Geometria Algébrica

Primeira Frequência \sim 4 de Novembro 2008

Não é permitida a consulta. Justifique devidamente as suas respostas. [1] Duração: 1h15m

- 1 Sejam $U \subset V \subset \mathbb{A}^n$ abertos não-vazios.
 - (a) Mostre que $\overline{U} = \overline{V} = \mathbb{A}^n$.
 - (b) Mostre que se $\varphi, \psi \in \mathcal{O}_V(V)$ são tais que $\varphi_{|U} = \psi_{|U}$ então $\varphi = \psi$.
- **2** Considere $U = \mathbb{A}^2 \setminus \{(0,0)\}$ e $\varphi \in \mathcal{O}_U(U)$.
 - $\text{(a) Seja } J_{\varphi} = \big\{ F \in \mathbb{K}[x,y] : \exists \, G \in \mathbb{K}[x,y] \,\, \text{tal que } \varphi_{|V} = \frac{F}{G}, \,\, \text{com } V \subset U \,\, \text{aberto n\~ao-vazio} \big\} \cup \{0\}. \,\, \text{Mostre que } J_{\varphi} \,\, \text{\'e ideal.}$
 - (b) Mostre que $(x,y) \subset \operatorname{Rad} J_{\varphi}$.
 - (c) Mostre que $\mathcal{O}_U(U) = \mathcal{O}_{\mathbb{A}^2}(\mathbb{A}^2)$.
- 3 Seja V um espaço vectorial sobre \mathbb{K} . Denote por $\mathbb{P}(V)$ o conjunto dos subespaços de V de dimensão 1. Dada uma base, $\mathbf{v}=(v_0,\dots,v_n)$, de V, considere $\mathbb{K}^{n+1}\setminus\{0\}\to\mathbb{P}(V)$ a aplicação dada por $(x_0,\dots,x_n)\mapsto\mathcal{L}\left\{x_0v_0+\dots+x_nv_n\right\}$, que é evidentemente sobrejectiva. Considere em \mathbb{K}^{n+1} a estrutura de espaço afim \mathbb{A}^{n+1} e tome em $\mathbb{P}(V)$ a estrutura quociente induzida. Denote o espaço com \mathbb{K} -funções assim obtido por $\mathbb{P}_{\mathbf{v}}(V)$.
 - (a) Dadas duas bases, ${\bf v}$ e ${\bf w}$, de V mostre que os espaços $\mathbb{P}_{{\bf v}}(V)$ e $\mathbb{P}_{{\bf w}}(V)$ são isomorfos.
 - (b) Seja $W \subset V$ um subespaço (vectorial) de V. Mostre que $\mathbb{P}(W) \subset \mathbb{P}(V)$ é fechado em $\mathbb{P}_{\mathbf{v}}(V)$ para qualquer escolha de base \mathbf{v} .
- **4** Considere em \mathbb{P}^3 , $\mathbf{a}=(a_0,a_1,a_2,a_3)$ e $\mathbf{b}=(b_0,b_1,b_2,b_3)$, dois pontos distintos. Mostre que a recta que passa por \mathbf{a} e \mathbf{b} é dada pela condição:

$$\operatorname{rk} \left[\begin{array}{cccc} a_0 & a_1 & a_2 & a_3 \\ b_0 & b_1 & b_2 & b_3 \\ x_0 & x_1 & x_2 & x_3 \end{array} \right] \le 2.$$

- **5** Seja $C_3 \subset \mathbb{P}^3$ a curva normal racional de grau 3. Considere $\pi \colon C_3 \to \mathbb{P}^2$, a restrição a C_3 da projecção de \mathbb{P}^3 com centro no ponto (0,1,0,0) no plano H de equação $x_1=0$. Denote por $\mathbb{P}^3_{x_i}$ o aberto dado por $\{(x_0,x_1,x_2,x_3)\in \mathbb{P}^3: x_i\neq 0\}$.
 - (a) Determine $E(\pi(C_3)) \subset \mathbb{K}[x_0, x_2, x_3]$.

^[1] K supõe-se sempre algebricamente fechado.