Departamento de Matemática da Universidade de Coimbra

GEOMETRIA

Exame Final 15.01.2007

<u>Importante</u>: Justifique todas as suas afirmações e acompanhe as suas respostas de uma figura elucidativa dos raciocínios que efectuar.

- 1. (a) Enuncie os axiomas de incidência A1 a A3.
- (b) Enuncie o axioma de separação A6.
- (c) Num plano verificando os axiomas A1-A6, enuncie e demonstre o teorema de Pasch.
- 2. (a) Num plano verificando os axiomas A1 a A11 mostre que, num triângulo $\triangle ABC$, se |AC| = |BC| então $\angle A \simeq \angle B$.
- (b) Enuncie e demonstre o teorema do ângulo externo de um triângulo.
- (c) O que conclui daquele teorema sobre o valor máximo da soma das amplitudes de dois ângulos internos de um triângulo? Justifique.
- 3. Domonstre a desigualdade triangular para no caso de pontos não-colineares: Dados três pontos não-colineares, A, B, C, num plano verificando os axiomas A1 a A11, tem-se |AB| < |AC| + |BC|.
 - 4. (a) Defina reflexão no plano.
 - (b) Sejam l uma recta do plano euclidiano e P e Q dois pontos do plano ambos situados do mesmo lado de l. Mostre que existe um e um só ponto $M \in l$ tal que, sendo A e B dois pontos distintos de l com M entre A e B, se tem $\angle PMA \simeq \angle QMB$.

Sugestão: Considere o ponto Q_1 tal que $Q_1 = f_l(Q)$, onde f_l é a reflexão relativamente a l.

- 5. Enuncie e demonstre o teorema do arco capaz (demonstre apenas o caso em que um dos lados do ângulo inscrito na circunferência passa pelo centro da circunferência).
- 6. Sejam C_1 e C_2 duas circunferências do plano euclidiano que se intersectam em dois pontos distintos A e B. Considere duas rectas l e m com $A \in l$, $B \in m$ e que sejam secantes a C_1 e a C_2 e sejam $\{A_i\} = l \cap C_i$, $\{B_i\} = m \cap C_i$ com $A_i \neq B_i$, i = 1, 2 (pode supôr que A está entre A_1 e A_2 e B entre B_1 e B_2 . Mostre que $l_{A_1B_1} \parallel l_{A_2B_2}$.