Departamento de Matemática da Universidade de Coimbra GEOMETRIA

(Licenciatura em Matemática)

2.^aFrequência

20.12.2006

Duração: 2h.

<u>Importante</u>: Justifique todas as suas afirmações e acompanhe as suas respostas de uma figura elucidativa dos raciocínios que efectuar.

- 1. (a) Defina isometria no plano.
 - (b) Mostre que se uma reflexão f fixar dois pontos distintos A e B então f fixa todos os pontos da recta l_{AB} .
- 2. Sejam $\mathcal{C}(O_1, r_1)$, $\mathcal{C}(O_2, r_2)$, circunferências, $O_1 \neq O_2$, l uma recta que é tangente a $\mathcal{C}(O_1, r_1)$ num ponto P_1 . Suponha que l intersecta $l_{O_1O_2}$ num ponto A e $\mathcal{C}(O_2, r_2)$ num ponto P_2 . Mostre que $\frac{|AO_1|}{|AO_2|} = \frac{r_1}{r_2}$ se e só se l é tangente a $\mathcal{C}(O_2, r_2)$ em P_2 .
- 3. Sejam l uma recta do plano euclidiano, $P \in l$ e $Q \notin l$.
 - (a) Mostre que existe uma e uma só circunferência que passa em Q e é tangente a l in P.
- √ (b) Indique justificando se o raciocínio que utilisou na alínea anterior é válido num plano verificando apenas os axiomas A1 a A11.
- 4. Mostre que no plano euclidiano a soma dos ângulos internos de um triângulo é 180.
- 5. Enuncie e demonstre o critério lado-ângulo-lado (LAL) de semelhança de triângulos do plano euclidiano.
- 6. Sejam $\triangle ABC$ um triângulo do plano euclidiano, M e N os pontos médios de \overline{AB} e \overline{AC} , res pectivamente e G o baricentro (ponto de intersecção das medianas) de $\triangle ABC$.
 - (a) Suponha que |BN|=|CM|. Mostre que ΔBCG e ΔMNG são isósceles de bases \overline{BC} e \overline{MN} respectivamente.

Sugestão: Recorde que o baricentro verifica as relações seguintes: $|BG| = \frac{2}{3}|BN|$, $|CG| = \frac{2}{3}|CM|$

 χ (b) Mostre que se |BN|=|CM| então ΔABC é isósceles de base \overline{BC} .