DEPARTAMENTO DE MATEMÁTICA DA FCTUC

EQUAÇÕES DIFERENCIAIS E MODELAÇÃO

(Licenciatura em Matemática)

Duração: 1h

19 de Dezembro de 2005

(1) (a) Resolva o problema de valores iniciai

$$\begin{cases} y_1' &= y_1 + 2y_2 \\ y_2' &= -y_1 + 3y_2 \end{cases}, \quad y_1(0) = 0, \quad y_2(0) = 1.$$

- (b) Determine e^{At} , onde $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}^{t}$.
- (2) Considere o sistema de equações diferenciais ordinárias

$$\begin{cases} y'' + z & - & 0 \\ z'' + y & = & \cos t . \end{cases}$$

introduzindo 4 variáveis dependentes y_1, y_2, y_3, y_4 de modo adequado, determine uma matriz A E $\mathbb{R}^{4,4}$ e um vector coluna $\mathbf{b}(t)$ E \mathbb{R}^4 tais que as soluções y e z do sistema anterior se possam obter a partir das componentes das soluções y $\mathbf{g}(t) = [y_1 \ y_2 \ y_3 \ y_4]^T$ do sistema diferencial

$$\mathbf{y}' = \mathbf{A} \mathbf{y} + \mathbf{b}(t)$$
.

Responda apenas a uma das questões (3) e (4).

(3) Seja $A(t) = [a_{i,j}(t)]_{i,j=1}^n$ uma matriz cujas entradas $a_{i,j}(t)$ são funções contínuas num intervalo limitado $[a,b] \subset IR$ e $\mathbf{b}(t) = [b_j(t)]_{j=1}^n$ um vector (coluna) cujas componentes $b_j(t)$ são também funções contínuas em [a,b]. Sejam $t_0 \in]a,b[$ e $\mathbf{y}^0 \in IR^n$ e considere o problema linear de valores iniciais

$$\mathbf{y}' = A(t)\mathbf{y} + \mathbf{b}(t) , \quad \mathbf{y}(t_0) = \mathbf{y}^0 . \tag{*}$$
 Seja $\{\mathbf{y}_k(t)\}_{k \geq 0}$ a sucessão de funções (vectoriais) definida recorrentemente por

$$\mathbf{y}_0(t) = \mathbf{y}^0$$
, $\mathbf{y}_{k+1}(t) = \mathbf{y}^0 + \int_{t_0}^t \left[A(s) \mathbf{y}_k(s) + \mathbf{b}(s) \right] ds$, $k = 0, 1, 2, \cdots$.

Supondo provado que esta sucessão $\{y_k(t)\}_{k\geq 0}$ converge uniformemente em [a,b] para uma solução, φ , do problema (*), mostre que esta solução é única.

. Indicação: Se ll, é outra solução de (*) em [o,b], então $\psi(t) = \mathbf{y}^0 + \int_{t_0}^t \left[A(s) \, \psi(s) + \mathbf{b}(s) \right] \, \mathrm{d}s$ (justifique); mostre então que

$$\|\psi(t) - \mathbf{y}_{k+1}(t)\| \le c \frac{(nL|t - t_0|)^k}{k!}, \quad k = 0, 1, 2, \dots$$

para todo o $t \in [a, b]$, onde $c := \sup_{t \in [a, b]} \|\psi(t) - \mathbf{y}_1(t)\|$ e $L := \sup_{t \in [a, b]} \|A(t)\|$.

Sugestão: Pode usar, sem demonstrar, a desigualdade seguinte, válida para qualquer vector coluna $\mathbf{v}(s) \in \mathbb{R}^n$ cujas componentes são funções (escalares) contínuas em [a,,b],

$$\left\| \int_{t_0}^t \left[A(s) \mathbf{v}(s) \right] \, \mathrm{d}s \right\| \le nL \left| \int_{t_0}^t \left\| \mathbf{v}(s) \right\| \, \mathrm{d}s \right| , \quad t \in [a, b] .$$

(4) Considere o problema de Cauchy

$$y' = e^{2y}$$
, $y(0) = 0$. (*)

- (a) Justifique que f $(t,y) := e^{2y}$ é uma função lipschitziana a respeito da segunda variável em qualquer rectângulo limitado do plano lR².
- (b) Usando o teorema de existência e unicidade de soluções, mostre que o problema (*) tem uma e uma só solução no intervalo $\mathbf{I} = \left[-\frac{1}{2e}, \frac{1}{2e} \right]$.

Sugestão. Considere o rectângulo $\Omega:=\{(t,y) \in \mathbb{R}^2: |t|\leq \frac{1}{2}, |y|\leq \frac{1}{2}\}$ (c) Resolva o problema (*) pelo método de separação de variáveis e conclua que a solução existe num intervalo maior.