DEPARTAMENTO DE MATEMÁTICA DA F.C.T.U.C.

Corpos e Equações Algébricas – Exame Época Normal

Duração: 2h 30m (Sem consulta) 11/6/2010

Nota: Justifique resumidamente as suas respostas e indique os principais cálculos.

- (1) Diga, justificando, se as seguintes afirmações são verdadeiras ou falsas.
 - (a) Num anel A, para todo o $a \in A$, tem-se a.0 = 0.a = 0.
 - (b) Todo o domínio de integridade finito tem característica prima.
 - (c) O ponto $(\sqrt{p-\sqrt{p}}, \sqrt{p-\sqrt{p}})$, com p primo, é construtível a partir de (0,0) e (1,0).
 - (d) Em \mathbb{F}_{25} , o polinómio $x^{57} + x^2 + 2x + 1$ pode factorizar-se na forma (x-1)q(x).
 - (e) É possível, usando régua não graduada e compasso, duplicar o cubo.
- (2) Considere a aplicação $\phi: \mathbb{Z}_9 \to \mathbb{Z}_3$ definida por $\phi(n) = n^3 \mod 3$.
 - (a) Mostre que ϕ é um homomorfismo de anéis sobrejectivo.
 - (b) Calcule o núcleo de ϕ .
 - (c) Defina ideal maximal de um anel. Mostre que $Nuc(\phi)$ é um ideal maximal de \mathbb{Z}_9 .
- (3) Seja K um corpo e $p(x) \in K[x]$ um polinómio mónico e irredutível sobre K. Prove que existe uma extensão L de K da forma $L = K(\theta)$ onde θ é raiz de p(x) em L.
- (4) (a) Considere o polinómio $x^2 + 3 \in \mathbb{Z}_5[x]$. Determine uma extensão L de \mathbb{Z}_5 onde $x^2 + 3$ seja redutível. Indique o número de elementos de L.
 - (b) Mostre que $\mathbb{Z}_2[x]/< x^2+1>$ não é um domínio de integridade. Construa as tabelas do anel $\mathbb{Z}_2[x]/< x^2+1>$.
- (5) (a) Determine $\mathbb{Q}(\sqrt{3})$
 - (b) Determine o grupo de Galois do polinómio $x^2 3 \in \mathbb{Q}[x]$.
 - (c) Determine $\mathbb{Q}(\sqrt{3}, i)$ e indique $[\mathbb{Q}(\sqrt{3}, i) : \mathbb{Q}]$.
 - (d) Mostre que $\mathbb{Q}(\sqrt{3}, i) = \mathbb{Q}(\sqrt{3} + i)$.
- (6) Sejam a e b elementos não nulos de um domínio de integridade. Prove que $\langle a \rangle = \langle b \rangle$ se e só se existe uma unidade u tal que b = au.