Exame de Estatística

Duração: 2h 30m 13-06-2006

Observação: A resolução completa das questões apresentadas inclui a justificação do raciocínio utilizado e a apresentação dos cálculos efectuados.

(10.0) **1.** Num sistema de serviço de clientes com três postos de atendimento em série o tempo de serviço (em minutos) por cliente é bem descrito por uma variável aleatória real (v.a.r.) X seguindo uma lei gama de densidade

$$f_{\lambda}(x) = \frac{\lambda^{3}}{2} e^{-\lambda x} x^{2} \mathbb{I}_{]0,+\infty[}(x).$$

Seja $(X_1, X_2, ..., X_n)$ uma amostra de dimensão n de X.

- a) Usando o método de estimação dos momentos, determine um estimador T_n de λ e mostre que tal estimador é convergente quase certamente.
- b) Conclua que T_n é também o estimador de λ da máxima verosimilhança.
- c) Deduza das alíneas anteriores que a média da amostra, \overline{X}_n , é o estimador dos momentos e da máxima verosimilhança da duração média do tempo de serviço e indique as suas propriedades.
- d) Mostre que \overline{X}_n segue uma lei gama, precisando o seu parâmetro.
- e) O referido serviço assume perante os seus clientes que a duração média de atendimento é de cerca de 30 minutos. Esta informação é fortemente contestada pelos clientes que afirmam ser tal duração bastante superior. Com vista a tirar conclusões mais objectivas, recolheu-se uma amostra de 20 tempos de serviço, $(x_1, x_2, ..., x_{20})$, cuja média foi de 39 minutos. Com base na amostra observada poderá concluir que a referida duração média é significativamente superior aos 30 minutos assumidos pelo serviço?

Nota: Considere que F(39) = 0.985, onde F é a função de distribuição da lei $\gamma(60,2)$.

(3.5) **2.** No quadro abaixo estão resumidos 150 valores de uma v.a.r. gerada, de acordo com certo *software* estatístico, segundo a lei binomial B(5,0.25).

Valor obtido	0	1	2	3	4	5
Nº de ocorrências	38	46	44	21	1	0

Poderá concluir, ao nível de significância 0.01, que os dados observados são compatíveis com a lei escolhida no *software*?

(6.5) **3.** Para estudar a influência de um preparado de insulina, \mathbf{x} , na redução do nível de açúcar, Y, foi feita uma experiência em 30 cobaias saudáveis, tendo-se registado para cada valor x_n de \mathbf{x} a correspondente redução de açúcar y_n de \mathbf{Y} . Foi analisada, por meio do software estatístico SPSS, a existência de uma relação linear da forma $Y_n = ax_n + b + U_n$ (n = 1, 2, ..., 30), com (U_n) variáveis aleatórias independentes e identicamente distribuídas com uma lei normal centrada de desvio padrão σ ($\sigma > 0$, desconhecido). A análise descritiva dos dados conduziu aos seguintes resultados:

Descriptive Statistics

	Mean	Std. Deviation	N
nivel	47.37	10.287	30
insulina	35.53	8.874	30

Correlations

		nivel	insulina
Pearson Correlation	nivel	1.000	.877
	insulina	.877	1.000
Sig. (1-tailed)	nivel		.000
	insulina	.000	
N	nivel	30	30
	insulina	30	30

a) Indique a média e o coeficiente de correlação da amostra observada. Que pode concluir sobre a existência de uma dependência funcional linear entre as variáveis em estudo?

Nos quadros abaixo encontram-se os resultados correspondentes à regressão linear efectuada sobre os dados.

Coefficients

			Unstandardized Coefficients		Standardized Coefficients			95% Confidence	e Interval for B
	Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
ľ	1	(Constant)	11.247	3.854		2.918	.007	3.352	19.143
		insulina	1.016	.105	.877	9.649	.000	.801	1.232

a. Dependent Variable: nivel

One-Sample Kolmogorov-Smirnov Test

		Unstandardiz ed Residual
N		30
Normal Parameters a,b	Mean	.0000000
	Std. Deviation	4.94642100
Most Extreme	Absolute	.095
Differences	Positive	.095
	Negative	065
Kolmogorov-Smimov Z		.522
Asymp. Sig. (2-tailed)		.948

- a. Test distribution is Normal.
- b. Calculated from data
- b) Indique a relação linear estimada e tire conclusões sobre a adequação, aos dados observados, do modelo estocástico considerado.
- c) Indique intervalos de confiança para os coeficientes do modelo. Permitirá a amostra concluir que o coeficiente a é significativamente diferente de zero?
- d) Com base nos resultados obtidos e sabendo ainda que a soma dos quadrados dos resíduos da estimação é igual a 709.545, construa um intervalo de confiança a 95% para o valor previsto de redução de açúcar quando a quantidade do preparado de insulina é de 55 unidades.