Justifique convenientemente as suas respostas e indique os principais cálculos

Duração: 2h 30m

1. Sejam $a \in \mathbb{R}$ e $r \in \mathbb{R}^+$. Considere a curva $\gamma_{r,a} : \mathbb{R} \to \mathbb{R}^3$ definida por

$$\gamma_{r,a}(s) = \left(r\cos\frac{s}{b}, r\sin\frac{s}{b}, a\frac{s}{b}\right),$$

onde $b = \sqrt{r^2 + a^2}$.

- (a) Determine a curvatura e a torsão de $\gamma_{r,a}$.
- (b) Mostre que as rectas normais a $\gamma_{r,a}$ são ortogonais ao eixo OZ.
- (c) Mostre que o ângulo definido pelo eixo OZ e pela recta tangente a $\gamma_{r,a}$ em cada $\gamma_{r,a}(s)$ é constante.
- 2. Considere, para cada $a \in \mathbb{R}$, a curva

$$\gamma_a: \mathbb{R} \longrightarrow \mathbb{R}^3$$

$$t \longmapsto (e^{at}\cos t, e^{at}\sin t, e^{at}).$$

- (a) Verifique que, se a < 0, γ_a tem comprimento finito em $[0, +\infty[$ e calcule-o.
- (b) Para que valores de a é que γ_a não está parametrizada por comprimento de arco? Para esses valores, determine uma reparametrização por comprimento de arco de γ_a .
- 3. (a) Enuncie o Teorema Fundamental das Curvas.
 - (b) Determine as curvas $\gamma: \mathbb{R} \to \mathbb{R}^3$, parametrizadas por comprimento de arco, que têm curvatura constante e torsão constante.
- 4. Indique, sem justificação, um exemplo de:
 - (a) duas hélices generalizadas.
 - (b) uma superfície não orientável.
 - (c) duas quádricas que sejam superfícies de revolução.
 - (d) uma superfície regrada.
- 5. Sendo $p(x,y) = ax^2 + by^2 + cxy + dx + ey + f$ $(a,b,c,d,e,f \in \mathbb{R})$ um polinómio arbitrário de grau 2 nas duas variáveis $x \in y$, considere

$$S_p = \{(x, y, z) \in \mathbb{R}^3 \mid z = p(x, y)\}.$$

- (a) Mostre que S_p é uma superfície.
- (b) Prove que, para cada p, todos os pontos de S_p são elípticos ou todos os pontos de S_p são hiperbólicos ou todos os pontos de S_p são planares ou parabólicos.

Para que polinómios p é que os pontos de S_p são todos elípticos? E hiperbólicos?

6. Considere as superfícies

$$S_1 = \{(x,y,z) \in \mathbb{R}^3 \mid y = 0, |x| < \pi/2\}$$

e

$$S_2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, y > 0\}$$

e seja $g: S_1 \to S_2$ definida por

$$g(x,0,z) = (\sin x, \cos x, z).$$

- (a) Prove que g é uma isometria.
- (b) Sabendo que o caminho mais curto em S_2 entre os pontos $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, -3)$ e $(-\frac{1}{2}, \frac{\sqrt{3}}{2}, 4)$ define uma curva (regular) determine:
 - (i) o comprimento desse caminho;
 - (ii) esse caminho.