Justifique convenientemente as suas respostas e indique os principais cálo

Duração: 2h 30m

- 1. Considere a curva $\gamma: \mathbb{R} \to \mathbb{R}^3$ dada por $\gamma(t) = (t^2, -t + t^2, -t + 2)$.
 - (a) Prove que a curva γ é plana.
 - (b) Determine a equação do plano osculador a γ em t e averigue se existe algum ponto onde esse plano seja paralelo ao plano XOY.
- 2. Considere, para cada $a \in \mathbb{R}$, a curva

$$\gamma_a: \ \mathbb{R} \ \longrightarrow \ \mathbb{R}^3$$

$$t \ \longmapsto \ (e^{at}\cos t, e^{at}\sin t, e^{at}).$$

- (a) Verifique que, se a < 0, γ_a tem comprimento finito em $[0, +\infty[$ e calcule-o.
- (b) Para que valores de a é que γ_a não está parametrizada por comprimento de arco? Para esses valores, determine uma reparametrização por comprimento de arco de γ_a .
- 3. (a) Seja $S = f^{-1}(a)$ uma superfície, onde $f: U \subseteq \mathbb{R}^3 \longrightarrow \mathbb{R}$ é uma aplicação suave e $a \in f(U)$ é um valor regular de f, e seja p um ponto de S. Deduza uma equação para o plano tangente a S em p em termos do gradiente $\nabla_f(p)$ de f em p.
 - (b) Considere a superficie cilíndrica $C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}.$
 - (i) Justifique que C é uma superfície.
 - (ii) Determine uma equação para o plano tangente a C em $p=(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0)$.
- 4. Considere a esfera $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}.$
 - (a) Mostre que

$$\sigma(\theta,\varphi) = (\cos\theta\cos\varphi,\cos\theta\sin\varphi,\sin\theta)$$

define uma parametrização de $S^2 \setminus \{(x,y,z) \in S^2 \mid x \geq 0, y = 0\}$, em termos da latitude $\theta \in]-\pi/2, \pi/2[$ e da longitude $\varphi \in]0, 2\pi[$.

- (b) Determine outra parametrização de parte de S^2 que, em conjunto com σ , cubra toda a esfera.
- 5. Um ponto p de uma superfície diz-se umbilical se as curvaturas principais $\kappa_1(p)$ e $\kappa_2(p)$ são iguais. Prove que:
 - (a) Todo o ponto umbilical é planar ou elíptico.
 - (b) Se a superfície é minimal (isto é, a curvatura média H é nula em qualquer ponto) então todo o ponto umbilical é planar.
 - (c) Todo o ponto da esfera S^2 é umbilical.
 - (d) Se S é uma superfície (conexa) no qual todo o ponto é umbilical então S é parte de um plano ou de uma esfera.