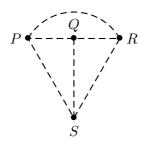
Nome:		

1. Considere na figura a seguir, o conjunto $X = \{P, Q, R, S\}$. As linhas tracejadas indicam os pontos de cada recta. Assim, $\{P, Q, R\}, \{R, S\}$, por exemplo, são duas rectas. Admita apenas **os 2 primeiros axiomas** para as definições de qualquer tipo de plano.



a) X não é um plano afim. Qual ou quais são os axiomas que não são verificados?

Antes de responder à alínea abaixo, **leia com atenção** o que se segue.

Considere $\pi = \{x_1, x_2, \dots, x_n\}$ e um subconjunto \mathcal{R} de $\mathcal{P}(\pi)$, formado por subconjuntos próprios de π , com dois pontos pelo menos, chamados **rectas**.

Suponha que, de π , remove o ponto x_k , ficando com o conjunto π_1 . Então, se tiver $\{x_r, x_k\} \in \mathcal{R}$, ela vai desaparecer mas não, naturalmente, o ponto x_r . Se a recta tiver mais de dois pontos, por exemplo, $\{x_r, x_k, x_s\}$, então ficará com a recta $\{x_r, x_s\}$ em π_1 .

b) Remova um ponto que achar conveniente de modo a, de acordo com as considerações feitas acima, obter um plano do tipo dos planos estudados. Identifique-o.

- 2. Considere as afirmações a seguir. Sem justificação, indique se são falsas ou verdadeiras.
 - a) Se l é uma recta num plano afim π então existe um ponto $p \in \pi$ tal que $p \notin l$.
 - b) Se l é uma recta num plano hiperbólico π então existem duas rectas m,n tais que l,m,n são distintas e as intersecções de m e n com l são não vazias.
 - c) Existe $p \in \pi$, sendo π um plano projectivo, pelo qual passam todas as rectas.
- **3.** Num plano afim π , satisfazendo os axiomas dados até esta altura, considere uma recta l.
 - a) Seja $\phi: l \to R$ sobrejectiva e tal que, para $x,y \in l, d(x,y) = |\phi(x) \phi(y)|$. Que pode concluir acerca de ϕ ? Justifique.
 - b) Considere $p, q \in l$ distintos e ψ uma régua para l tal que $\psi(p) = 2, \psi(q) = 5$. Se λ for outra régua para l e $\lambda(p) = -4$, que poderá concluir acerca de $\lambda(q)$?