}[x]$.
- (c) Quais dos seguintes polinómios são irredutíveis sobre \mathbb{Q} :

$$p(x) = 5x^5 - 10x^3 + 6x^2 - 2x + 6$$
, $q(x) = x^4 - x^2 - 2$, $r(x) = 4x^3 - 3x - \frac{1}{2}$.

- 2. Num anel com identidade
 - (a) a soma de dois divisores de zero é sempre um divisor de zero?
 - (b) a soma de dois elementos invertíveis é sempre invertível?
 - (c) a identidade pode pertencer a algum ideal próprio?
- 3. Seja D um domínio de integridade e $a \in D$. Mostre que:
 - (a) $a \in \text{raiz de } f(x) \in D[x] \text{ se e so se } (x-a) \mid f(x).$
 - (b) $f(x) \in D[x]$ de grau n tem no máximo n raízes em D.
 - (c) A afirmação da alínea anterior é falsa para anéis arbitrários.
- 4. Considere o ideal $I = \langle x^5 7x^3 + 2x^2 14, x^3 x^2 7x + 7 \rangle$ de $\mathbb{Q}[x]$.
 - (a) Determine um polinómio $h(x) \in \mathbb{Q}[x]$ tal que $I = \langle h(x) \rangle$.
 - (b) Diga, justificando, se I é maximal.
 - (c) Será que o elemento x + I de $\mathbb{Q}[x]/I$ tem inverso? Em caso afirmativo, determine-o.
- 5. Determine:
 - (a) $\mathbb{Q}(\sqrt{6})$.
 - (b) O grupo de Galois do polinómio $x^2 6 \in \mathbb{Q}[x]$.
 - (c) $[\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15}) : \mathbb{Q}].$
- 6. Seja A um anel com identidade no qual, para todo o elemento $a \in A$, $a^2 = a$. Mostre que:
 - (a) -a = a, para qualquer $a \in A$.
 - (b) A é comutativo.
 - (c) São equivalentes, para I ideal não nulo de A, as seguintes afirmações:
 - (i) *I* é primo.
- (ii) $A/I \cong \mathbb{Z}_2$.
- (iii) I é maximal.